Gotowa bibliografia na temat „Analysis of biological data”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Analysis of biological data”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Analysis of biological data"
Dwivedi, Vivek Dhar, Indra Prasad Tripathi, Aman Chandra Kaushik, Shiv Bharadwaj i Sarad Kumar Mishra. "Biological Data Analysis Program (BDAP): a multitasking biological sequence analysis program". Neural Computing and Applications 30, nr 5 (17.12.2016): 1493–501. http://dx.doi.org/10.1007/s00521-016-2772-z.
Pełny tekst źródłaSrivastava, Chandan. "Biological Data Analysis: Error and Uncertainty". World Journal of Computer Application and Technology 1, nr 3 (listopad 2013): 67–74. http://dx.doi.org/10.13189/wjcat.2013.010302.
Pełny tekst źródłaEliceiri, K. W., C. Rueden, W. A. Mohler, W. L. Hibbard i J. G. White. "Analysis of Multidimensional Biological Image Data". BioTechniques 33, nr 6 (grudzień 2002): 1268–73. http://dx.doi.org/10.2144/02336bt01.
Pełny tekst źródłaGrewal, Rumdeep Kaur, i Sampa Das. "Microarray data analysis: Gaining biological insights". Journal of Biomedical Science and Engineering 06, nr 10 (2013): 996–1005. http://dx.doi.org/10.4236/jbise.2013.610124.
Pełny tekst źródłaEl-Bayomi, Kh M., El A. Rady, M. S. El-Tarabany i Fatma D. Mohammed. "Statistical Analysis of Biological Survival Data". Zagazig Veterinary Journal 42, nr 1 (1.03.2014): 129–39. http://dx.doi.org/10.21608/zvjz.2014.59478.
Pełny tekst źródłaFry, J. C. "Biological Data Analysis: A Practical Approach." Biometrics 50, nr 1 (marzec 1994): 318. http://dx.doi.org/10.2307/2533236.
Pełny tekst źródłaJohnson, Michael L. "Review of Fry, Biological Data Analysis". Biophysical Journal 67, nr 2 (sierpień 1994): 937. http://dx.doi.org/10.1016/s0006-3495(94)80557-0.
Pełny tekst źródłaSung, Wing-Kin. "Pan-omics analysis of biological data". Methods 102 (czerwiec 2016): 1–2. http://dx.doi.org/10.1016/j.ymeth.2016.05.004.
Pełny tekst źródłaStansfield, William D., i Matthew A. Carlton. "Bayesian Statistics for Biological Data: Pedigree Analysis". American Biology Teacher 66, nr 3 (1.03.2004): 177–82. http://dx.doi.org/10.2307/4451651.
Pełny tekst źródłaTopaz, Chad M., Lori Ziegelmeier i Tom Halverson. "Topological Data Analysis of Biological Aggregation Models". PLOS ONE 10, nr 5 (13.05.2015): e0126383. http://dx.doi.org/10.1371/journal.pone.0126383.
Pełny tekst źródłaRozprawy doktorskie na temat "Analysis of biological data"
Droop, Alastair Philip. "Correlation Analysis of Multivariate Biological Data". Thesis, University of York, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507622.
Pełny tekst źródłaMcCormick, Paul Stephen. "Statistical analysis of biological expression data". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613819.
Pełny tekst źródłaHasegawa, Takanori. "Reconstructing Biological Systems Incorporating Multi-Source Biological Data via Data Assimilation Techniques". 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/195985.
Pełny tekst źródłaWaterworth, Alan Richard. "Data analysis techniques of measured biological impedance". Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340146.
Pełny tekst źródłaBecker, Katinka [Verfasser]. "Logical Analysis of Biological Data / Katinka Becker". Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1241541779/34.
Pełny tekst źródłaREHMAN, HAFEEZ UR. "Integration and Analysis of Heterogeneous Biological Data". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2537092.
Pełny tekst źródłaLi, Yehua. "Topics in functional data analysis with biological applications". [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1867.
Pełny tekst źródłaChen, Li. "Integrative Modeling and Analysis of High-throughput Biological Data". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/30192.
Pełny tekst źródłaPh. D.
Causey, Jason L. "Studying Low Complexity Structures in Bioinformatics Data Analysis of Biological and Biomedical Data". Thesis, University of Arkansas at Little Rock, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10750808.
Pełny tekst źródłaBiological, biomedical, and radiological data tend to be large, complex, and noisy. Gene expression studies contain expression levels for thousands of genes and hundreds or thousands of patients. Chest Computed Tomography images used for diagnosing lung cancer consist of hundreds of 2-D image ”slices”, each containing hundreds of thousands of pixels. Beneath the size and apparent complexity of many of these data are simple and sparse structures. These low complexity structures can be leveraged into new approaches to biological, biomedical, and radiological data analyses. Two examples are presented here. First, a new framework SparRec (Sparse Recovery) for imputation of GWAS data, based on a matrix completion (MC) model taking advantage of the low-rank and low number of co-clusters of GWAS matrices. SparRec is flexible enough to impute meta-analyses with multiple cohorts genotyped on different sets of SNPs, even without a reference panel. Compared with Mendel-Impute, another MC method, our low-rank based method achieves similar accuracy and efficiency even with up to 90% missing data; our co-clustering based method has advantages in running time. MC methods are shown to have advantages over statistics-based methods, including Beagle and fastPhase. Second, we demonstrate NoduleX, a method for predicting lung nodule malignancy from chest Computed Tomography (CT) data, based on deep convolutional neural networks. For training and validation, we analyze >1000 lung nodules in images from the LIDC/IDRI cohort and compare our results with classifications provided by four experienced thoracic radiologists who participated in the LIDC project. NoduleX achieves high accuracy for nodule malignancy classification, with an AUC of up to 0.99, commensurate with the radiologists’ analysis. Whether they are leveraged directly or extracted using mathematical optimization and machine learning techniques, low complexity structures provide researchers with powerful tools for taming complex data.
Zandegiacomo, Cella Alice. "Multiplex network analysis with application to biological high-throughput data". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/10495/.
Pełny tekst źródłaKsiążki na temat "Analysis of biological data"
Maglaveras, Nicos, Ioanna Chouvarda, Vassilis Koutkias i Rüdiger Brause, red. Biological and Medical Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11946465.
Pełny tekst źródłaOliveira, José Luís, Víctor Maojo, Fernando Martín-Sánchez i António Sousa Pereira, red. Biological and Medical Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11573067.
Pełny tekst źródłaBarreiro, José María, Fernando Martín-Sánchez, Víctor Maojo i Ferran Sanz, red. Biological and Medical Data Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b104033.
Pełny tekst źródłaDolph, Schluter, red. The analysis of biological data. Greenwood Village, Colo: Roberts and Co. Publishers, 2009.
Znajdź pełny tekst źródłaC, Fry John, red. Biological data analysis: A practical approach. Oxford: IRL Press at Oxford University Press, 1993.
Znajdź pełny tekst źródłaGlasbey, C. A. Image analysis for the biological sciences. Chichester: J. Wiley, 1995.
Znajdź pełny tekst źródłaAnalysis of infectious disease data. London: Chapman and Hall, 1989.
Znajdź pełny tekst źródłaR, Margules C., Austin M. P i CSIRO (Australia), red. Nature conservation: Cost effective biological surveys and data analysis. [Canberra]: CSIRO Australia, 1991.
Znajdź pełny tekst źródłaOphir, Frieder, i Martino Robert L, red. High performance computational methods for biological sequence analysis. Boston: Kluwer Academic Publishers, 1996.
Znajdź pełny tekst źródłaPodani, János. Introduction to the exploration of multivariate biological data. Leiden: Backhuys Publishers, 2000.
Znajdź pełny tekst źródłaCzęści książek na temat "Analysis of biological data"
Kim, Ju Han. "Biological Network Analysis". W Genome Data Analysis, 233–46. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1942-6_13.
Pełny tekst źródłaRieger, Josef, Karel Kosar, Lenka Lhotska i Vladimir Krajca. "EEG Data and Data Analysis Visualization". W Biological and Medical Data Analysis, 39–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30547-7_5.
Pełny tekst źródłaKim, Ju Han. "Gene Ontology and Biological Pathway-Based Analysis". W Genome Data Analysis, 121–34. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-1942-6_7.
Pełny tekst źródłaBarah, Pankaj, Dhruba Kumar Bhattacharyya i Jugal Kumar Kalita. "Information Flow in Biological Systems". W Gene Expression Data Analysis, 27–38. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429322655-2.
Pełny tekst źródłaO'Hara, Timothy D., Thomas A. Schlacher, Ashley A. Rowden i Derek P. Tittensor. "Data Analysis Considerations". W Biological Sampling in the Deep Sea, 386–403. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118332535.ch17.
Pełny tekst źródłaIno, Fumihiko, Katsunori Matsuo, Yasuharu Mizutani i Kenichi Hagihara. "Minimizing Data Size for Efficient Data Reuse in Grid-Enabled Medical Applications". W Biological and Medical Data Analysis, 195–206. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11946465_18.
Pełny tekst źródłaPotamias, George. "Knowledgeable Clustering of Microarray Data". W Biological and Medical Data Analysis, 491–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30547-7_49.
Pełny tekst źródłaPolaillon, Géraldine, Laure Vescovo, Magali Michaut i Jean-Christophe Aude. "Mining Biological Data Using Pyramids". W Selected Contributions in Data Analysis and Classification, 397–408. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73560-1_37.
Pełny tekst źródłaHernández, Juan A., Martha L. Mora, Emanuele Schiavi i Pablo Toharia. "RF Inhomogeneity Correction Algorithm in Magnetic Resonance Imaging". W Biological and Medical Data Analysis, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30547-7_1.
Pełny tekst źródłaDiez, Raquel Montes, Juan M. Marin i David Rios Insua. "Bayesian Prediction of Down Syndrome Based on Maternal Age and Four Serum Markers". W Biological and Medical Data Analysis, 85–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30547-7_10.
Pełny tekst źródłaStreszczenia konferencji na temat "Analysis of biological data"
Soetaert, Karline, Dick van Oevelen, Theodore E. Simos, George Psihoyios, Ch Tsitouras i Zacharias Anastassi. "Modelling Marine Biological and Biogeochemical Data". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636664.
Pełny tekst źródłaOgiela, Lidia. "Biological Modelling in Semantic Data Analysis Systems". W 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS). IEEE, 2012. http://dx.doi.org/10.1109/imis.2012.81.
Pełny tekst źródłaKim, Christine, Peggy Yin, Carlos X. Soto, Ian K. Blaby i Shinjae Yoo. "Multimodal biological analysis using NLP and expression profile". W 2018 New York Scientific Data Summit (NYSDS). IEEE, 2018. http://dx.doi.org/10.1109/nysds.2018.8538944.
Pełny tekst źródłaLivengood, Philip, Ross Maciejewski, Wei Chen i David S. Ebert. "A visual analysis system for metabolomics data". W 2011 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2011. http://dx.doi.org/10.1109/biovis.2011.6094050.
Pełny tekst źródłaThai, My T., Ping Deng, Weili Wu, Taieb Znati, Onur Seref, O. Erhun Kundakcioglu i Panos Pardalos. "Approximation algorithms of non-unique probes selection for biological target identification". W DATA MINING, SYSTEMS ANALYSIS AND OPTIMIZATION IN BIOMEDICINE. AIP, 2007. http://dx.doi.org/10.1063/1.2817340.
Pełny tekst źródłaJager, Gunter, Florian Battke i Kay Nieselt. "TIALA — Time series alignment analysis". W 2011 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2011. http://dx.doi.org/10.1109/biovis.2011.6094048.
Pełny tekst źródłaPedersen, Edvard, Inge Alexander Raknes, Martin Ernstsen i Lars Ailo Bongo. "Integrating Data-Intensive Computing Systems with Biological Data Analysis Frameworks". W 2015 23rd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2015. http://dx.doi.org/10.1109/pdp.2015.106.
Pełny tekst źródłaNowke, Christian, Maximilian Schmidt, Sacha J. van Albada, Jochen M. Eppler, Rembrandt Bakker, Markus Diesrnann, Bernd Hentschel i Torsten Kuhlen. "VisNEST — Interactive analysis of neural activity data". W 2013 IEEE Symposium on Biological Data Visualization (BioVis). IEEE, 2013. http://dx.doi.org/10.1109/biovis.2013.6664348.
Pełny tekst źródłaCui, Guangzhao, Xianghong Cao i Xuncai Zhang. "Analysis of Biological Data with Digital Signal Processing". W 2005 IEEE 7th Workshop on Multimedia Signal Processing. IEEE, 2005. http://dx.doi.org/10.1109/mmsp.2005.248561.
Pełny tekst źródłaMajid Rastegar-Mojarad, Saeed Talatian-Azad i Behrouz Minaei-Bidgoli. "A survey on biological data analysis by biclustering". W 2010 International Conference on Educational and Information Technology (ICEIT). IEEE, 2010. http://dx.doi.org/10.1109/iceit.2010.5607792.
Pełny tekst źródłaRaporty organizacyjne na temat "Analysis of biological data"
Langston, Michael A. Scalable Computational Methods for the Analysis of High-Throughput Biological Data. Office of Scientific and Technical Information (OSTI), wrzesień 2012. http://dx.doi.org/10.2172/1050046.
Pełny tekst źródłaRatnarajah, Lavenia. Map of BioEco Observing networks/capability. EuroSea, październik 2021. http://dx.doi.org/10.3289/eurosea_d1.2.
Pełny tekst źródłaReilly-Collette, Marina, Brandon Booker, Kathryn Trubac, Tyler Elliott, Andrew Reichert, Charles Woodruff i Lien Senchak. Testing of dry decontamination technologies for chemical, biological, radiological, and nuclear (CBRN) response. Engineer Research and Development Center (U.S.), maj 2023. http://dx.doi.org/10.21079/11681/47032.
Pełny tekst źródłaRodriguez Muxica, Natalia. Open configuration options Bioinformatics for Researchers in Life Sciences: Tools and Learning Resources. Inter-American Development Bank, luty 2022. http://dx.doi.org/10.18235/0003982.
Pełny tekst źródłaMatthew, Gray. Data from "Winter is Coming – Temperature Affects Immune Defenses and Susceptibility to Batrachochytrium salamandrivorans". University of Tennessee, Knoxville Libraries, styczeń 2021. http://dx.doi.org/10.7290/t7sallfxxe.
Pełny tekst źródłaCao, Siyang, Yihao Wei, Tiantian Qi, Peng Liu, Yingqi Chen, Fei Yu, Hui Zeng i Jian Weng. Stem cell therapy for peripheral nerve injury: An up-to-date meta-analysis of 55 preclinical researches. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, październik 2022. http://dx.doi.org/10.37766/inplasy2022.10.0083.
Pełny tekst źródłaNachtrieb, Julie. Field site analysis of giant salvinia nitrogen content and salvinia weevil density. Engineer Research and Development Center (U.S.), wrzesień 2021. http://dx.doi.org/10.21079/11681/42060.
Pełny tekst źródłaTorney, D. C., W. Bruno i V. Detours. Nonlinear analysis of biological sequences. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/674921.
Pełny tekst źródłaMcMinn, James W. Biological Diversity Research: An Analysis. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1991. http://dx.doi.org/10.2737/se-gtr-071.
Pełny tekst źródłaMcMinn, James W. Biological Diversity Research: An Analysis. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station, 1991. http://dx.doi.org/10.2737/se-gtr-71.
Pełny tekst źródła