Gotowa bibliografia na temat „ALUMINIUM 6061”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ALUMINIUM 6061”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ALUMINIUM 6061"
Pranav, Domadala, Sruthi Sivaram, Mukesh Nadarajan i Ashish Selokar. "Behaviour of Heat Treated Aluminium Alloy under Hardness Test". Applied Mechanics and Materials 903 (kwiecień 2021): 99–105. http://dx.doi.org/10.4028/www.scientific.net/amm.903.99.
Pełny tekst źródłaHaga, Toshio, Hideki Inui, Ryoji Nakamura, Shinji Kumai i Hisaki Watari. "Strip Casting of 6061 and Recycled 6061 Alloy by an Unequal Diameter Twin Roll Caster". Advanced Materials Research 264-265 (czerwiec 2011): 1911–16. http://dx.doi.org/10.4028/www.scientific.net/amr.264-265.1911.
Pełny tekst źródłaWang, You Bin, i Jian Min Zeng. "The Effects of Mn Addition on Microstructure and Properties in 6061 Aluminium Alloy". Advanced Materials Research 399-401 (listopad 2011): 1838–42. http://dx.doi.org/10.4028/www.scientific.net/amr.399-401.1838.
Pełny tekst źródłaKou, L. Y., W. Y. Zhao, X. Y. Tuo, G. Wang i C. R. Sun. "Effect of stress triaxiality on fracture failure of 6061 aluminium alloy". Journal of Mechanical Engineering and Sciences 14, nr 2 (23.06.2020): 6961–70. http://dx.doi.org/10.15282/jmes.14.2.2020.33.0545.
Pełny tekst źródłaAb Rahim, Syaiful Nizam, i Mohd Amri Lajis. "Effects on Mechanical Properties of Solid State Recycled Aluminium 6061 by Extrusion Material Processing". Key Engineering Materials 730 (luty 2017): 317–20. http://dx.doi.org/10.4028/www.scientific.net/kem.730.317.
Pełny tekst źródłaRinderer, Barbara. "The Metallurgy of Homogenisation". Materials Science Forum 693 (lipiec 2011): 264–75. http://dx.doi.org/10.4028/www.scientific.net/msf.693.264.
Pełny tekst źródłaPradani, Yayi Febdia, Mochamad Sulaiman i Saiful Hardiyanto. "ANALISIS TINGKAT KEKERASAN ALUMINIUM 6061 BERDASARKAN VARIASI MEDIA PENDINGIN PADA PROSES PACK CARBURIZING". Steam Engineering 2, nr 1 (1.09.2020): 1–10. http://dx.doi.org/10.37304/jptm.v2i1.1663.
Pełny tekst źródłaLuo, Daming, Fan Li i Guohua Xing. "Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure". REVIEWS ON ADVANCED MATERIALS SCIENCE 61, nr 1 (1.01.2022): 638–53. http://dx.doi.org/10.1515/rams-2022-0048.
Pełny tekst źródłaLubis, M. Sobron Yamin, Abrar Riza i Dani Putra Agung. "PENGARUH PARAMETER PEMESINAN TERHADAP KEKASARAN PERMUKAAN MATERIAL ALUMINIUM 6061 DAN 7075 PADA PROSES SEKRAP". Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan 4, nr 1 (1.06.2020): 145. http://dx.doi.org/10.24912/jmstkik.v4i1.3414.
Pełny tekst źródłaKareem, Ansar, Jaber Abu Qudeiri, Asarudheen Abdudeen, Thanveer Ahammed i Aiman Ziout. "A Review on AA 6061 Metal Matrix Composites Produced by Stir Casting". Materials 14, nr 1 (1.01.2021): 175. http://dx.doi.org/10.3390/ma14010175.
Pełny tekst źródłaRozprawy doktorskie na temat "ALUMINIUM 6061"
Wiest, Anthony D. "Thermal cycling behavior of unidirectional and cross-plied P100 Gr/6061 aluminium composites". Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/24071.
Pełny tekst źródłaThe thermal strain response of as-cast samples of 40% PI 00 graphite fiber reinforced 6061 Al composites in the unidirectionally reinforced and the [0/90] cross-plied configuration was studied. Thermal strain hysteresis and residual plastic strain were observed, both changing with continued cycling. The compressive residual plastic strain is attributable primarily to creep deformation due to compressive residual stress in the matrix at elevated temperature. The role of matrix creep in the heating rate dependence of the strain response was studied by measuring strains under isothermal conditions in the absence of applied stresses. Damage mechanisms operative in the composites during thermal cycling, and the impact of ply constraint on the strain response were also evaluated.
Salvo, Luc. "Comportement au durcissement structural de matériaux composites à matrice aluminium renforcée de particules céramiques : cas des systèmes 6061/SIC et 6061/Al2O3". Grenoble INPG, 1992. http://www.theses.fr/1992INPG0064.
Pełny tekst źródłaRekik, Wissal. "Etude de la ténacité d'une soudure en undermatch : Application à la tenue mécanique de la jonction soudée FE en Al 6061-T6". Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2016. http://www.theses.fr/2016ESMA0015/document.
Pełny tekst źródłaFor the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of undermatched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an undermatched welded joint. The methodology proposed is applied to an electron beam welded joint on Al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multimaterial approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone
Béal, Maxime. "Compréhension et maîtrise de la mise en œuvre par fabrication additive (LPBF) d'un alliage d'aluminium à basse teneur en silicium pour l'aéronautique". Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2022. http://www.theses.fr/2022ECDL0026.
Pełny tekst źródłaAdditive manufacturing is becoming more and more mature and has shown its capacity to be a disruptive technology in terms of industrial innovation. Indeed, additive manufacturing allows to obtain a functional part from a 3D file. Laser Powder Bed Fusion (LPBF) is one of the additive manufacturing processes. Thales® is very interested in this type of process and would like to develop LPBF to increase its competitiveness in the aeronautical market. An aluminium alloy has been developed for the LPBF process and patented by Thales in 2019. The objective of the thesis work presented in this manuscript is to continue the work carried out on this alloy and to facilitate the industrialisation process of this alloy by the LPBF process for aeronautical and aerospace parts. The manuscript is divided into 4 parts, the first one focusing on the bibliography and the methods used. The second part deals with laser-material interaction and roughness optimisation. Part three deals with the life cycle of the powder by analysing the effect of reuse and storage on the process. Finally, the fourth and last part focuses on the optimisation of the chemical composition of the alloy and the search for a suitable heat treatment. The optimisation of the laser interaction showed the relationship between the parameters used and the geometry of the molten pool formed. It was also shown that it was harder to use the 6061-Zr alloy than a cast aluminium alloy such as Al-Si alloy. This chapter also highlighted the focal shift phenomenon and the importance of the plate altitude which has a strong impact on the process. Subsequently, a roughness optimisation was carried out by applying contours. A very good surface finish was obtained, however, this method was tested on more complex geometries than cubes and showed its weaknesses. The life cycle of the powder was then discussed. The reuse of the powder leads to an increase in oxygen content and chemical modification of the powder. Sieving is essential to ensure particle size and avoid these phenomena. The storage of powders is critical for the intended applications. Indeed, storage as carried out in this study has shown a strong impact on the process reducing the density, elongation and resilience of the parts while degrading the surface finish. As the patent for 6061-Zr is quite broad, the zirconium content was optimised to meet the specifications as much as possible while avoiding hot cracking. Subsequently, heat treatments were applied to alloys with different levels of Zirconium in order to observe the impact of these treatments as a function of temperature, duration and the level of Zirconium content. All of these results helped to remove scientific obstacles and thus facilitate the progression of this technology into controlled industrialisation for aeronautical and space applications
Shen, Yang. "Comportement et endommagement des alliages d’aluminium 6061-T6 : approche micromécanique". Thesis, Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0089/document.
Pełny tekst źródłaThe AA6061-T6 aluminum alloy was chosen as the material for the core vessel of the future Jules Horowitz testing reactor (JHR). The objective of this thesis is to understand and model the tensile and fracture behavior of the material, as well as the origin of damage anisotropy. A micromechanical approach was used to link the microstructure and mechanical behavior. The microstructure of the alloy was characterized on the surface via Scanning Electron Microscopy and in the 3D volume via synchrotron X-ray tomography and laminography. The damage mechanism was identified by in-situ SEM tensile testing, ex-situ X-ray tomography and in-situ laminography on different levels of triaxiality. The observations have shown that damage nucleated at lower strains on Mg2Si coarse precipitates than on iron rich intermetallics. The identified scenario and the in-situ measurements were then used to develop a coupled GTN damage model incorporating nucleation, growth and coalescence of cavities formed by coarse precipitates. The relationship between the damage and the microstructure anisotropies was explained and simulated
Flament, Camille. "Etude des évolutions microstructurales sous irradiation de l'alliage d'aluminium 6061-T6". Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAI074/document.
Pełny tekst źródłaThe 6061-T6 Aluminium alloy, whose microstructure contains Al(Fe,Mn,Cr)Si dispersoids and hardening needle-shaped beta” precipitates (Mg, Si), has been chosen as the structural material for the core vessel of the Material Testing Jules Horowitz Nuclear Reactor. Because it will be submitted to high neutron fluxes at a temperature around 50°C, it is necessary to study microstructural evolutions induced by irradiation and especially the stability of the second phase particles. In this work, analytical studies by in-situ and ex-situ electron and ion irradiations have been performed, as well as a study under neutron irradiation. The precipitates characterization by Transmission Electron Microscopy demonstrates that Al(Fe,Mn,Cr)Si dispersoids are driven under irradiation towards their equilibrium configuration, consisting of a core/shell structure, enhanced by irradiation, with a (Fe, Mn) enriched core surrounded by a Cr-enriched shell. In contrast, the (Mg,Si) beta” precipitates are destabilized by irradiation. They dissolve under ion irradiation in favor of a new precipitation of (Mg,Si,Cu,Cr,Al) rich clusters resulting in an increase of the alloy’s hardness. beta’’ precipitates tend towards a transformation to cubic precipitates under neutron irradiation
Benoit, Alexandre. "Développement du soudage MIG CMT pour la réparation de pièces aéronautiques. Application aux pièces en alliage base aluminium 6061". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112308/document.
Pełny tekst źródłaThis study responds to an industrial demand of repair using an arc welding process. It concerns an aeronautical piece made in 6061 aluminium alloy. The first part of the study is devoted to the comparison of processes Metal Inert Gas (MIG), pulsed MIG, Tungsten Inert Gas and MIG Cold Metal Transfer (CMT). It is the latter process that was selected for its special abilities, such as its good control of parameters and the low damaging produced in the base metal. Then, two filler alloys were tested – 5356 and 6061 aluminium alloys– with two repairing strategies : welding and building up. The results of mechanical tests showed that building up with aluminum 5356 is most suitable option for this application. The trials on the real piece showed the relevance of this approach.The heat affected zone generated by the arc welding process in the 6061 base metal was also characterized. It was shown a varaition of microstructure associated with the change of mechanical properties in this zone. Finally, exploratory trials of homogeneous arc welding, i.e., with the 6061 filler alloy showed that it was possible, with certain conditions, to weld without generating weld cracking, although, this aluminium is deemed unweldable by this way
Jalali, Alireza. "Performance of minimum quantity cooling (MQC) when turning aluminium alloy 6061-T6 : surface roughness, tool temperature and aerosol emission". Mémoire, École de technologie supérieure, 2013. http://espace.etsmtl.ca/1206/1/JALALI_Alireza.pdf.
Pełny tekst źródłaPetit, Tom. "Compréhension et modélisation d’essais de ténacité avec pop-in : application à l’aluminium 6061-T6 et influence de l’irradiation neutronique". Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM019/document.
Pełny tekst źródłaPop-in is a phenomenon of crack propagation instability observed during toughness tests on some materials. This phenomenon has been observed on the 6061-T6 aluminum alloy, which has been identified as an essential structural element of the core of the Jules Horowitz research reactor. This thesis was initiated to understand the origin of this phenomenon on 6061-T6 aluminum and to propose a physics-based modeling, usable for the exploitation and interpretation of toughness tests, especially in the irradiated state.The different origins identified in the literature have been experimentally tested. Different aging times (4/8/12/16h) were applied to obtain different mechanical behaviors. Tensile tests with image correlation have shown that the observed pop-ins are not due to a PLC effect. Nor do they correspond to microstructural heterogeneity; they are not linked to different fracture mechanisms, because the rupture is typically ductile, whether a pop-in is involved or not. These mechanisms and the different microstructures were compared using several techniques (SEM, EBSD, EDS, Atom Probe Tomography, tomography, synchrotron laminography and nanolaminography). Pop-ins are therefore only the result of an acceleration of the ductile fracture.In fact, they are due to an interaction between two parameters: the reduced material crack growth toughness (i.e. the low tearing modulus), and the significant compliance of the test device (i.e. the low stiffness). In order to investigate this second parameter, an innovative setup has been designed to vary the machine stiffness during toughness tests. Two analytical criteria, one based on the load-opening curve, the other on the J-integral, have been established, making it possible to reliably quantify the conditions for initiation and arrest of pop-in.To take into account the central role of hardening for ductile propagation, a new stress-controlled nucleation criterion has been introduced into a single GTN model. This makes it possible to simulate and capture by finite elements the various J-Δa toughness curves by modifying only the elastoplastic law. By adding springs in the models and with an adapted control, the pop-ins are successfully simulated, and remain exploitable with the analytical criteria.Studies on irradiated specimens carried out in hot cells have shown that the increase in pop-ins with irradiation results from the decrease in the tearing modulus, itself due to hardening. As in the non-irradiated state, pop-ins thus appear solely because of the interaction between the tearing modulus and the test device stiffness, and not because of a range of industrial development not mastered
Arshad, Saad. "Single Point Incremental Forming : A study of Forming Parameters, Forming limits and Part accuracy of Aluminium 2024, 6061 and 7475 alloys". Thesis, KTH, Industriell produktion, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-103006.
Pełny tekst źródłaKsiążki na temat "ALUMINIUM 6061"
Wiest, Anthony D. Thermal cycling behavior of unidirectional and cross-plied P100 Gr/6061 aluminium composites. Monterey, Calif: Naval Postgraduate School, 1992.
Znajdź pełny tekst źródłaHafley, Johanna L. A comparison of the aging kinetics of a cast alumina-6061 aluminum composite and a monolithic 6061 aluminum alloy. Monterey, Calif: Naval Postgraduate School, 1989.
Znajdź pełny tekst źródłaS, Tompkins Stephen, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., red. Effects of thermal cycling on graphite-fiber-reinforced 6061 aluminum. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaS, Tompkins Stephen, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., red. Effects of thermal cycling on graphite-fiber-reinforced 6061 aluminum. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaSchauder, Thomas J. The effects of thermomechanical processing parameters on elevated temperature behavior of a 6061 Al-Al2O3 metal matrix composite. Monterey, Calif: Naval Postgraduate School, 1992.
Znajdź pełny tekst źródłaJones, S. J. The influence of homogenisation treatment and manganese content on the aluminium-iron-silicon intermetallics in 6063 aluminium alloys. Manchester: UMIST, 1994.
Znajdź pełny tekst źródłaElkin, Leslie R. Corrosion mechanisms and behavior of a P-130x Gr/6063 A1 composite in aqueous environments. Monterey, California: Naval Postgraduate School, 1990.
Znajdź pełny tekst źródłaKing, Joel David. Characterization of the corrosion of a P-130x graphite fiber reinforced 6063 aluminum metal matrix composite. Monterey, Calif: Naval Postgraduate School, 1989.
Znajdź pełny tekst źródłaComparison of Friction Stir Welding and Friction Stir Processing Using Aluminium Alloy 6061 and Aluminium Alloy 6063. Karur, India: ASDF International, 2017.
Znajdź pełny tekst źródłaMicrostructure and Mechanical Properties of Aluminium Alloy 6061 Reinforced Glass. Tiruchengode, India: ASDF International, 2017.
Znajdź pełny tekst źródłaCzęści książek na temat "ALUMINIUM 6061"
Couper, M. J., M. Cooksey i B. Rinderer. "Effect of Homogenisation Temperature and Time on Billet Microstructure and Extruded Properties of Alloy 6061". W Aluminium Cast House Technology, 286–96. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118806364.ch29.
Pełny tekst źródłaJha, A. K., S. V. Prasad i G. S. Upadhyaya. "Activated Sintered 6061 Aluminium Alloy Particulate Composites Containing Coated Graphite". W Controlled Interphases in Composite Materials, 829–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-011-7816-7_80.
Pełny tekst źródłaFriend, C., R. Young i I. Horsfall. "Heat-Treatment Effects in δ -Alumina Fibre Reinforced Aluminium Alloy 6061". W Developments in the Science and Technology of Composite Materials, 227–32. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1123-9_31.
Pełny tekst źródłaKhan, Mahmood, Rafi Ud-Din, Abdul Wadood, Wilayat Husain Syed, Shahid Akhtar i Ragnhild Elizabeth Aune. "Spark Plasma Sintering of Graphene Nanoplatelets Reinforced Aluminium 6061 Alloy Composites". W Light Metals 2020, 301–11. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36408-3_44.
Pełny tekst źródłaAleem Pasha, Md, P. Ravinder Reddy, P. Laxminarayana i Ishtiaq Ahmed Khan. "SiC and Al2O3 Reinforced Friction Stir Welded Joint of Aluminium Alloy 6061". W Lecture Notes on Multidisciplinary Industrial Engineering, 163–82. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0378-4_7.
Pełny tekst źródłaGiglio, M., A. Gilioli i A. Manes. "Mechanical Behaviour of Al 6061-T6 Aluminium Alloy Under Large Strain and Failure". W Advanced Structured Materials, 143–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54258-9_7.
Pełny tekst źródłaArun Kumar, S., i R. Raman Goud. "Processing and Characterization of 6061 Aluminium Alloy with Nickel (Ni) and Zirconium (Zr)". W Lecture Notes in Mechanical Engineering, 353–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7557-0_31.
Pełny tekst źródłaGupta, Arnav, V. P. Yashvanth i Lokavarapu Bhaskara Rao. "Design of Gears Using Aluminium 6061-T6 Alloy for Formula SAE Steering System". W Lecture Notes in Mechanical Engineering, 489–505. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7557-0_41.
Pełny tekst źródłaArunkumar, T., K. Aditya Sreevatsa, Dinesh R. Krishnan i Ram Subbiah. "Corrosion Behaviour of Aluminium 6061/MWCNT Composite Prepared by Double Stir Casting Method". W Lecture Notes in Mechanical Engineering, 293–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0909-1_29.
Pełny tekst źródłaWang, Xiangjie, Qingmei Ma, Gang Sun i Jianzhong Cui. "Effects of Electromagnetic Field on Horizontal Continuous Casting of 6061 Aluminium Alloy Bar Process". W PRICM, 1035–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118792148.ch126.
Pełny tekst źródłaStreszczenia konferencji na temat "ALUMINIUM 6061"
Yasin, J., i M. Kumaresan. "Effect of silicon carbide and aluminium oxide in mechanical properties of aluminium alloy 6061". W RECENT TRENDS IN SCIENCE AND ENGINEERING. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0074175.
Pełny tekst źródłaMarzbanrad, Bahareh, Ehsan Marzbanrad i Hamid Jahed. "Cold Spray Deposition of Aluminium 6061 Decorated with Al2O3 Nanoparticles". W ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0574.
Pełny tekst źródłaVerma, Rajesh P., KN Pandey, Nitin Kumar i Saim Saleem. "Welding Process to Produce 6061-T6 Aluminium Alloy Butt Joint". W 5th International Congress on Computational Mechanics and Simulation. Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1139-3_033.
Pełny tekst źródłaKrishnakumar, D., R. Venkatachalam, R. Rameshkumar i V. Anadakrishnan. "Synthesis and characterization of aluminium 6061 with ZirSiO4 and graphite". W PROCEEDINGS OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN MECHANICAL AND MATERIALS ENGINEERING: ICRTMME 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0024887.
Pełny tekst źródłaManoj S. V., Madhusudana C. K., Manoj K. C., Manoj V. i Srinivas M. R. "Analysis on wear characteristics of aluminium 6061 reinforced with graphene". W THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0116947.
Pełny tekst źródłaLoke, Kelvin, Richard Kwok, P. K. Koh, T. C. Lim i Philip Cheang. "Process-Property Correlation of Heat-Treated Aluminium 6061 Cold Spray Coatings". W ITSC2015, redaktorzy A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen i C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0155.
Pełny tekst źródłaBenoit, A., P. Paillard, T. Baudin, S. Jobez, J. F. Castagné, Francisco Chinesta, Yvan Chastel i Mohamed El Mansori. "Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy". W INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES (AMPT2010). AIP, 2011. http://dx.doi.org/10.1063/1.3552556.
Pełny tekst źródłaKumbhar, A. P., R. T. Vyavahare i S. G. Kulkarni. "Vibrational response and mechanical properties characterization of aluminium alloy 6061/Sic composite". W PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2017): Metallurgy and Advanced Material Technology for Sustainable Development. Author(s), 2018. http://dx.doi.org/10.1063/1.5038715.
Pełny tekst źródłaSalunkhe, Subodh, Balasaheb Gandhare i Swanand Kulkarni. "Manufacturing of Aluminum Alloy 6061 Composite Material using Bagasse Ash- Working Paper". W National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.6.
Pełny tekst źródłaPreethi, K., T. N. Raju i H. A. Shivappa. "Corrosion studies of aluminium-6061 metal matrix reinforced with multiwall carbon nanotubes composites". W RECENT TRENDS IN MANUFACTURING TECHNOLOGIES, MATERIALS PROCESSING, AND TESTING. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0069150.
Pełny tekst źródłaRaporty organizacyjne na temat "ALUMINIUM 6061"
Wong, C. R., O. Diehm i D. C. Van Aken. Damping Capacity of Aluminum 6061-Indium Alloys. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1990. http://dx.doi.org/10.21236/ada222802.
Pełny tekst źródłaKuhn, Howard A. Atlas of Formability: Cast Aluminum 6061 Flow Stress Curves. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada268301.
Pełny tekst źródłaGOGOLSKI, JARROD. ALUMINUM ALLOY (6061-O, 5052-O, AND 1100) DISSOLUTION RATE TESTING. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1844189.
Pełny tekst źródłaYahr, G. T. Prevention of non-ductile fracture in 6061-T6 aluminum nuclear pressure vessels. Office of Scientific and Technical Information (OSTI), czerwiec 1995. http://dx.doi.org/10.2172/81049.
Pełny tekst źródłaAlexander, D. J. The effect of irradiation on the mechanical properties of 6061-T651 aluminum. Office of Scientific and Technical Information (OSTI), grudzień 1992. http://dx.doi.org/10.2172/10162906.
Pełny tekst źródłaCorona, Edmundo, Christopher Laursen i Carter Fietek. Response of 304L stainless steel and 6061-T651 aluminum alloy at -40 C. Office of Scientific and Technical Information (OSTI), kwiecień 2021. http://dx.doi.org/10.2172/1775054.
Pełny tekst źródłaKuhn, Howard A. Atlas of Formability: Cast Aluminum 6063 Flow Stress Curves. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1991. http://dx.doi.org/10.21236/ada268303.
Pełny tekst źródłaDike, J. J., J. A. Brooks, D. J. Bammann i M. Li. Thermal-mechanical modeling and experimental validation of weld solidification cracking in 6061-T6 aluminum. Office of Scientific and Technical Information (OSTI), grudzień 1997. http://dx.doi.org/10.2172/304022.
Pełny tekst źródłaD'Entremont, A., R. Fuentes, L. Olson i R. Sindelar. PREPARATION OF ALUMINUM OXIDE FILMS UNDER WATER EXPOSURE - PRELIMINARY REPORT ON 6061 SERIES ALLOYS. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1471991.
Pełny tekst źródład'Entremont, Anna L., Roderick E. Fuentes, Luke C. Olson i Robert L. Sindelar. Preparation of Aluminum Oxide Films Under Water Exposure – Preliminary Report on 6061 Series Alloys. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1472000.
Pełny tekst źródła