Gotowa bibliografia na temat „Aluminum alloy AA2219”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aluminum alloy AA2219”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Aluminum alloy AA2219"
Sysoev, O. E., D. G. Kolykhalov, E. A. Kuznetsоv i S. V. Belykh. "Forecasting Durability and Cyclic Strength of Aluminum Alloy AA2219 Using Fractal Analysis of Acoustic Emission". KnE Materials Science 1, nr 1 (12.10.2016): 161. http://dx.doi.org/10.18502/kms.v1i1.579.
Pełny tekst źródłaBABU, K. KAMAL, K. PANNEERSELVAM, P. SATHIYA, A. NOORUL HAQ, S. SUNDARRAJAN, P. MASTANAIAH i C. V. SRINIVASA MURTHY. "EXPERIMENTAL INVESTIGATION ON FRICTION STIR WELDING OF CRYOROLLED AA2219 ALUMINUM ALLOY JOINTS". Surface Review and Letters 24, nr 01 (22.12.2016): 1750001. http://dx.doi.org/10.1142/s0218625x17500019.
Pełny tekst źródłaLee, Ho Sung, Koo Kil No, Joon Tae Yoo i Jong Hoon Yoon. "A Study on Friction Stir Welding Process for AA2219/AA2195 Joints". Key Engineering Materials 762 (luty 2018): 339–42. http://dx.doi.org/10.4028/www.scientific.net/kem.762.339.
Pełny tekst źródłaGupta, R. K., R. Panda, A. K. Mukhopadhyay, V. Anil Kumar, P. Sankaravelayutham i Koshy M. George. "Study of Aluminum Alloy AA2219 After Heat Treatment". Metal Science and Heat Treatment 57, nr 5-6 (wrzesień 2015): 350–53. http://dx.doi.org/10.1007/s11041-015-9888-0.
Pełny tekst źródłaJeganlal, G., H. M. Umer i K. Thyagarajan. "Effects of Porosity on Strength of Aluminum Alloy 2219". Advanced Materials Research 984-985 (lipiec 2014): 618–26. http://dx.doi.org/10.4028/www.scientific.net/amr.984-985.618.
Pełny tekst źródłaKaibyshev, Rustam, i I. Mazurina. "Mechanisms of Grain Refinement in Aluminum Alloys during Severe Plastic Deformation". Materials Science Forum 467-470 (październik 2004): 1251–60. http://dx.doi.org/10.4028/www.scientific.net/msf.467-470.1251.
Pełny tekst źródłaLi, Xin, Tian Gan, Zhong Qi Yu i Yi Xi Zhao. "Tensile Deformation Behaviors of Aluminum Alloy 2219 at High Temperatures from 415°C to 515°C". Defect and Diffusion Forum 385 (lipiec 2018): 403–6. http://dx.doi.org/10.4028/www.scientific.net/ddf.385.403.
Pełny tekst źródłaHe, Yan Hong, Zhen Duo Cui, Xian Jin Yang, Sheng Li Zhu, Zhao Yang Li i Yan Qin Liang. "Corrosion Behavior and Microstructure of Pd Ions Doped Cerium Conversion Coating on AA2219-T87 Aluminum Alloy". Advanced Materials Research 1090 (luty 2015): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amr.1090.79.
Pełny tekst źródłaArora, K. S., S. Pandey, M. Schaper i R. Kumar. "Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219". Journal of Materials Science & Technology 26, nr 8 (styczeń 2010): 747–53. http://dx.doi.org/10.1016/s1005-0302(10)60118-1.
Pełny tekst źródłaSanthana Babu, A. V., P. K. Giridharan, P. Ramesh Narayanan i S. V. S. Narayana Murty. "Microstructural Investigations on ATIG and FBTIG Welding of AA 2219 T87 Aluminum Alloy". Applied Mechanics and Materials 592-594 (lipiec 2014): 489–93. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.489.
Pełny tekst źródłaRozprawy doktorskie na temat "Aluminum alloy AA2219"
Vasudevan, Satish. "AN INVESTIGATION OF QUASI-STATIC BEHAVIOR, HIGH CYCLE FATIGUE AND FINAL FRACTURE BEHAVIOR OFALUMINUM ALLOY 2024 AND ALUMINUM ALLOY 2219". Akron, OH : University of Akron, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1193668130.
Pełny tekst źródła"December, 2007." Title from electronic thesis title page (viewed 02/23/2008) Advisor, T. S. Srivatsan; Faculty readers, Craig Menzemer, Amit Prakash; Department Chair, Celal Batur; Dean of the College, George K. Haritos; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Qian, Daishu. "Microstructure and corrosion performance of excimer laser-melted AA2124-T4 aluminium alloy and SiCp/AA2124-T4 composite". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/microstructure-and-corrosion-performance-of-excimer-lasermelted-aa2124t4-aluminium-alloy-and-sicpaa2124t4-composite(705f8af9-2a7c-4188-91e4-fcf33d8f76f0).html.
Pełny tekst źródłaPoudel, Amir. "Dissimilar Joining of Al (AA2139) – Mg (WE43) Alloys Using Friction Stir Welding". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955064/.
Pełny tekst źródłaKlages, Holli K. "The "Lazy S" feature in Friction Stir Welding of AA2099 Aluminum-Lithium alloy". Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FKlages.pdf.
Pełny tekst źródłaThesis Advisor(s): McNelley, Terry. "December 2007." Description based on title screen as viewed on January 22, 2008. Includes bibliographical references (p.45). Also available in print.
Padgett, Barbara Nicole. "Investigation into the stress corrosion cracking properties of AA2099, an Al-Li-Cu alloy". Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1204515486.
Pełny tekst źródłaJurak, Sarah F. "Statistical analysis of the mechanical properties of Friction Stir Welded AA2024 and AA2198 aluminum alloys". Thesis, Wichita State University, 2011. http://hdl.handle.net/10057/5181.
Pełny tekst źródłaThesis (M.S.)--Wichita State University, College of Engineering, Dept. of Mechanical Engineering.
Hanna, Benjamin. "Investigation Into the Localized Corrosion of Aluminum-Copper-Lithium Alloy 2099". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534749550969422.
Pełny tekst źródłaReed, Jordan Derek. "Ultrasonic Processing of Aluminum 2139 and 7050". Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1248496/.
Pełny tekst źródłaSilva, Renato Rafael 1983. "Produção de esponjas metalicas por tixoconformação em pre-formas removiveis e sua caracterização mecanico-metalurgica". [s.n.], 2008. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263601.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-11-08T18:39:47Z (GMT). No. of bitstreams: 1 Silva_RenatoRafaelda_M.pdf: 15646556 bytes, checksum: 19ff8cd2fd9081ac7985bc44c94795f5 (MD5) Previous issue date: 2008
Resumo: Este trabalho teve como objetivo estudar o processo de produção de esponjas metalicas por tixoconformacao em pré-formas removiveis e caracterizacao mecanico-metalurgica do produto, visando a compreensão da influencia de parametros de processo nas suas caracteristicas estruturais e propriedades. A liga empregada, AA2011, foi infiltrada sobre pre-formas de particulas de NaCl de granulometrias distintas, sinterizadas ou soltas. As esponjas metalicas produzidas foram caracterizadas quanto a sua arquitetura, propriedades fisicas (densidade real e relativa, condutividade e difusividade termicas) e mecanicas (tensão de compressão, modulo de Young, tensão no plato, deformação e energia de impacto absorvida); foi analisada a influencia do tipo de pre-forma utilizada para produção das esponjas, nestas caracteristicas e propriedades. Os resultados mostraram boa reprodutibilidade do processo, principalmente quando da utilização de pre-formas de partículas medias e grosseiras nao sinterizadas. A densidade da esponja e a espessura da parede celular apresentam tendencia a aumentar com o aumento das dimensões das celulas produzidas em preformas de particulas mais grosseiras. Todas as amostras produzidas apresentaram condutividade termica da ordem de 10x inferior e difusividade termica da ordem de 4x superior as do metal maciço. O comportamento das esponjas em compressão estatica ou dinamica se mostrou tipico de materiais celulares, com reduzidos valores de modulo de Young e de tensão de compressão, grande plato de deformação plástica sem acréscimo de tensão, e elevados valores de deformação total e energia absorvida no impacto
Abstract: The aim of this work was the analysis of the thixoforming process to produce metallic sponges and the mechanical and metallurgical characterization of the product, searching for better understanding the influence of processing parameters in the material structural characteristics and properties. The aluminium alloy AA2011 was infiltrated in the semi-solid state into performs of NaCl particles with different sizes and in sintered and non sintered conditions. Cellular products were characterized concerning internal architecture, physical properties (actual and relative densities, thermal conductivity and diffusivity) and mechanical properties (Young's modulus, compressive strength, plateau stress and absorbed impact energy); it was analyzed the influence of processing parameters on the properties and characteristics of the produced sponges. Results showed good reproducibility of the process, mainly when medium and coarse non sintered space holder particles were employed. Density of the product as well as cell wall thickness increases as space holder particles sizes increase. All the sponges produced showed low thermal conductivity (~10x inferior compared to the bulk material) and high thermal diffusivity (~3x superior compared to the bulk alloy). Results of static and dynamic compression tests showed typical cellular material behaviour in all cases, presenting low values for Young's modulus and compressive strength, a well defined plateau of plastic deformation, high plastic deformation and high capacity of energy absorption in impact events
Mestrado
Materiais e Processos de Fabricação
Mestre em Engenharia Mecânica
Narayanan, P. Ramesh. "A Study Of Crystallographic Texture, Residual Stresses And Mechanical Property Anisotropy In Aluminium Alloys For Space Applications". Thesis, 2010. http://etd.iisc.ernet.in/handle/2005/1999.
Pełny tekst źródłaCzęści książek na temat "Aluminum alloy AA2219"
Trishul, M. A., i Bijayani Panda. "A Review on the Challenges in Welding of Aluminium AA2219 Alloy". W Advances in Lightweight Materials and Structures, 663–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7827-4_68.
Pełny tekst źródłaElgallad, E. M., A. Hekmat-Ardakan, F. Ajersch i X.-G. Chen. "Microstructure and Mechanical Properties of AA2195 DC Cast Ingot Plates". W ICAA13: 13th International Conference on Aluminum Alloys, 1864–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118495292.ch279.
Pełny tekst źródłaVijayan, D., V. Seshagiri Rao i V. S. Anirudh. "Determination of Optimum Tensile Strength of Friction Stir Welded AA2219 Aluminum Alloys Using Taguchi's Method". W Springer Proceedings in Materials, 489–97. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6267-9_56.
Pełny tekst źródłaJaiswal, Shubham, Vijay Verma i Chaitanya Sharma. "Dissimilar Friction Stir Spot Welding of AA2014 and AA7075 Aluminum Alloys". W Lecture Notes in Mechanical Engineering, 567–73. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8704-7_69.
Pełny tekst źródłaMolari, Pier Gabriele, Piero Morelli, Sergio Maldotti i Tito Poli. "Thermal Ageing Effects on the Residual Fatigue Strength of AA2618-T6511 Aluminium Alloy". W Fracture and Damage Mechanics V, 1095–98. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-413-8.1095.
Pełny tekst źródłaRajendran, C. "Effect of Solution Treatment and Artificial Ageing on Strength Properties of Friction Stir Welded AA2014-T6 Aluminium Alloy". W Green Materials and Advanced Manufacturing Technology, 273–82. First edition. | Boca Raton, FL : CRC Press, 2021. | Series: Green engineering and technology: Concepts and applications: CRC Press, 2020. http://dx.doi.org/10.1201/9781003056546-18.
Pełny tekst źródłaVenkatesh, M., A. Johnson, K. Srikanth i K. K. Guduru. "Influence of Tool Geometry of Friction Stir Weldments on Mechanical Properties and Microstructure of AA2014-T6 Aluminium Alloy". W Lecture Notes on Multidisciplinary Industrial Engineering, 51–63. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7643-6_5.
Pełny tekst źródłaAdil, Mohammad, i Jyoti Mukhopadhyay. "Mechanical and Microstructural Behavior of Dissimilar AA2014-T6 and AA7075-T6 Aluminium Alloys Joined by Friction Stir Welding". W Light Metals 2020, 370–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36408-3_53.
Pełny tekst źródłaKhushaim, Muna. "Precipitation in AA2195 by Atom Probe Tomography and Transmission Electron Microscopy". W Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000220.
Pełny tekst źródłaThilagham, K. T., i S. Muthukumaran. "Center Stir Zone Investigations of Dissimilar AA6082, AA2014 and AA7075 Welds". W Welding Principles and Application [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102652.
Pełny tekst źródłaStreszczenia konferencji na temat "Aluminum alloy AA2219"
Balch, Dorian K., Steve H. Goods i Chris San Marchi. "Fabrication and Testing of Electron Beam Welded Alloy AA2219 Aluminum Pressure Vessels for High-Pressure Hydrogen Service". W ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28858.
Pełny tekst źródłaBolling, Denzell, Adewale Olasumboye i Gbadebo Owolabi. "Dynamic Failure of Aluminum Alloy 2219-T8 Under High Strain Rate". W ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-53031.
Pełny tekst źródłaDewan, Mohammad W., Muhammad A. Wahab i Khurshida Sharmin. "Effects of Post Weld Heat Treatments (PWHT) on Friction Stir Welded AA2219-T87 Joints". W ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3021.
Pełny tekst źródłaMahamani, A., A. Karthik, S. Karthikeyan, P. Kathiravan i Y. P. Kumar. "Synthesis, quantitative elemental analysis, microstructure characteristics and micro hardness analysis of AA2219 aluminum alloy matrix composite reinforced by in-situ TiB". W International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010). IEEE, 2010. http://dx.doi.org/10.1109/fame.2010.5714797.
Pełny tekst źródłaYuvaraj, G., V. Bhuvaneswari, G. Vignesh i L. Vairamuthu. "Mechanical properties of aluminium alloy AA2219 reinforced with graphite". W 2017 First International Conference on Recent Advances in Aerospace Engineering (ICRAAE). IEEE, 2017. http://dx.doi.org/10.1109/icraae.2017.8297214.
Pełny tekst źródłaOlasumboye, Adewale, Gbadebo Owolabi, Olufemi Koya, Horace Whitworth i Nadir Yilmaz. "Comparative Study of the Dynamic Behavior of AA2519 Aluminum Alloy in T6 and T8 Temper Conditions". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10978.
Pełny tekst źródłaChen, Cong, Ming Gao, Lei Wang i Xiaoyan Zeng. "Temperature characteristics at cut front edge during fibre laser cutting of AA2219 aluminium alloy". W ICALEO® 2015: 34th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of America, 2015. http://dx.doi.org/10.2351/1.5063245.
Pełny tekst źródłaVelukkudi Santhanam, Senthil Kumar, Harinivas Selvaraju i Mystica Augustine Michael Duke. "Evaluation of Weld Quality Through Non-Destructive Testing and Weld Property Analysis of Friction Stir Welded AA2014 Under Submerged Condition". W ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94518.
Pełny tekst źródłaRajnaveen, B., G. Rambabu, K. Prakash i K. Srinivasa Rao. "Optimization of TIG and EB welding parameters to improve tensile strength and corrosion resistance of AA2219-T87 aluminium-alloy". W RECENT TRENDS IN MANUFACTURING TECHNOLOGIES, MATERIALS PROCESSING, AND TESTING. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0068242.
Pełny tekst źródłaATOUI, OUSSAMA, AZER MAAZOUN, ABDELHAFIDH MOUMEN, BACHIR BELKASSEM, LINCY PYL i DAVID LECOMPTE. "NUMERICAL ANALYSIS OF THE DYNAMIC MECHANICAL BEHAVIOR OF HIGH STRENGTH ALUMINUM ALLOY AA2014-T652 UNDER HIGH IMPACT VELOCITY". W 32ND INTERNATIONAL SYMPOSIUM ON BALLISTICS. Destech Publications, Inc., 2022. http://dx.doi.org/10.12783/ballistics22/36151.
Pełny tekst źródła