Gotowa bibliografia na temat „Algebras- Commutative rings”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Algebras- Commutative rings”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Algebras- Commutative rings"

1

Finkel, Olivier, i Stevo Todorčević. "A hierarchy of tree-automatic structures". Journal of Symbolic Logic 77, nr 1 (marzec 2012): 350–68. http://dx.doi.org/10.2178/jsl/1327068708.

Pełny tekst źródła
Streszczenie:
AbstractWe consider ωn-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length ωn for some integer n ≥ 1. We show that all these structures are ω-tree-automatic structures presentable by Muller or Rabin tree automata. We prove that the isomorphism relation for ω2-automatic (resp. ωn-automatic for n > 2) boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups) is not determined by the axiomatic system ZFC. We infer from the proof of the above result that the isomorphism problem for ωn-automatic boolean algebras, n ≥ 2, (respectively, rings, commutative rings, non commutative rings, non commutative groups) is neither a -set nor a -set. We obtain that there exist infinitely many ωn-automatic, hence also ω-tree-automatic, atomless boolean algebras , which are pairwise isomorphic under the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT, strengthening a result of [14].
Style APA, Harvard, Vancouver, ISO itp.
2

Flaut, Cristina, i Dana Piciu. "Some Examples of BL-Algebras Using Commutative Rings". Mathematics 10, nr 24 (13.12.2022): 4739. http://dx.doi.org/10.3390/math10244739.

Pełny tekst źródła
Streszczenie:
BL-algebras are algebraic structures corresponding to Hajek’s basic fuzzy logic. The aim of this paper is to analyze the structure of BL-algebras using commutative rings. Due to computational considerations, we are interested in the finite case. We present new ways to generate finite BL-algebras using commutative rings and provide summarizing statistics. Furthermore, we investigated BL-rings, i.e., commutative rings whose the lattice of ideals can be equipped with a structure of BL-algebra. A new characterization for these rings and their connections to other classes of rings is established. Furthermore, we give examples of finite BL-rings for which the lattice of ideals is not an MV-algebra and, using these rings, we construct BL-algebras with 2r+1 elements, r≥2, and BL-chains with k elements, k≥4. In addition, we provide an explicit construction of isomorphism classes of BL-algebras of small n size (2≤n≤5).
Style APA, Harvard, Vancouver, ISO itp.
3

Tuganbaev, A. A. "Quaternion algebras over commutative rings". Mathematical Notes 53, nr 2 (luty 1993): 204–7. http://dx.doi.org/10.1007/bf01208328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tambour, Torbjörn. "S-algebras and commutative rings". Journal of Pure and Applied Algebra 82, nr 3 (październik 1992): 289–313. http://dx.doi.org/10.1016/0022-4049(92)90173-d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Zhou, Chaoyuan. "Acyclic Complexes and Graded Algebras". Mathematics 11, nr 14 (19.07.2023): 3167. http://dx.doi.org/10.3390/math11143167.

Pełny tekst źródła
Streszczenie:
We already know that the noncommutative N-graded Noetherian algebras resemble commutative local Noetherian rings in many respects. We also know that commutative rings have the important property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic, and we want to generalize such properties to noncommutative N-graded Noetherian algebra. By generalizing the conclusions about commutative rings and combining what we already know about noncommutative graded algebras, we identify a class of noncommutative graded algebras with the property that every minimal acyclic complex of finitely generated graded free modules is totally acyclic. We also discuss how the relationship between AS–Gorenstein algebras and AS–Cohen–Macaulay algebras admits a balanced dualizing complex. We show that AS–Gorenstein algebras and AS–Cohen–Macaulay algebras with a balanced dualizing complex belong to this algebra.
Style APA, Harvard, Vancouver, ISO itp.
6

CHAKRABORTY, S., R. V. GURJAR i M. MIYANISHI. "PURE SUBRINGS OF COMMUTATIVE RINGS". Nagoya Mathematical Journal 221, nr 1 (marzec 2016): 33–68. http://dx.doi.org/10.1017/nmj.2016.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Macoosh, R., i R. Raphael. "Totally Integrally Closed Azumaya Algebras". Canadian Mathematical Bulletin 33, nr 4 (1.12.1990): 398–403. http://dx.doi.org/10.4153/cmb-1990-065-5.

Pełny tekst źródła
Streszczenie:
AbstractEnochs introduced and studied totally integrally closed rings in the class of commutative rings. This article studies the same question for Azumaya algebras, a study made possible by Atterton's notion of integral extensions for non-commutative rings.The main results are that Azumaya algebras are totally integrally closed precisely when their centres are, and that an Azumaya algebra over a commutative semiprime ring has a tight integral extension that is totally integrally closed. Atterton's integrality differs from that often studied but is very natural in the context of Azumaya algebras. Examples show that the results do not carry over to free normalizing or excellent extensions.
Style APA, Harvard, Vancouver, ISO itp.
8

Cimprič, Jakob. "A Representation Theorem for Archimedean Quadratic Modules on ∗-Rings". Canadian Mathematical Bulletin 52, nr 1 (1.03.2009): 39–52. http://dx.doi.org/10.4153/cmb-2009-005-4.

Pełny tekst źródła
Streszczenie:
AbstractWe present a new approach to noncommutative real algebraic geometry based on the representation theory of C*-algebras. An important result in commutative real algebraic geometry is Jacobi's representation theorem for archimedean quadratic modules on commutative rings. We show that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative C*-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We use his results to generalize Jacobi's theorem to associative rings with involution.
Style APA, Harvard, Vancouver, ISO itp.
9

Bix, Robert. "Separable alternative algebras over commutative rings". Journal of Algebra 92, nr 1 (styczeń 1985): 81–103. http://dx.doi.org/10.1016/0021-8693(85)90146-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Scedrov, Andre, i Philip Scowcroft. "Decompositions of finitely generated modules over C(X): sheaf semantics and a decision procedure". Mathematical Proceedings of the Cambridge Philosophical Society 103, nr 2 (marzec 1988): 257–68. http://dx.doi.org/10.1017/s0305004100064823.

Pełny tekst źródła
Streszczenie:
In the theory of operator algebras the rings of finite matrices over such algebras play a very important role (see [10]). For commutative operator algebras, the Gelfand-Naimark representation allows one to concentrate on matrices over rings of continuous complex functions on compact Hausdorif spaces.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Algebras- Commutative rings"

1

Malec, Sara. "Intersection Algebras and Pointed Rational Cones". Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/math_diss/14.

Pełny tekst źródła
Streszczenie:
In this dissertation we study the algebraic properties of the intersection algebra of two ideals I and J in a Noetherian ring R. A major part of the dissertation is devoted to the finite generation of these algebras and developing methods of obtaining their generators when the algebra is finitely generated. We prove that the intersection algebra is a finitely generated R-algebra when R is a Unique Factorization Domain and the two ideals are principal, and use fans of cones to find the algebra generators. This is done in Chapter 2, which concludes with introducing a new class of algebras called fan algebras. Chapter 3 deals with the intersection algebra of principal monomial ideals in a polynomial ring, where the theory of semigroup rings and toric ideals can be used. A detailed investigation of the intersection algebra of the polynomial ring in one variable is obtained. The intersection algebra in this case is connected to semigroup rings associated to systems of linear diophantine equations with integer coefficients, introduced by Stanley. In Chapter 4, we present a method for obtaining the generators of the intersection algebra for arbitrary monomial ideals in the polynomial ring.
Style APA, Harvard, Vancouver, ISO itp.
2

Ferreira, Mauricio de Araujo 1982. "Algebras biquaternionicas : construção, classificação e condições de existencia via formas quadraticas e involuções". [s.n.], 2006. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306541.

Pełny tekst źródła
Streszczenie:
Orientador: Antonio Jose Engler
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-05T18:56:31Z (GMT). No. of bitstreams: 1 Ferreira_MauriciodeAraujo_M.pdf: 1033477 bytes, checksum: 8d697b5cdeb1a633c1270a5e2f919de7 (MD5) Previous issue date: 2006
Resumo: Neste trabalho, estudamos as álgebras biquaterniônicas, que são um tipo especial de álgebra central simples de dimensão 16, obtida como produto tensorial de duas álgebras de quatérnios. A teoria de formas quadráticas é aplicada para estudarmos critérios de decisão sobre quando uma álgebra biquaterniônica é de divisão e quando duas destas álgebras são isomorfas. Além disso, utilizamos o u-invariante do corpo para discutirmos a existência de álgebras biquaterniônicas de divisão sobre o corpo. Provamos também um resultado atribuído a A. A. Albert, que estabelece critérios para decidir quando uma álgebra central simples de dimensão 16 é de fato uma álgebra biquaterniônica, através do estudo de involuções. Ao longo do trabalho, construímos vários exemplos concretos de álgebras biquaterniônicas satisfazendo propriedades importantes
Mestrado
Algebra
Mestre em Matemática
Style APA, Harvard, Vancouver, ISO itp.
3

Bell, Kathleen. "Cayley Graphs of PSL(2) over Finite Commutative Rings". TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2102.

Pełny tekst źródła
Streszczenie:
Hadwiger's conjecture is one of the deepest open questions in graph theory, and Cayley graphs are an applicable and useful subtopic of algebra. Chapter 1 will introduce Hadwiger's conjecture and Cayley graphs, providing a summary of background information on those topics, and continuing by introducing our problem. Chapter 2 will provide necessary definitions. Chapter 3 will give a brief survey of background information and of the existing literature on Hadwiger's conjecture, Hamiltonicity, and the isoperimetric number; in this chapter we will explore what cases are already shown and what the most recent results are. Chapter 4 will give our decomposition theorem about PSL2 (R). Chapter 5 will continue with corollaries of the decomposition theorem, including showing that Hadwiger's conjecture holds for our Cayley graphs. Chapter 6 will finish with some interesting examples.
Style APA, Harvard, Vancouver, ISO itp.
4

Sekaran, Rajakrishnar. "Fuzzy ideals in commutative rings". Thesis, Rhodes University, 1995. http://hdl.handle.net/10962/d1005221.

Pełny tekst źródła
Streszczenie:
In this thesis, we are concerned with various aspects of fuzzy ideals of commutative rings. The central theorem is that of primary decomposition of a fuzzy ideal as an intersection of fuzzy primary ideals in a commutative Noetherian ring. We establish the existence and the two uniqueness theorems of primary decomposition of any fuzzy ideal with membership value 1 at the zero element. In proving this central result, we build up the necessary tools such as fuzzy primary ideals and the related concept of fuzzy maximal ideals, fuzzy prime ideals and fuzzy radicals. Another approach explores various characterizations of fuzzy ideals, namely, generation and level cuts of fuzzy ideals, relation between fuzzy ideals, congruences and quotient fuzzy rings. We also tie up several authors' seemingly different definitions of fuzzy prime, primary, semiprimary and fuzzy radicals available in the literature and show some of their equivalences and implications, providing counter-examples where certain implications fail.
Style APA, Harvard, Vancouver, ISO itp.
5

Hasse, Erik Gregory. "Lowest terms in commutative rings". Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6433.

Pełny tekst źródła
Streszczenie:
Putting fractions in lowest terms is a common problem for basic algebra courses, but it is rarely discussed in abstract algebra. In a 1990 paper, D.D. Anderson, D.F. Anderson, and M. Zafrullah published a paper called Factorization in Integral Domains, which summarized the results concerning different factorization properties in domains. In it, they defined an LT domain as one where every fraction is equal to a fraction in lowest terms. That is, for any x/y in the field of fractions of D, there is some a/b with x/y=a/b and the greatest common divisor of a and b is 1. In addition, R. Gilmer included a brief exercise concerning lowest terms over a domain in his book Multiplicative Ideal Theory. In this thesis, we expand upon those definitions. First, in Chapter 2 we make a distinction between putting a fraction in lowest terms and reducing it to lowest terms. In the first case, we simply require the existence of an equal fraction which is in lowest terms, while the second requires an element which divides both the numerator and the denominator to reach lowest terms. We also define essentially unique lowest terms, which requires a fraction to have only one lowest terms representation up to unit multiples. We prove that a reduced lowest terms domain is equivalent to a weak GCD domain, and that a domain which is both a reduced lowest terms domain and a unique lowest terms domain is equivalent to a GCD domain. We also provide an example showing that not every domain is a lowest terms domain as well as an example showing that putting a fraction in lowest terms is a strictly weaker condition than reducing it to lowest terms. Next, in Chapter 3 we discuss how lowest terms in a domain interacts with the polynomial ring. We prove that if D[T] is a unique lowest terms domain, then D must be a GCD domain. We also provide an alternative approach to some of the earlier results using the group of divisibility. So far, all fractions have been representatives of the field of fractions of a domain. However, in Chapter 4 we examine fractions in other localizations of a domain. We define a necessary and sufficient condition on the multiplicatively closed set, and then examine how this relates to existing properties of multiplicatively closed sets. Finally, in Chapter 5 we briefly examine lowest terms in rings with zero divisors. Because many properties of GCDs do not hold in such rings, this proved difficult. However, we were able to prove some results from Chapter 2 in this more general case.
Style APA, Harvard, Vancouver, ISO itp.
6

Granger, Ginger Thibodeaux. "Properties of R-Modules". Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc500710/.

Pełny tekst źródła
Streszczenie:
This thesis investigates some of the properties of R-modules. The material is presented in three chapters. Definitions and theorems which are assumed are stated in Chapter I. Proofs of these theorems may be found in Zariski and Samuel, Commutative Algebra, Vol. I, 1958. It is assumed that the reader is familiar with the basic properties of commutative rings and ideals in rings. Properties of R-modules are developed in Chapter II. The most important results presented in this chapter include existence theorems for R-modules and properties of submodules in R-modules. The third and final chapter presents an example which illustrates how a ring R, may be regarded as an R-module and speaks of the direct sum of ideals of a ring as a direct sum of submodules.
Style APA, Harvard, Vancouver, ISO itp.
7

Johnston, Ann. "Markov Bases for Noncommutative Harmonic Analysis of Partially Ranked Data". Scholarship @ Claremont, 2011. http://scholarship.claremont.edu/hmc_theses/4.

Pełny tekst źródła
Streszczenie:
Given the result $v_0$ of a survey and a nested collection of summary statistics that could be used to describe that result, it is natural to ask which of these summary statistics best describe $v_0$. In 1998 Diaconis and Sturmfels presented an approach for determining the conditional significance of a higher order statistic, after sampling a space conditioned on the value of a lower order statistic. Their approach involves the computation of a Markov basis, followed by the use of a Markov process with stationary hypergeometric distribution to generate a sample.This technique for data analysis has become an accepted tool of algebraic statistics, particularly for the study of fully ranked data. In this thesis, we explore the extension of this technique for data analysis to the study of partially ranked data, focusing on data from surveys in which participants are asked to identify their top $k$ choices of $n$ items. Before we move on to our own data analysis, though, we present a thorough discussion of the Diaconis–Sturmfels algorithm and its use in data analysis. In this discussion, we attempt to collect together all of the background on Markov bases, Markov proceses, Gröbner bases, implicitization theory, and elimination theory, that is necessary for a full understanding of this approach to data analysis.
Style APA, Harvard, Vancouver, ISO itp.
8

Oyinsan, Sola. "Primary decomposition of ideals in a ring". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3289.

Pełny tekst źródła
Streszczenie:
The concept of unique factorization was first recognized in the 1840s, but even then, it was still fairly believed to be automatic. The error of this assumption was exposed largely through attempts to prove Pierre de Fermat's, 1601-1665, last theorem. Once mathematicians discovered that this property did not always hold, it was only natural for them to try to search for the strongest available alternative. Thus began the attempt to generalize unique factorization. Using the ascending chain condition on principle ideals, we will show the conditions under which a ring is a unique factorization domain.
Style APA, Harvard, Vancouver, ISO itp.
9

Salt, Brittney M. "MONOID RINGS AND STRONGLY TWO-GENERATED IDEALS". CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/31.

Pełny tekst źródła
Streszczenie:
This paper determines whether monoid rings with the two-generator property have the strong two-generator property. Dedekind domains have both the two-generator and strong two-generator properties. How common is this? Two cases are considered here: the zero-dimensional case and the one-dimensional case for monoid rings. Each case is looked at to determine if monoid rings that are not PIRs but are two-generated have the strong two-generator property. Full results are given in the zero-dimensional case, however only partial results have been found for the one-dimensional case.
Style APA, Harvard, Vancouver, ISO itp.
10

Green, Ellen Yvonne. "Characterizing the strong two-generators of certain Noetherian domains". CSUSB ScholarWorks, 1997. https://scholarworks.lib.csusb.edu/etd-project/1539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Algebras- Commutative rings"

1

Gelʹfand, I. M. Commutative normed rings. Providence, RI: AMS Chelsea Publishing, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Gelʹfand, I. M. Commutative normed rings. Providence, RI: AMS Chelsea Publishing, 2003.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gelʹfand, I. M. Commutative normed rings. Providence, RI: American Mathematical Society, 1999.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

1943-, Bunce John W., i Van Vleck Fred S, red. Linear systems over commutative rings. New York: Dekker, 1986.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Bosch, Siegfried. Algebraic Geometry and Commutative Algebra. London: Springer London, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

service), SpringerLink (Online, red. Commutative Algebra: Expository Papers Dedicated to David Eisenbud on the Occasion of His 65th Birthday. New York, NY: Springer New York, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

1973-, Positselski Leonid, red. Quadratic algebras. Providence, R.I: American Mathematical Society, 2005.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kunz, Ernst. Introduction to Commutative Algebra and Algebraic Geometry. New York, NY: Springer New York, 2013.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

service), SpringerLink (Online, red. Algèbre: Chapitre 8. Wyd. 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

service), SpringerLink (Online, red. Categories and Commutative Algebra. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Algebras- Commutative rings"

1

Kadison, Lars. "Hopf algebras over commutative rings". W University Lecture Series, 53–62. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/ulect/014/06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Peruginelli, Giulio, i Nicholas J. Werner. "Integral Closure of Rings of Integer-Valued Polynomials on Algebras". W Commutative Algebra, 293–305. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0925-4_17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hahn, Alexander J., i O. Timothy O’Meara. "Clifford Algebras and Orthogonal Groups over Commutative Rings". W Grundlehren der mathematischen Wissenschaften, 381–440. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-13152-7_9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Ng, Siu-Hung. "Non-Commutative, Non-Cocommutative Semisimple Hopf Algebras Arise from Finite Abelian Groups". W Groups, Rings, Lie and Hopf Algebras, 167–77. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4613-0235-3_11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Salimi, Maryam, Elham Tavasoli i Siamak Yassemi. "A Survey on Algebraic and Homological Properties of Amalgamated Algebras of Commutative Rings". W Algebraic, Number Theoretic, and Topological Aspects of Ring Theory, 383–404. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28847-0_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kanwar, Pramod, Meenu Khatkar i R. K. Sharma. "Basic One-Sided Ideals of Leavitt Path Algebras over Commutative Rings". W Springer Proceedings in Mathematics & Statistics, 155–65. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3898-6_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Gómez-Torrecillas, José. "Basic Module Theory over Non-commutative Rings with Computational Aspects of Operator Algebras". W Algebraic and Algorithmic Aspects of Differential and Integral Operators, 23–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54479-8_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Cohn, P. M. "Commutative Rings". W Basic Algebra, 347–96. London: Springer London, 2003. http://dx.doi.org/10.1007/978-0-85729-428-9_10.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Kempf, George R. "Commutative rings". W Algebraic Structures, 141–43. Wiesbaden: Vieweg+Teubner Verlag, 1995. http://dx.doi.org/10.1007/978-3-322-80278-1_18.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Olberding, Bruce. "Finitely Stable Rings". W Commutative Algebra, 269–91. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0925-4_16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Algebras- Commutative rings"

1

KLINGLER, LEE, i LAWRENCE S. LEVY. "REPRESENTATION TYPE OF COMMUTATIVE NOETHERIAN RINGS (INTRODUCTION)". W Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0010.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Klisowski, Michal, i Vasyl Ustimenko. "On the implementation of public keys algorithms based on algebraic graphs over finite commutative rings". W 2010 International Multiconference on Computer Science and Information Technology (IMCSIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/imcsit.2010.5679687.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii