Gotowa bibliografia na temat „Alkaline Electrolysers”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Alkaline Electrolysers”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Alkaline Electrolysers"
Therkildsen, Kasper T. "(Invited) Affordable Green Hydrogen from Alkaline Water Electrolysis: An Industrial Perspective". ECS Meeting Abstracts MA2024-01, nr 34 (9.08.2024): 1692. http://dx.doi.org/10.1149/ma2024-01341692mtgabs.
Pełny tekst źródłaGórecki, Krzysztof, Małgorzata Górecka i Paweł Górecki. "Modelling Properties of an Alkaline Electrolyser". Energies 13, nr 12 (13.06.2020): 3073. http://dx.doi.org/10.3390/en13123073.
Pełny tekst źródłaFelipe Contreras-Vásquez, Luis, Luis Eduardo Escobar-Luna i Henry Alexander Urquizo-Analuisa. "Evaluation of Alkaline and PEM Electrolysers for Green Hydrogen Production from Hydropower in Ecuador". Medwave 23, S1 (1.09.2023): eUTA395. http://dx.doi.org/10.5867/medwave.2023.s1.uta395.
Pełny tekst źródłaKuleshov, V. N., S. V. Kurochkin, N. V. Kuleshov, A. A. Gavriluk, M. A. Klimova i S. E. Smirnov. "Hydrophilic fillers for anione exchange membranes of alkaline water electrolyzers". E3S Web of Conferences 389 (2023): 02030. http://dx.doi.org/10.1051/e3sconf/202338902030.
Pełny tekst źródłaRasten, Egil. "(Invited) Shunt-currents in Alkaline Water-Electrolyzers and Renewable Energy". ECS Meeting Abstracts MA2024-01, nr 34 (9.08.2024): 1871. http://dx.doi.org/10.1149/ma2024-01341871mtgabs.
Pełny tekst źródłaSutka, Andris, Martins Vanags i Mairis Iesalnieks. "Decoupled Electrolysis Based on Pseudocapacitive Auxiliary Electrodes: Mechanism and Enhancement Strategies". ECS Meeting Abstracts MA2023-02, nr 54 (22.12.2023): 2543. http://dx.doi.org/10.1149/ma2023-02542543mtgabs.
Pełny tekst źródłaMaide, Martin, Alise-Valentine Prits, Sreekanth Mandati i Rainer Küngas. "Multi-Functional Alkaline Electrolysis Setup for Industrially Relevant Testing of Cell Components". ECS Meeting Abstracts MA2023-02, nr 49 (22.12.2023): 3274. http://dx.doi.org/10.1149/ma2023-02493274mtgabs.
Pełny tekst źródłaBorm, Oliver, i Stephen B. Harrison. "Reliable off-grid power supply utilizing green hydrogen". Clean Energy 5, nr 3 (1.08.2021): 441–46. http://dx.doi.org/10.1093/ce/zkab025.
Pełny tekst źródłaDiscepoli, Gabriele, Silvia Barbi, Massimo Milani, Monia Montorsi i Luca Montorsi. "Investigating Sustainable Materials for AEM Electrolysers: Strategies to Improve the Cost and Environmental Impact". Key Engineering Materials 962 (12.10.2023): 81–92. http://dx.doi.org/10.4028/p-7rkv7m.
Pełny tekst źródłaAyyub, Mohd Monis, Andrea Serfőző, Balázs Endrődi i Csaba Janaky. "Understanding Performance Fading during CO Electrolysis in Zero Gap Electrolyzers". ECS Meeting Abstracts MA2023-02, nr 58 (22.12.2023): 2804. http://dx.doi.org/10.1149/ma2023-02582804mtgabs.
Pełny tekst źródłaRozprawy doktorskie na temat "Alkaline Electrolysers"
Serdaroglu, Gulcan. "Controlling the microstructure of the porous nickel electrodes in alkaline electrolysers". Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49141/.
Pełny tekst źródłaKiaee, Mahdi. "Investigation of the cumulative impact of alkaline electrolysers on electrical power systems". Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26885.
Pełny tekst źródłaChade, Daniel Szymon. "Performance and reliability studies of Atmospheric Plasma Spraying Raney nickel electrodes for alkaline electrolysers". Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25532.
Pełny tekst źródłaStemp, Michael C. "Homogeneous catalysis in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0019/MQ45844.pdf.
Pełny tekst źródłaLumanauw, Daniel. "Hydrogen bubble characterization in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0017/MQ54129.pdf.
Pełny tekst źródłaFiorentini, Diego. "Development of a polymeric diaphragm for Alkaline Water Electrolysis". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Znajdź pełny tekst źródłaBradwell, David (David Johnathon). "Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62741.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 198-206).
Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved in molten ZnCl 2 at 500 0C was first investigated by two- and three-electrode electrochemical analysis techniques. The electrochemical behavior of the melt, thermodynamic properties, and kinetic properties were evaluated. A single cell battery was constructed, demonstrating for the first time the simultaneous extraction of two different liquid metals onto electrodes of opposite polarity. Although a low open circuit voltage and high material costs make this approach unsuitable for the intended application, it was found that this electrochemical phenomenon could be utilized in a new recycling process for bimetallic semiconductors. A second type of liquid metal battery was investigated that utilized the potential difference generated by metal alloys of different compositions. MgjlSb cells of this nature were operated at 700 °C, demonstrating that liquid Sb can serve as a positive electrode. Ca,MgIIBi cells also of this nature were studied and a Ca,Mg liquid alloy was successfully used as the negative electrode, permitting the use of Ca as the electroactive species. Thermodynamic and battery performance results suggest that Ca,MgIISb cells have the potential to achieve a sufficient cell voltage, utilize earth abundant materials, and meet the demanding cost and cycle-life requirements for use in grid-scale energy storage applications.
by David J. Bradwell.
Ph.D.
Davids, Wafeeq. "Consolidated Nanomaterials Synthesized using Nickel micro-wires and Carbon Nanotubes". Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_9685_1264387931.
Pełny tekst źródłaLaw, Joseph. "The role of vanadium as a homogeneous catalyst in alkaline water electrolysis". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0020/MQ54216.pdf.
Pełny tekst źródłaHaug, Philipp [Verfasser]. "Experimental and theoretical investigation of gas purity in alkaline water electrolysis / Philipp Haug". München : Verlag Dr. Hut, 2019. http://d-nb.info/1181514061/34.
Pełny tekst źródłaKsiążki na temat "Alkaline Electrolysers"
Stemp, Michael Colin. Homogeneous catalysis in alkaline water electrolysis. Ottawa: National Library of Canada, 1997.
Znajdź pełny tekst źródłaLumanauw, Daniel. Hydrogen bubble characterization in alkaline water electrolysis. Ottawa: National Library of Canada, 2000.
Znajdź pełny tekst źródłaLaw, Joseph. The role of vanadium as a homogeneous catalyst in alkaline water electrolysis. Ottawa: National Library of Canada, 1998.
Znajdź pełny tekst źródłaSuzuki, Hiroyuki. Production and electrochemical behaviour of Ni-Co-Mo-B amorphous alloys for alkaline water electrolysis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1995.
Znajdź pełny tekst źródłaH, Wendt, i Commission of the European Communities. Directorate-General for Science, Research and Development., red. Nickel-net supported cermet diaphragms and distance-free electrode-diaphragm sandwiches for advanced alkaline water electrolysis. Luxembourg: Commission of the European Communities, 1985.
Znajdź pełny tekst źródłaScale up of distance free electrode diaphragm units for advanced alkaline electrolysis and fuel cell technology. Luxembourg: Commission of the European Communities, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Alkaline Electrolysers"
Phillips, Robert, William J. F. Gannon i Charles W. Dunnill. "Chapter 2. Alkaline Electrolysers". W Electrochemical Methods for Hydrogen Production, 28–58. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016049-00028.
Pełny tekst źródłaMamlouk, M., i M. Manolova. "Chapter 6. Alkaline Anionic Exchange Membrane Water Electrolysers". W Electrochemical Methods for Hydrogen Production, 180–252. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016049-00180.
Pełny tekst źródłaGuillet, Nicolas, i Pierre Millet. "Alkaline Water Electrolysis". W Hydrogen Production, 117–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527676507.ch4.
Pełny tekst źródłaIto, Kohei, Hua Li i Yan Ming Hao. "Alkaline Water Electrolysis". W Green Energy and Technology, 137–42. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56042-5_9.
Pełny tekst źródłaPeng, Shengjie. "Alkaline Water Electrolysis". W Electrochemical Hydrogen Production from Water Splitting, 57–68. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4468-2_3.
Pełny tekst źródłaDeng, Xintao, Fuyuan Yang, Yangyang Li, Jian Dang i Minggao Ouyang. "Thermal Analysis and Optimization of Cold-Start Process of Alkaline Water Electrolysis System". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 297–311. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_30.
Pełny tekst źródłaCavaliere, Pasquale. "Alkaline Liquid Electrolyte Water Electrolysis". W Water Electrolysis for Hydrogen Production, 203–32. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37780-8_5.
Pełny tekst źródłaHaarberg, Geir Martin. "Alkali and Alkaline Earth Metal Production by Molten Salt Electrolysis". W Encyclopedia of Applied Electrochemistry, 21–25. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_451.
Pełny tekst źródłaZhang, Tao, Lingjun Song, Fuyuan Yang i Yangyang Li. "Study on Configuration and Control Strategy of Electrolyzers in Off-Grid Wind Hydrogen System". W Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 364–69. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_35.
Pełny tekst źródłaZhang, Anran, Ying Ma, Rui Ding i Liming Li. "Alkaline Water Electrolysis at Industrial Scale". W Green Hydrogen Production by Water Electrolysis, 95–107. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003368939-5.
Pełny tekst źródłaStreszczenia konferencji na temat "Alkaline Electrolysers"
Qiao, Shikang, Yutong Wu i Junbo Zhou. "Simulation of alkaline water electrolysis hydrogen production system based on Aspen Plus". W 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), 493–96. IEEE, 2024. http://dx.doi.org/10.1109/icepet61938.2024.10626880.
Pełny tekst źródłaCrosa, Giampaolo, Maurizio Lubiano i Angela Trucco. "Modelling of PV-Powered Water Electrolysers". W ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90906.
Pełny tekst źródłaParra-Puerto, Andres, Jack Dawson, Mengjun Gong, Javier Rubio-Garcia i Anthony Kucernak. "Carbon Materials for Energy Storage from Redox Flow Batteries to Lithium Sulfur Batteries, Catalyst for Alkaline Electrolysers and Hybrid Redox Flow Batteries". W Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.171.
Pełny tekst źródład’Amore-Domenech, Rafael, Emilio Navarro, Eleuterio Mora i Teresa J. Leo. "Alkaline Electrolysis at Sea for Green Hydrogen Production: A Solution to Electrolyte Deterioration". W ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/omae2018-77209.
Pełny tekst źródłaMus, Jorben, Bram Vanhoutte, Sam Schotte, Steven Fevery, Steven K. Latre, Michael Kleemann i Frank Buysschaert. "Design and Characterisation of an Alkaline Electrolyser". W 2022 11th International Conference on Renewable Energy Research and Application (ICRERA). IEEE, 2022. http://dx.doi.org/10.1109/icrera55966.2022.9922902.
Pełny tekst źródłaRabascall, Jordi Béjar, i Gaurav Mirlekar. "Sustainability analysis and simulation of a Polymer Electrolyte Membrane (PEM) electrolyser for green hydrogen production". W 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200015.
Pełny tekst źródłaSethi, Hamza, Muhammad Zulkefal i Asad Ayub. "Exergy Analysis of an Alkaline Water Electrolysis System". W The 6th Conference on Emerging Materials and Processes (CEMP 2023). Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/materproc2024017013.
Pełny tekst źródłaReddy, G. N., Sadish Shrestha, Bishesh Acharya, Vijaya Krishna Teja Bangi i Ramesh Guduru. "Analysis of Hydrogen Dry Cell for Alkaline Water Electrolysis". W 2018 7th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2018. http://dx.doi.org/10.1109/icrera.2018.8566705.
Pełny tekst źródłaReddy, G. N., Vijaya Krishna Teja Bangi i Ramesh Guduru. "Low-maintenance Solar-hydrogen Generator Using Alkaline Water Electrolysis". W 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA). IEEE, 2019. http://dx.doi.org/10.1109/icrera47325.2019.8997069.
Pełny tekst źródłaAlbornoz, Matias, Marco Rivera, Roberto Ramirez, Felipe Varas-Concha i Patrick Wheeler. "Water Splitting Dynamics of High Voltage Pulsed Alkaline Electrolysis". W 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2022. http://dx.doi.org/10.1109/ica-acca56767.2022.10006326.
Pełny tekst źródłaRaporty organizacyjne na temat "Alkaline Electrolysers"
RIchard Bourgeois, Steven Sanborn i Eliot Assimakopoulos. Alkaline Electrolysis Final Technical Report. Office of Scientific and Technical Information (OSTI), lipiec 2006. http://dx.doi.org/10.2172/886689.
Pełny tekst źródłaXu, Hui, Judith Lattimer, Yamini Mohan i Steve McCatty. High-Temperature Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1826376.
Pełny tekst źródłaAcevedo, Yaset, Jacob Prosser, Jennie Huya-Kouadio, Kevin McNamara i Brian James. Hydrogen Production Cost with Alkaline Electrolysis. Office of Scientific and Technical Information (OSTI), październik 2023. http://dx.doi.org/10.2172/2203367.
Pełny tekst źródłaKim, Yu Seung. Scalable Elastomeric Membranes for Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), luty 2018. http://dx.doi.org/10.2172/1423967.
Pełny tekst źródłaMukundan, Rangachary. Accelerated Stress Test (AST) Development for Advanced Liquid Alkaline Water Electrolysis. Office of Scientific and Technical Information (OSTI), luty 2022. http://dx.doi.org/10.2172/1844102.
Pełny tekst źródłaDana R. Swalla. Feasibility Study of Hydrogen Production from Existing Nuclear Power Plants Using Alkaline Electrolysis. Office of Scientific and Technical Information (OSTI), grudzień 2008. http://dx.doi.org/10.2172/945378.
Pełny tekst źródłaPengliang, Sun. Carbon Emission Calculation and Benefit Analysis of Hydrogen Production Project by Electrolysis of Alkaline Water. Envirarxiv, wrzesień 2021. http://dx.doi.org/10.55800/envirarxiv108.
Pełny tekst źródła