Artykuły w czasopismach na temat „Alkynoate”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Alkynoate”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zeng, Yao-Fu, Dong-Hang Tan, Yunyun Chen, Wen-Xin Lv, Xu-Ge Liu, Qingjiang Li i Honggen Wang. "Direct radical trifluoromethylthiolation and thiocyanation of aryl alkynoate esters: mild and facile synthesis of 3-trifluoromethylthiolated and 3-thiocyanated coumarins". Organic Chemistry Frontiers 2, nr 11 (2015): 1511–15. http://dx.doi.org/10.1039/c5qo00271k.
Pełny tekst źródłaAparece, Mark D., i Paul A. Vadola. "Gold-Catalyzed Dearomative Spirocyclization of Aryl Alkynoate Esters". Organic Letters 16, nr 22 (3.11.2014): 6008–11. http://dx.doi.org/10.1021/ol503022h.
Pełny tekst źródłaSong, Zefeng, Weijia Wang, Zhixin Liu, Yue Lu i De Wang. "Phosphine-Catalyzed Intermolecular Dienylation of Alkynoate with para-Quinone Methides". Journal of Organic Chemistry 86, nr 13 (24.06.2021): 8590–99. http://dx.doi.org/10.1021/acs.joc.1c00226.
Pełny tekst źródłaValette, Damien, Yajing Lian, John P. Haydek, Kenneth I. Hardcastle i Huw M. L. Davies. "Alkynoate Synthesis through the Vinylogous Reactivity of Rhodium(II) Carbenoids". Angewandte Chemie 124, nr 34 (16.07.2012): 8764–67. http://dx.doi.org/10.1002/ange.201204047.
Pełny tekst źródłaAparece, Mark D., i Paul A. Vadola. "ChemInform Abstract: Gold-Catalyzed Dearomative Spirocyclization of Aryl Alkynoate Esters." ChemInform 46, nr 18 (16.04.2015): no. http://dx.doi.org/10.1002/chin.201518113.
Pełny tekst źródłaValette, Damien, Yajing Lian, John P. Haydek, Kenneth I. Hardcastle i Huw M. L. Davies. "Alkynoate Synthesis through the Vinylogous Reactivity of Rhodium(II) Carbenoids". Angewandte Chemie International Edition 51, nr 34 (16.07.2012): 8636–39. http://dx.doi.org/10.1002/anie.201204047.
Pełny tekst źródłaImagawa, Hiroshi, Atsushi Kinoshita, Takashi Fukuyama, Hirofumi Yamamoto i Mugio Nishizawa. "Hg(OTf)2-catalyzed glycosylation using alkynoate as the leaving group". Tetrahedron Letters 47, nr 27 (lipiec 2006): 4729–31. http://dx.doi.org/10.1016/j.tetlet.2006.04.114.
Pełny tekst źródłaSchäfer, Christian, Michel Miesch i Laurence Miesch. "Intramolecular reductive ketone–alkynoate coupling reaction promoted by (η2-propene)titanium". Organic & Biomolecular Chemistry 10, nr 16 (2012): 3253. http://dx.doi.org/10.1039/c2ob07049a.
Pełny tekst źródłaValette, Damien, Yajing Lian, John P. Haydek, Kenneth I. Hardcastle i Huw M. L. Davies. "ChemInform Abstract: Alkynoate Synthesis Through the Vinylogous Reactivity of Rhodium(II) Carbenoids." ChemInform 44, nr 3 (15.01.2013): no. http://dx.doi.org/10.1002/chin.201303045.
Pełny tekst źródłaSchaefer, Christian, Michel Miesch i Laurence Miesch. "ChemInform Abstract: Intramolecular Reductive Ketone-Alkynoate Coupling Reaction Promoted by (η2-Propene)titanium." ChemInform 43, nr 38 (23.08.2012): no. http://dx.doi.org/10.1002/chin.201238029.
Pełny tekst źródłaBrecker, Lothar, Julia Petschnigg, Nicole Depine, Hansjorg Weber i Douglas W. Ribbons. "In situ proton NMR analysis of alpha-alkynoate biotransformations. From 'invisible' substrates to detectable metabolites". European Journal of Biochemistry 270, nr 7 (kwiecień 2003): 1393–98. http://dx.doi.org/10.1046/j.1432-1033.2003.03460.x.
Pełny tekst źródłaSong, Bo, Rongyuan Zhang, Rong Hu, Xu Chen, Dongming Liu, Jiali Guo, Xiaotian Xu, Anjun Qin i Ben Zhong Tang. "Site‐Selective, Multistep Functionalizations of CO 2 ‐Based Hyperbranched Poly(alkynoate)s toward Functional Polymetric Materials". Advanced Science 7, nr 17 (8.07.2020): 2000465. http://dx.doi.org/10.1002/advs.202000465.
Pełny tekst źródłaZhang, Jiayong, Cheng Cheng, Dian Wang i Zhiwei Miao. "Regio- and Diastereoselective Construction of Spirocyclopenteneoxindoles through Phosphine-Catalyzed [3 + 2] Annulation of Methyleneindolinone with Alkynoate Derivatives". Journal of Organic Chemistry 82, nr 19 (21.09.2017): 10121–28. http://dx.doi.org/10.1021/acs.joc.7b01582.
Pełny tekst źródłaLuo, Zaigang, Yuyu Fang, Yu Zhao, Peng Liu, Xuemei Xu, Chengtao Feng, Zhong Li i Jie He. "Synthesis of multisubstituted furans via Cu(i)-catalyzed annulation of ketones with alkynoate under ligand- and additive-free conditions". RSC Advances 6, nr 7 (2016): 5436–41. http://dx.doi.org/10.1039/c5ra23058f.
Pełny tekst źródłaKamijo, Shin, Kaori Kamijo, Daiki Magarifuchi, Ryota Ozawa, Keisuke Tao i Toshihiro Murafuji. "Two-directional carbon chain elongation via the consecutive 1,4-addition of allyl malononitrile and the Cope rearrangement on an alkynoate platform". Tetrahedron Letters 57, nr 1 (styczeń 2016): 137–40. http://dx.doi.org/10.1016/j.tetlet.2015.11.081.
Pełny tekst źródłaZeng, Yao-Fu, Dong-Hang Tan, Yunyun Chen, Wen-Xin Lv, Xu-Ge Liu, Qingjiang Li i Honggen Wang. "ChemInform Abstract: Direct Radical Trifluoromethylthiolation and Thiocyanation of Aryl Alkynoate Esters: Mild and Facile Synthesis of 3-Trifluoromethylthiolated and 3-Thiocyanated Coumarins." ChemInform 47, nr 13 (marzec 2016): no. http://dx.doi.org/10.1002/chin.201613151.
Pełny tekst źródłaChe, Jiuwei, Alavala Gopi Krishna Reddy, Li Niu, Dong Xing i Wenhao Hu. "Cu(I)-Catalyzed Three-Component Reaction of α-Diazo Amide with Terminal Alkyne and Isatin Ketimine via Electrophilic Trapping of Active Alkynoate-Copper Intermediate". Organic Letters 21, nr 12 (3.06.2019): 4571–74. http://dx.doi.org/10.1021/acs.orglett.9b01470.
Pełny tekst źródłaZhu, Mei, Weijun Fu, Zhiqiang Wang, Chen Xu i Baoming Ji. "Visible-light-mediated direct difluoromethylation of alkynoates: synthesis of 3-difluoromethylated coumarins". Organic & Biomolecular Chemistry 15, nr 43 (2017): 9057–60. http://dx.doi.org/10.1039/c7ob02366a.
Pełny tekst źródłaZhang, Wei, Chen Yang, Yu-Liang Pan, Xin Li i Jin-Pei Cheng. "Synthesis of 3-cyanomethylated coumarins by a visible-light-mediated direct cyanomethylation of aryl alkynoates". Organic & Biomolecular Chemistry 16, nr 32 (2018): 5788–92. http://dx.doi.org/10.1039/c8ob01513a.
Pełny tekst źródłaKong, Hongjun, Qingrui Li, Yunnian Yin, Mengmeng Huang, Jung Keun Kim, Yu Zhu, Yabo Li i Yangjie Wu. "An efficient light on–off one-pot method for the synthesis of 3-styryl coumarins from aryl alkynoates". Organic & Biomolecular Chemistry 17, nr 18 (2019): 4621–28. http://dx.doi.org/10.1039/c9ob00421a.
Pełny tekst źródłaLi, Huan, Shuai Liu, Yangen Huang, Xiu-Hua Xu i Feng-Ling Qing. "Tandem trifluoromethylthiolation/aryl migration of aryl alkynoates to trifluoromethylthiolated alkenes". Chemical Communications 53, nr 73 (2017): 10136–39. http://dx.doi.org/10.1039/c7cc06232j.
Pełny tekst źródłaDavey, Stephen. "Addition to alkynoates". Nature Chemistry 6, nr 9 (21.08.2014): 754. http://dx.doi.org/10.1038/nchem.2051.
Pełny tekst źródłaLi, Qingrui, Yunnian Yin, Yabo Li, Jianye Zhang, Mengmeng Huang, Jung Keun Kim i Yangjie Wu. "A simple approach to indeno-coumarins via visible-light-induced cyclization of aryl alkynoates with diethyl bromomalonate". Organic Chemistry Frontiers 6, nr 18 (2019): 3238–43. http://dx.doi.org/10.1039/c9qo00795d.
Pełny tekst źródłaKhan, Imtiaz, Sumera Zaib i Aliya Ibrar. "New frontiers in the transition-metal-free synthesis of heterocycles from alkynoates: an overview and current status". Organic Chemistry Frontiers 7, nr 22 (2020): 3734–91. http://dx.doi.org/10.1039/d0qo00698j.
Pełny tekst źródłaKong, De-Long, Liang Cheng, Hong-Ru Wu, Yang-Xiong Li, Dong Wang i Li Liu. "A metal-free yne-addition/1,4-aryl migration/decarboxylation cascade reaction of alkynoates with Csp3–H centers". Organic & Biomolecular Chemistry 14, nr 7 (2016): 2210–17. http://dx.doi.org/10.1039/c5ob02478a.
Pełny tekst źródłaFeng, Shangbiao, Jinlai Li, Zaimin Liu, Haiyu Sun, Hongliang Shi, Xiaolei Wang, Xingang Xie i Xuegong She. "Visible-light-mediated radical cascade reaction: synthesis of 3-bromocoumarins from alkynoates". Org. Biomol. Chem. 15, nr 41 (2017): 8820–26. http://dx.doi.org/10.1039/c7ob02199b.
Pełny tekst źródłaLi, Zun, Jia Zheng, Weigao Hu, Jianxiao Li, Wanqing Wu i Huanfeng Jiang. "Synthesis of 1,4-enyne-3-ones via palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates". Organic Chemistry Frontiers 4, nr 7 (2017): 1363–66. http://dx.doi.org/10.1039/c7qo00082k.
Pełny tekst źródłaWang, Qiumei, Chao Yang i Chao Jiang. "Visible-light-promoted radical acylation/cyclization of alkynoates with aldehydes for the synthesis of 3-acylcoumarins". Organic & Biomolecular Chemistry 16, nr 43 (2018): 8196–204. http://dx.doi.org/10.1039/c8ob02232a.
Pełny tekst źródłaPan, Changduo, Rongzhen Chen, Weile Shao i Jin-Tao Yu. "Metal-free radical addition/cyclization of alkynoates with xanthates towards 3-(β-carbonyl)coumarins". Organic & Biomolecular Chemistry 14, nr 38 (2016): 9033–39. http://dx.doi.org/10.1039/c6ob01732k.
Pełny tekst źródłaChen, Pu, Zan Chen, Bi-Quan Xiong, Yun Liang, Ke-Wen Tang, Jun Xie i Yu Liu. "Visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates leading to coumarins via SO2 insertion". Organic & Biomolecular Chemistry 19, nr 14 (2021): 3181–90. http://dx.doi.org/10.1039/d1ob00142f.
Pełny tekst źródłaChen, Yan-Shan, Yu Zheng, Zhi-Jun Chen, Zhen-Zhen Xie, Xian-Chen He, Jun-An Xiao, Kai Chen, Hao-Yue Xiang i Hua Yang. "A phosphine-catalysed one-pot domino sequence to access cyclopentene-fused coumarins". Organic & Biomolecular Chemistry 19, nr 32 (2021): 7074–80. http://dx.doi.org/10.1039/d1ob01143j.
Pełny tekst źródłaWei, Wei, Leilei Wang, Huilan Yue, Yuan-Ye Jiang i Daoshan Yang. "Catalyst-free synthesis of α-thioacrylic acids via cascade thiolation and 1,4-aryl migration of aryl alkynoates at room temperature". Organic & Biomolecular Chemistry 16, nr 37 (2018): 8379–83. http://dx.doi.org/10.1039/c8ob01349g.
Pełny tekst źródłaHeinrich, Clément F., Michel Miesch i Laurence Miesch. "In situ intramolecular catalytic 1,2-addition of allenoates to cyclic ketones towards polycyclic allenoates". Organic & Biomolecular Chemistry 13, nr 7 (2015): 2153–56. http://dx.doi.org/10.1039/c4ob02451f.
Pełny tekst źródłaEşsiz, Selçuk. "A computational study for the reaction mechanism of metal-free cyanomethylation of aryl alkynoates with acetonitrile". RSC Advances 11, nr 30 (2021): 18246–51. http://dx.doi.org/10.1039/d1ra01649k.
Pełny tekst źródłaSau, Sudip, i Prasenjit Mal. "3-Nitro-coumarin synthesis via nitrative cyclization of aryl alkynoates using tert-butyl nitrite". Chemical Communications 57, nr 73 (2021): 9228–31. http://dx.doi.org/10.1039/d1cc03415d.
Pełny tekst źródłaJennings, M., i A. Hendrix. "Catalytic Carbocupration of Alkynoates". Synfacts 2010, nr 09 (23.08.2010): 1032. http://dx.doi.org/10.1055/s-0030-1257956.
Pełny tekst źródłaLiu, Tong, Qiuping Ding, Qianshou Zong i Guanyinsheng Qiu. "Radical 5-exo cyclization of alkynoates with 2-oxoacetic acids for synthesis of 3-acylcoumarins". Organic Chemistry Frontiers 2, nr 6 (2015): 670–73. http://dx.doi.org/10.1039/c5qo00029g.
Pełny tekst źródłaPiers, Edward, Timothy Wong, Philip D. Coish i Christine Rogers. "A convenient procedure for the efficient preparation of alkyl (Z)-3-iodo-2-alkenoates". Canadian Journal of Chemistry 72, nr 8 (1.08.1994): 1816–19. http://dx.doi.org/10.1139/v94-230.
Pełny tekst źródłaZeng, Piaopiao, Xiaoxiao Huang, Wei Tang i Zhiwei Chen. "Copper-catalyzed cascade radical cyclization of alkynoates: construction of aryldifluoromethylated coumarins". Organic & Biomolecular Chemistry 19, nr 46 (2021): 10223–27. http://dx.doi.org/10.1039/d1ob01754c.
Pełny tekst źródłaQiu, Guanyinsheng, Tong Liu i Qiuping Ding. "Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-[4,5] trienone". Organic Chemistry Frontiers 3, nr 4 (2016): 510–15. http://dx.doi.org/10.1039/c6qo00041j.
Pełny tekst źródłaNi, Shengyang, Jia Cao, Haibo Mei, Jianlin Han, Shuhua Li i Yi Pan. "Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: easy access to 3-iodocoumarins". Green Chemistry 18, nr 14 (2016): 3935–39. http://dx.doi.org/10.1039/c6gc01027j.
Pełny tekst źródłaPiers, Edward, Timothy Wong i Keith A. Ellis. "Use of lithium (trimethylstannyl)(cyano)cuprate for the conversion of alkyl 2-alkynoates into alkyl (Z)- and (E)-3-trimethylstannyl-2-alkenoates". Canadian Journal of Chemistry 70, nr 7 (1.07.1992): 2058–64. http://dx.doi.org/10.1139/v92-260.
Pełny tekst źródłaLuo, Zaigang, Xinxin Han, Chenfu Liu, Qiannan Liu, Rui Li, Peng Liu i Xuemei Xu. "Catalyst-Free Synthesis of 1,4-Dihydroquinolines and Pyrrolo[1,2-a]quinolines via Intermolecular [4+2]/[3+2] Radical Cyclization of N-Methylanilines with Alkynoates". Synthesis 52, nr 07 (2.01.2020): 1067–75. http://dx.doi.org/10.1055/s-0039-1691541.
Pełny tekst źródłaKolesinska, Beata. "P-Acylphosphonium salts and their vinyloges — application in synthesis". Open Chemistry 8, nr 6 (1.12.2010): 1147–71. http://dx.doi.org/10.2478/s11532-010-0114-z.
Pełny tekst źródłaWakamatsu, Takamichi, Kazunori Nagao, Hirohisa Ohmiya i Masaya Sawamura. "Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates". Beilstein Journal of Organic Chemistry 11 (4.12.2015): 2444–50. http://dx.doi.org/10.3762/bjoc.11.265.
Pełny tekst źródłaLu, Xiyan, Yishu Du i Cheng Lu. "Synthetic methodology using tertiary phosphines as nucleophilic catalysts". Pure and Applied Chemistry 77, nr 12 (1.01.2005): 1985–90. http://dx.doi.org/10.1351/pac200577121985.
Pełny tekst źródłaMurayama, Hiroaki, Kazunori Nagao, Hirohisa Ohmiya i Masaya Sawamura. "Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates". Organic Letters 18, nr 7 (24.03.2016): 1706–9. http://dx.doi.org/10.1021/acs.orglett.6b00677.
Pełny tekst źródłaLu, Xiyan, i Qinghai Zhang. "Effect of ligands on the divalent palladium- catalyzed carbon-carbon coupling reactions. Highly enantioselective synthesis of optically active g-butyrolactones". Pure and Applied Chemistry 73, nr 2 (1.01.2001): 247–50. http://dx.doi.org/10.1351/pac200173020247.
Pełny tekst źródłaHøyer, Thomas, Anders Kjær i Jens Lykkesfeldt. "A convenient synthesis of homochiral δ-alkylated α,β-unsaturated δ-lactones". Collection of Czechoslovak Chemical Communications 56, nr 5 (1991): 1042–51. http://dx.doi.org/10.1135/cccc19911042.
Pełny tekst źródłaKim, Myung Hyun, Jaewon Choi, Kyoung Chul Ko, Kyoungil Cho, Ji Hoon Park, Sang Moon Lee, Hae Jin Kim, Yoon-Joo Ko, Jin Yong Lee i Seung Uk Son. "Network-controlled unique reactivities of carbonyl groups in hollow and microporous organic polymer". Chemical Communications 54, nr 40 (2018): 5134–37. http://dx.doi.org/10.1039/c8cc02788a.
Pełny tekst źródła