Gotowa bibliografia na temat „ANALYZE BIG DATA”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ANALYZE BIG DATA”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ANALYZE BIG DATA"
Dhar, Vasant. "Can Big Data Machines Analyze Stock Market Sentiment?" Big Data 2, nr 4 (grudzień 2014): 177–81. http://dx.doi.org/10.1089/big.2014.1528.
Pełny tekst źródłaVenkateswara Reddy, R., i Dr D. Murali. "Analyzing Indian healthcare data with big data". International Journal of Engineering & Technology 7, nr 3.29 (24.08.2018): 88. http://dx.doi.org/10.14419/ijet.v7i3.29.18467.
Pełny tekst źródłaLi, Ruowang, Dokyoon Kim i Marylyn D. Ritchie. "Methods to analyze big data in pharmacogenomics research". Pharmacogenomics 18, nr 8 (czerwiec 2017): 807–20. http://dx.doi.org/10.2217/pgs-2016-0152.
Pełny tekst źródłaAhmed, Waseem, i Lisa Fan. "Analyze Physical Design Process Using Big Data Tool". International Journal of Software Science and Computational Intelligence 7, nr 2 (kwiecień 2015): 31–49. http://dx.doi.org/10.4018/ijssci.2015040102.
Pełny tekst źródłaZhang, Yucheng Eason, Siqi Liu, Shan Xu, Miles M. Yang i Jian Zhang. "Integrating the Split/Analyze/Meta-Analyze (SAM) Approach and a Multilevel Framework to Advance Big Data Research in Psychology". Zeitschrift für Psychologie 226, nr 4 (październik 2018): 274–83. http://dx.doi.org/10.1027/2151-2604/a000345.
Pełny tekst źródłaSp, Syedibrahim sp. "Big Data Analytics Framework to Analyze Students Performance". International Journal of Computational Complexity and Intelligent Algorithms 1, nr 1 (2018): 1. http://dx.doi.org/10.1504/ijccia.2018.10021266.
Pełny tekst źródłaGogołek, Włodzimierz. "Refining Big Data". Bulletin of Science, Technology & Society 37, nr 4 (grudzień 2017): 212–17. http://dx.doi.org/10.1177/0270467619864012.
Pełny tekst źródłaLiu, Xin Xing, Xing Wu i Shu Ji Dai. "The Paradoxes of Big Data". Applied Mechanics and Materials 743 (marzec 2015): 603–6. http://dx.doi.org/10.4028/www.scientific.net/amm.743.603.
Pełny tekst źródłaValdez, Alicia, Griselda Cortes, Laura Vazquez, Adriana Martinez i Gerardo Haces. "Big Data Analysis Proposal for Manufacturing Firm". European Journal of Electrical Engineering and Computer Science 5, nr 1 (15.02.2021): 68–75. http://dx.doi.org/10.24018/ejece.2021.5.1.298.
Pełny tekst źródłaRaich, Vivek, i Pankaj Maurya. "Analytical Study on Big Data". International Journal of Advanced Research in Computer Science and Software Engineering 8, nr 5 (2.06.2018): 75. http://dx.doi.org/10.23956/ijarcsse.v8i5.668.
Pełny tekst źródłaRozprawy doktorskie na temat "ANALYZE BIG DATA"
SHARMA, DIVYA. "APPLICATION OF ML TO MAKE SENCE OF BIOLOGICAL BIG DATA IN DRUG DISCOVERY PROCESS". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18378.
Pełny tekst źródłaUřídil, Martin. "Big data - použití v bankovní sféře". Master's thesis, Vysoká škola ekonomická v Praze, 2012. http://www.nusl.cz/ntk/nusl-149908.
Pełny tekst źródłaFlike, Felix, i Markus Gervard. "BIG DATA-ANALYS INOM FOTBOLLSORGANISATIONER En studie om big data-analys och värdeskapande". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20117.
Pełny tekst źródłaŠoltýs, Matej. "Big Data v technológiách IBM". Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-193914.
Pełny tekst źródłaVictoria, Åkestrand, i Wisen My. "Big Data-analyser och beslutsfattande i svenska myndigheter". Thesis, Högskolan i Halmstad, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-34752.
Pełny tekst źródłaKleisarchaki, Sofia. "Analyse des différences dans le Big Data : Exploration, Explication, Évolution". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM055/document.
Pełny tekst źródłaVariability in Big Data refers to data whose meaning changes continuously. For instance, data derived from social platforms and from monitoring applications, exhibits great variability. This variability is essentially the result of changes in the underlying data distributions of attributes of interest, such as user opinions/ratings, computer network measurements, etc. {em Difference Analysis} aims to study variability in Big Data. To achieve that goal, data scientists need: (a) measures to compare data in various dimensions such as age for users or topic for network traffic, and (b) efficient algorithms to detect changes in massive data. In this thesis, we identify and study three novel analytical tasks to capture data variability: {em Difference Exploration, Difference Explanation} and {em Difference Evolution}.Difference Exploration is concerned with extracting the opinion of different user segments (e.g., on a movie rating website). We propose appropriate measures for comparing user opinions in the form of rating distributions, and efficient algorithms that, given an opinion of interest in the form of a rating histogram, discover agreeing and disargreeing populations. Difference Explanation tackles the question of providing a succinct explanation of differences between two datasets of interest (e.g., buying habits of two sets of customers). We propose scoring functions designed to rank explanations, and algorithms that guarantee explanation conciseness and informativeness. Finally, Difference Evolution tracks change in an input dataset over time and summarizes change at multiple time granularities. We propose a query-based approach that uses similarity measures to compare consecutive clusters over time. Our indexes and algorithms for Difference Evolution are designed to capture different data arrival rates (e.g., low, high) and different types of change (e.g., sudden, incremental). The utility and scalability of all our algorithms relies on hierarchies inherent in data (e.g., time, demographic).We run extensive experiments on real and synthetic datasets to validate the usefulness of the three analytical tasks and the scalability of our algorithms. We show that Difference Exploration guides end-users and data scientists in uncovering the opinion of different user segments in a scalable way. Difference Explanation reveals the need to parsimoniously summarize differences between two datasets and shows that parsimony can be achieved by exploiting hierarchy in data. Finally, our study on Difference Evolution provides strong evidence that a query-based approach is well-suited to tracking change in datasets with varying arrival rates and at multiple time granularities. Similarly, we show that different clustering approaches can be used to capture different types of change
Nováková, Martina. "Analýza Big Data v oblasti zdravotnictví". Master's thesis, Vysoká škola ekonomická v Praze, 2014. http://www.nusl.cz/ntk/nusl-201737.
Pełny tekst źródłaEl, alaoui Imane. "Transformer les big social data en prévisions - méthodes et technologies : Application à l'analyse de sentiments". Thesis, Angers, 2018. http://www.theses.fr/2018ANGE0011/document.
Pełny tekst źródłaExtracting public opinion by analyzing Big Social data has grown substantially due to its interactive nature, in real time. In fact, our actions on social media generate digital traces that are closely related to our personal lives and can be used to accompany major events by analysing peoples' behavior. It is in this context that we are particularly interested in Big Data analysis methods. The volume of these daily-generated traces increases exponentially creating massive loads of information, known as big data. Such important volume of information cannot be stored nor dealt with using the conventional tools, and so new tools have emerged to help us cope with the big data challenges. For this, the aim of the first part of this manuscript is to go through the pros and cons of these tools, compare their respective performances and highlight some of its interrelated applications such as health, marketing and politics. Also, we introduce the general context of big data, Hadoop and its different distributions. We provide a comprehensive overview of big data tools and their related applications.The main contribution of this PHD thesis is to propose a generic analysis approach to automatically detect trends on given topics from big social data. Indeed, given a very small set of manually annotated hashtags, the proposed approach transfers information from hashtags known sentiments (positive or negative) to individual words. The resulting lexical resource is a large-scale lexicon of polarity whose efficiency is measured against different tasks of sentiment analysis. The comparison of our method with different paradigms in literature confirms the impact of our method to design accurate sentiment analysis systems. Indeed, our model reaches an overall accuracy of 90.21%, significantly exceeding the current models on social sentiment analysis
Pragarauskaitė, Julija. "Frequent pattern analysis for decision making in big data". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2013. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130701_092451-80961.
Pełny tekst źródłaDidžiuliai informacijos kiekiai yra sukaupiami kiekvieną dieną pasaulyje bei jie sparčiai auga. Apytiksliai duomenų tyrybos algoritmai yra labai svarbūs analizuojant tokius didelius duomenų kiekius, nes algoritmų greitis yra ypač svarbus daugelyje sričių, tuo tarpu tikslieji metodai paprastai yra lėti bei naudojami tik uždaviniuose, kuriuose reikalingas tikslus atsakymas. Ši disertacija analizuoja kelias duomenų tyrybos sritis: dažnų sekų paiešką bei vizualizaciją sprendimų priėmimui. Dažnų sekų paieškai buvo pasiūlyti trys nauji apytiksliai metodai, kurie buvo testuojami naudojant tikras bei dirbtinai sugeneruotas duomenų bazes: • Atsitiktinės imties metodas (Random Sampling Method - RSM) formuoja pradinės duomenų bazės atsitiktinę imtį ir nustato dažnas sekas, remiantis atsitiktinės imties analizės rezultatais. Šio metodo privalumas yra teorinis paklaidų tikimybių įvertinimas, naudojantis standartiniais statistiniais metodais. • Daugybinio perskaičiavimo metodas (Multiple Re-sampling Method - MRM) yra RSM metodo patobulinimas, kuris formuoja kelias pradinės duomenų bazės atsitiktines imtis ir taip sumažina paklaidų tikimybes. • Markovo savybe besiremiantis metodas (Markov Property Based Method - MPBM) kelis kartus skaito pradinę duomenų bazę, priklausomai nuo Markovo proceso eilės, bei apskaičiuoja empirinius dažnius remdamasis Markovo savybe. Didelio duomenų kiekio vizualizavimui buvo naudojami pirkėjų internetu elgsenos duomenys, kurie analizuojami naudojant... [toliau žr. visą tekstą]
Landelius, Cecilia. "Data governance in big data : How to improve data quality in a decentralized organization". Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-301258.
Pełny tekst źródłaDen ökade användningen av internet har ökat mängden data som finns tillgänglig och mängden data som samlas in. Företag påbörjar därför initiativ för att analysera dessa stora mängder data för att få ökad förståelse. Dock är värdet av analysen samt besluten som baseras på analysen beroende av kvaliteten av den underliggande data. Av denna anledning har datakvalitet blivit en viktig fråga för företag. Misslyckanden i datakvalitetshantering är ofta på grund av organisatoriska aspekter. Eftersom decentraliserade organisationsformer blir alltmer populära, finns det ett behov av att förstå hur en decentraliserad organisation kan arbeta med frågor som datakvalitet och dess förbättring. Denna uppsats är en kvalitativ studie av ett företag inom logistikbranschen som i nuläget genomgår ett skifte till att bli datadrivna och som har problem med att underhålla sin datakvalitet. Syftet med denna uppsats är att besvara frågorna: • RQ1: Vad är datakvalitet i sammanhanget logistikdata? • RQ2: Vilka är hindren för att förbättra datakvalitet i en decentraliserad organisation? • RQ3: Hur kan dessa hinder överkommas? Flera datakvalitetsdimensioner identifierades och kategoriserades som kritiska problem, problem och icke-problem. Från den insamlade informationen fanns att dimensionerna, kompletthet, exakthet och konsekvens var kritiska datakvalitetsproblem för företaget. De tre mest förekommande hindren för att förbättra datakvalité var dataägandeskap, standardisering av data samt att förstå vikten av datakvalitet. För att överkomma dessa hinder är de viktigaste åtgärderna att skapa strukturer för dataägandeskap, att implementera praxis för hantering av datakvalitet samt att ändra attityden hos de anställda gentemot datakvalitet till en datadriven attityd. Generaliseringsbarheten av en enfallsstudie är låg. Dock medför denna studie flera viktiga insikter och trender vilka kan användas för framtida studier och för företag som genomgår liknande transformationer.
Książki na temat "ANALYZE BIG DATA"
Cutt, Shannon, red. Practical Statistics for Data Scientists: 50 Essential Concepts. Beijing: O’Reilly Media, 2017.
Znajdź pełny tekst źródłaD, Baxevanis Andreas, i Ouellette B. F. Francis, red. Bioinformatics: A practical guide to the analysis of genes and proteins. Wyd. 2. New York, NY: Wiley-Interscience, 2001.
Znajdź pełny tekst źródłaPython for Finance: Analyze Big Financial Data. O'Reilly Media, Incorporated, 2014.
Znajdź pełny tekst źródłaPython for Finance: Analyze Big Financial Data. O'Reilly Media, 2014.
Znajdź pełny tekst źródłaPython for Finance: Analyze Big Financial Data. O'Reilly Media, Incorporated, 2014.
Znajdź pełny tekst źródłaVanaria, Von. Big Data Solutions : Guides for Beginners to Analyze Big Data Using Python and C++ Programming: C++ Programming Language. Independently Published, 2021.
Znajdź pełny tekst źródłaPasupuleti, Pradeep, i Beulah Salome Purra. Data Lake Development with Big Data: Explore Architectural Approaches to Building Data Lakes That Ingest, Index, Manage, and Analyze Massive Amounts of Data Using Big Data Technologies. Packt Publishing, Limited, 2015.
Znajdź pełny tekst źródłaShilpi i Sumit Gupta. Real-Time Big Data Analytics: Design, Process, and Analyze Large Sets of Complex Data in Real Time. Packt Publishing, Limited, 2016.
Znajdź pełny tekst źródłaLai, Rudy, i Bartłomiej Potaczek. Hands-On Big Data Analytics with Pyspark: Analyze Large Datasets and Discover Techniques for Testing, Immunizing, and Parallelizing Spark Jobs. Packt Publishing, Limited, 2019.
Znajdź pełny tekst źródłaKearn, Marvin. Great Apartment Buildings : Learn the Tricks and Tips on How to Analyze Big Apartment Buildings: How to Find the Data for Big Apartment Buildings. Independently Published, 2021.
Znajdź pełny tekst źródłaCzęści książek na temat "ANALYZE BIG DATA"
Patel, Pragneshkumar, Sanjay Chaudhary i Hasit Parmar. "Analyze the Impact of Weather Parameters for Crop Yield Prediction Using Deep Learning". W Big Data Analytics, 249–59. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24094-2_17.
Pełny tekst źródłaZhou, Zhou, i XuJia Yao. "Analyze and Evaluate Database-Backed Web Applications with WTool". W Web and Big Data, 110–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-85896-4_9.
Pełny tekst źródłaMa, Xiaobin, Zhihui Du, Yankui Sun, Andrei Tchernykh, Chao Wu i Jianyan Wei. "An Efficient Parallel Framework to Analyze Astronomical Sky Survey Data". W Big Scientific Data Management, 67–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28061-1_8.
Pełny tekst źródłaXuan Do, Canh, i Makoto Tsukai. "Exploring Potential Use of Mobile Phone Data Resource to Analyze Inter-regional Travel Patterns in Japan". W Data Mining and Big Data, 314–25. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61845-6_32.
Pełny tekst źródłaHabyarimana, Ephrem, i Sofia Michailidou. "Genomics Data". W Big Data in Bioeconomy, 69–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71069-9_6.
Pełny tekst źródłaCano, Luis, Erick Hein, Mauricio Rada-Orellana i Claudio Ortega. "A Case Study of Library Data Management: A New Method to Analyze Borrowing Behavior". W Information Management and Big Data, 112–20. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11680-4_12.
Pełny tekst źródłaHuang, Qinglv, i Liang Yan. "Analyze Ming and Qing Literature Under Big Data Technology". W 2020 International Conference on Data Processing Techniques and Applications for Cyber-Physical Systems, 367–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1726-3_45.
Pełny tekst źródłaZhilyaeva, Irina A., Stanislav V. Suvorov, Natalia I. Tsarkova i Anastasia D. Perekatova. "Application of Big Data to Analyze Illegal Passenger Transportation Offenses". W Сooperation and Sustainable Development, 3–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77000-6_1.
Pełny tekst źródłaBian, Zhenxing. "Using Computer Blockchain Technology to Analyze the Development Trend of China's Modern Financial Industry". W Artificial Intelligence and Big Data for Financial Risk Management, 160–68. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003144410-10.
Pełny tekst źródłaDin, Sadia, Awais Ahmad, Anand Paul i Gwanggil Jeon. "Software-Defined Internet of Things to Analyze Big Data in Smart Cities". W Edge Computing, 91–106. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99061-3_6.
Pełny tekst źródłaStreszczenia konferencji na temat "ANALYZE BIG DATA"
Dang, Xuan-Hong, Raji Akella, Somaieh Bahrami, Vadim Sheinin i Petros Zerfos. "Unsupervised Threshold Autoencoder to Analyze and Understand Sentence Elements". W 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622379.
Pełny tekst źródłaTaeb, Maryam, Hongmei Chi i Jie Yan. "Applying Machine Learning to Analyze Anti-Vaccination on Tweets". W 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671647.
Pełny tekst źródłaWorkman, T. Elizabeth, Michael Hirezi, Eduardo Trujillo-Rivera, Anita K. Patel, Julia A. Heneghan, James E. Bost, Qing Zeng-Treitler i Murray Pollack. "A Novel Deep Learning Pipeline to Analyze Temporal Clinical Data". W 2018 IEEE International Conference on Big Data (Big Data). IEEE, 2018. http://dx.doi.org/10.1109/bigdata.2018.8622099.
Pełny tekst źródłaDindokar, Ravikant, Neel Choudhury i Yogesh Simmhan. "A meta-graph approach to analyze subgraph-centric distributed programming models". W 2016 IEEE International Conference on Big Data (Big Data). IEEE, 2016. http://dx.doi.org/10.1109/bigdata.2016.7840587.
Pełny tekst źródłaXiao, Wei. "Novel Online Algorithms for Nonparametric Correlations with Application to Analyze Sensor Data". W 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006483.
Pełny tekst źródłaMunasinghe, Thilanka, Evan W. Patton i Oshani Seneviratne. "IoT Application Development Using MIT App Inventor to Collect and Analyze Sensor Data". W 2019 IEEE International Conference on Big Data (Big Data). IEEE, 2019. http://dx.doi.org/10.1109/bigdata47090.2019.9006203.
Pełny tekst źródłaDhiman, Aarzoo, i Durga Toshniwal. "An Unsupervised Misinformation Detection Framework to Analyze the Users using COVID-19 Twitter Data". W 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378250.
Pełny tekst źródłaOrdonez, Carlos. "Can we analyze big data inside a DBMS?" W the sixteenth international workshop. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2513190.2513198.
Pełny tekst źródłaVuppalapati, Chandrasekar, Anitha Ilapakurti, Sandhya Vissapragada, Vanaja Mamaidi, Sharat Kedari, Raja Vuppalapati, Santosh Kedari i Jaya Vuppalapati. "Application of Machine Learning and Government Finance Statistics for macroeconomic signal mining to analyze recessionary trends and score policy effectiveness". W 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9672025.
Pełny tekst źródłaYin, Zhanyuan, Lizhou Fan, Huizi Yu i Anne J. Gilliland. "Using a Three-step Social Media Similarity (TSMS) Mapping Method to Analyze Controversial Speech Relating to COVID-19 in Twitter Collections". W 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9377930.
Pełny tekst źródłaRaporty organizacyjne na temat "ANALYZE BIG DATA"
Alonso-Robisco, Andrés, José Manuel Carbó i José Manuel Carbó. Machine Learning methods in climate finance: a systematic review. Madrid: Banco de España, luty 2023. http://dx.doi.org/10.53479/29594.
Pełny tekst źródłaMazorchuk, Mariia S., Tetyana S. Vakulenko, Anna O. Bychko, Olena H. Kuzminska i Oleksandr V. Prokhorov. Cloud technologies and learning analytics: web application for PISA results analysis and visualization. [б. в.], czerwiec 2021. http://dx.doi.org/10.31812/123456789/4451.
Pełny tekst źródłaGarcía, Gustavo A., Mónica Calijuri, Juan José Bravo i José Elías Feres de Almeida. Documentos tributarios electrónicos y big data económica para el control tributario y aduanero: big data estructurada para el control tributario y aduanero y la generación de estadísticas económicas en America Latina y el Caribe: Tomo 4. Redaktor Gustavo A. García. Banco Interamericano de Desarrollo, lipiec 2023. http://dx.doi.org/10.18235/0005001.
Pełny tekst źródłaGoodwin, Katy, i Alan Kirschbaum. Acoustic monitoring for bats at Indiana Dunes National Park: Data summary report for 2016–2019. National Park Service, luty 2022. http://dx.doi.org/10.36967/nrds-2290144.
Pełny tekst źródłaWiegel, J., M. M. C. Holstege, M. Kluivers-Poodt i M. H. Bokma-Bakker. Verdiepende data-analyse naar succesfactoren voor een laag antibioticumgebruik bij vleeskuikens : aanvullend rapport van het project Kritische Succesfactoren Pluimvee (KSF Pluimvee). Wageningen: Wageningen Livestock Research, 2020. http://dx.doi.org/10.18174/518636.
Pełny tekst źródłaValko, Nataliia V., Nataliya O. Kushnir i Viacheslav V. Osadchyi. Cloud technologies for STEM education. [б. в.], lipiec 2020. http://dx.doi.org/10.31812/123456789/3882.
Pełny tekst źródłaCalijuri, Mónica, Gustavo A. GArcía, Juan José Bravo i José Elías Feres de Almeida. Documentos tributarios electrónicos y big data económica para el control tributario y aduanero: utilización y codificación de los estados financieros electrónicos para control fiscal y datos económico en América Latina y el Caribe: Tomo 3. Banco Interamericano de Desarrollo, lipiec 2023. http://dx.doi.org/10.18235/0005000.
Pełny tekst źródłaShamblin, Robert, Kevin Whelan, Mario Londono i Judd Patterson. South Florida/Caribbean Network early detection protocol for exotic plants: Corridors of invasiveness. National Park Service, lipiec 2022. http://dx.doi.org/10.36967/nrr-2293364.
Pełny tekst źródłaScholz, Florian. Sedimentary fluxes of trace metals, radioisotopes and greenhouse gases in the southwestern Baltic Sea Cruise No. AL543, 23.08.2020 – 28.08.2020, Kiel – Kiel - SEDITRACE. GEOMAR Helmholtz Centre for Ocean Research Kiel, listopad 2020. http://dx.doi.org/10.3289/cr_al543.
Pełny tekst źródłaTóth, Z., B. Dubé, B. Lafrance, V. Bécu, K. Lauzière i P. Mercier-Langevin. Whole-rock lithogeochemistry of the banded iron-formation-hosted gold mineralization in the Geraldton area, northwestern Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331919.
Pełny tekst źródła