Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Aliev-Panfilov model.

Artykuły w czasopismach na temat „Aliev-Panfilov model”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 20 najlepszych artykułów w czasopismach naukowych na temat „Aliev-Panfilov model”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Grigoriev, Michael, and Nikita V. Turushev. "Computer Simulation of Cardiac Electrical Activity Using an Electrocardiograph on Nanosensors." Advanced Materials Research 1040 (September 2014): 928–32. http://dx.doi.org/10.4028/www.scientific.net/amr.1040.928.

Pełny tekst źródła
Streszczenie:
The problems related to cardiovascular diseases are considered. The method to solve some of the problems has been proposed. We also consider a two-component Aliev-Panfilov model and the algorithm of the hardware-software complexes. The obtained results are presented.
Style APA, Harvard, Vancouver, ISO itp.
2

Sakaguchi, Hidetsugu, and Yasuhiro Nakamura. "Elimination of Breathing Spiral Waves in the Aliev–Panfilov Model." Journal of the Physical Society of Japan 79, no. 7 (2010): 074802. http://dx.doi.org/10.1143/jpsj.79.074802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Zemlyanukhin, A. I., and A. V. Bochkarev. "Analytical properties and exact solution of the Aliev-Panfilov model." Journal of Physics: Conference Series 1205 (April 2019): 012060. http://dx.doi.org/10.1088/1742-6596/1205/1/012060.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Beheshti, M., F. H. Foomany, K. Magtibay, et al. "Modeling Current Density Maps Using Aliev–Panfilov Electrophysiological Heart Model." Cardiovascular Engineering and Technology 7, no. 3 (2016): 238–53. http://dx.doi.org/10.1007/s13239-016-0271-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Pavel’chak, I. A., and S. R. Tuikina. "Numerical solution of an inverse problem for the modified aliev–panfilov model." Computational Mathematics and Modeling 24, no. 1 (2013): 14–21. http://dx.doi.org/10.1007/s10598-013-9155-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Moskalenko, Andrey Vitalievich, and Sergey Aleksandrovich Makhortykh. "Bifurcation spot on the parametric portrait of the two-dimensional version of the Aliev—Panfilov model." Keldysh Institute Preprints, no. 61 (2024): 1–44. http://dx.doi.org/10.20948/prepr-2024-61.

Pełny tekst źródła
Streszczenie:
For the first time, a parametric portrait of a two-dimensional version of the Aliev—Panfilov model is presented, indicating the position of the bifurcation boundary and the bifurcation spot on it. The difference between this model and the "classical" models of autowave processes is demonstrated. Some special cases of the behavior of an autowave vortex are presented, which have not been described in the scientific literature before. The publication is intended primarily for specialists in the fields of mathematical biology, mathematical physics of biological objects and biophysics.
Style APA, Harvard, Vancouver, ISO itp.
7

Sakaguchi, Hidetsugu, and Yusuke Kido. "Suppression of Spiral Chaos by a Guiding Network in the Aliev-Panfilov Model." Progress of Theoretical Physics Supplement 161 (2006): 332–35. http://dx.doi.org/10.1143/ptps.161.332.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Seyedebrahimi, M. Mehdi, and Yesim Serinagaoglu. "Simulation of Transmembrane Potential Propagation in Normal and Ischemic Tissue Using Aliev-Panfilov Model." International Journal of Bioscience, Biochemistry and Bioinformatics 7, no. 1 (2017): 13–19. http://dx.doi.org/10.17706/ijbbb.2017.7.1.13-19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Ihab ELAFF. "Modeling of the excitation propagation of the human heart." World Journal of Biology Pharmacy and Health Sciences 22, no. 2 (2025): 512–19. https://doi.org/10.30574/wjbphs.2025.22.2.0541.

Pełny tekst źródła
Streszczenie:
This study presents a computational model for simulating excitation propagation in the human heart using a Monodomain reaction-diffusion framework coupled with the Aliev-Panfilov model for the ionic reaction term. The objective is to address the Forward Problem in cardiac electrophysiology by modeling how electrical activation initiated at the conduction system propagates through the myocardium. Cellular and tissue-level dynamics are integrated using diffusion tensor imaging (DTI)-derived anisotropy and conduction network structures. Two conduction system models are evaluated, one based on tra
Style APA, Harvard, Vancouver, ISO itp.
10

Pongui Ngoma, D. V., V. D. Mabonzo, L. J. P. Gomat, G. Nguimbi, and B. B. Bamvi Madzou. "PARAMETER IDENTIFICATION PROBLEM TO FIND THE CARDIAC POTENTIAL WAVE FORM IN IONIC MODELS." Advances in Mathematics: Scientific Journal 11, no. 11 (2022): 991–1017. http://dx.doi.org/10.37418/amsj.11.11.2.

Pełny tekst źródła
Streszczenie:
In this paper, we have defined an optimization problem allowing to directly find the shape of the cardiac wave of some ionic models. This allowed us to compare some of these ionic models via a parameter identification problem instead of comparing them directly by plotting the graphs for given values of the parameters. Compared to the empirical methods used to adjust one or two parameters at a time encountered in electrophysiology, we believe that our parameter identification approach is reliable and able to simultaneously identify four to eleven parameters of an ionic model. Using this approac
Style APA, Harvard, Vancouver, ISO itp.
11

Pravdin, Sergei F., Timofei I. Epanchintsev, Timur V. Nezlobinskii, and Alexander V. Panfilov. "Induced drift of scroll waves in the Aliev–Panfilov model and in an axisymmetric heart left ventricle." Russian Journal of Numerical Analysis and Mathematical Modelling 35, no. 5 (2020): 273–83. http://dx.doi.org/10.1515/rnam-2020-0023.

Pełny tekst źródła
Streszczenie:
AbstractThe low-voltage cardioversion-defibrillation is a modern sparing electrotherapy method for such dangerous heart arrhythmias as paroxysmal tachycardia and fibrillation. In an excitable medium, such arrhythmias relate to appearance of spiral waves of electrical excitation, and the spiral waves are superseded to the electric boundary of the medium in the process of treatment due to high-frequency stimulation from the electrode. In this paper we consider the Aliev–Panfilov myocardial model, which provides a positive tension of three-dimensional scroll waves, and an axisymmetric model of th
Style APA, Harvard, Vancouver, ISO itp.
12

Elkaranshawy, Hesham, Hala Mohammed, and Hanaa Elabsy. "An effective mathematical model of cardiac electrical activities for Bundle Branch Blocks." Journal of Physics: Conference Series 2609, no. 1 (2023): 012004. http://dx.doi.org/10.1088/1742-6596/2609/1/012004.

Pełny tekst źródła
Streszczenie:
Abstract In this paper a mathematical model of cardiac induction system is developed. Sinoatrial node (SA), atrioventricular node (AV) and His Purkinje system (HP) are represented by modified Van der Pol-type oscillators (VDP) connected with time-delay coupling. Atrial and ventricular muscles are modeled using modified Aliev-Panfilov equations (AP), with stimulation current from the related pacemakers, to represent the P, QRS, Ta, and T waves. The main aim of this paper is to model bundle branch blocks (BBBs) for right (RBBB) and left (LBBB) branches. In fact, the right and left ventricles are
Style APA, Harvard, Vancouver, ISO itp.
13

Pavel’chak, I. A. "Numerical Method of Determining a Localized Initial Cardiac Excitation for the Aliev–Panfilov Model from Measurements on the Inner Boundary." Computational Mathematics and Modeling 25, no. 3 (2014): 351–55. http://dx.doi.org/10.1007/s10598-014-9231-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Pavel’chak, I. A. "A numerical method for determining the localized initial condition in the FitzHugh-Nagumo and Aliev-Panfilov models." Moscow University Computational Mathematics and Cybernetics 35, no. 3 (2011): 105–12. http://dx.doi.org/10.3103/s0278641911030071.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Ryzhii, Maxim, and Elena Ryzhii. "Pacemaking function of two simplified cell models." PLOS ONE 17, no. 4 (2022): e0257935. http://dx.doi.org/10.1371/journal.pone.0257935.

Pełny tekst źródła
Streszczenie:
Simplified nonlinear models of biological cells are widely used in computational electrophysiology. The models reproduce qualitatively many of the characteristics of various organs, such as the heart, brain, and intestine. In contrast to complex cellular ion-channel models, the simplified models usually contain a small number of variables and parameters, which facilitates nonlinear analysis and reduces computational load. In this paper, we consider pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models. We conducted a numerical simulation study of these models
Style APA, Harvard, Vancouver, ISO itp.
16

Mohanty, S., D. Prusty, and A. R. Nayak. "Comparison of Spiral Waves in Simplified Cardiac Tissue Models." JETP Letters, July 15, 2025. https://doi.org/10.1134/s0021364025600053.

Pełny tekst źródła
Streszczenie:
Spiral waves of electrical activation in cardiac tissue can lead to life-threatening arrhythmias; therefore, understanding the mechanisms underlying the formation and propagation of these spiral waves is of great interest in cardiac dynamics. In this study, we conduct a comparative analysis of spiral waves using two simplified component models for cardiac tissue: (a) the Panfilov model and (b) the Aliev–Panfilov model, by varying the parameters that govern excitability and recovery in both models. From our numerical studies, we observe states of (i) a periodic spiral, (ii) a quasi-periodic spi
Style APA, Harvard, Vancouver, ISO itp.
17

Sakaguchi, Hidetsugu, and Yusuke Kido. "Elimination of spiral chaos by pulse entrainment in the Aliev-Panfilov model." Physical Review E 71, no. 5 (2005). http://dx.doi.org/10.1103/physreve.71.052901.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sakaguchi, Hidetsugu, and Takefumi Fujimoto. "Elimination of spiral chaos by periodic force for the Aliev-Panfilov model." Physical Review E 67, no. 6 (2003). http://dx.doi.org/10.1103/physreve.67.067202.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Ryzhii, Maxim, and Elena Ryzhii. "A compact multi-functional model of the rabbit atrioventricular node with dual pathways." Frontiers in Physiology 14 (March 10, 2023). http://dx.doi.org/10.3389/fphys.2023.1126648.

Pełny tekst źródła
Streszczenie:
The atrioventricular node (AVN) is considered a “black box”, and the functioning of its dual pathways remains controversial and not fully understood. In contrast to numerous clinical studies, there are only a few mathematical models of the node. In this paper, we present a compact, computationally lightweight multi-functional rabbit AVN model based on the Aliev-Panfilov two-variable cardiac cell model. The one-dimensional AVN model includes fast (FP) and slow (SP) pathways, primary pacemaking in the sinoatrial node, and subsidiary pacemaking in the SP. To obtain the direction-dependent conduct
Style APA, Harvard, Vancouver, ISO itp.
20

Jenkins, Evan V., Dhani Dharmaprani, Madeline Schopp, et al. "The inspection paradox: An important consideration in the evaluation of rotor lifetimes in cardiac fibrillation." Frontiers in Physiology 13 (September 6, 2022). http://dx.doi.org/10.3389/fphys.2022.920788.

Pełny tekst źródła
Streszczenie:
Background and Objective: Renewal theory is a statistical approach to model the formation and destruction of phase singularities (PS), which occur at the pivots of spiral waves. A common issue arising during observation of renewal processes is an inspection paradox, due to oversampling of longer events. The objective of this study was to characterise the effect of a potential inspection paradox on the perception of PS lifetimes in cardiac fibrillation.Methods: A multisystem, multi-modality study was performed, examining computational simulations (Aliev-Panfilov (APV) model, Courtmanche-Nattel
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!