Gotowa bibliografia na temat „Algebraic number theory”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Algebraic number theory”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Algebraic number theory"

1

Blackmore, G. W., I. N. Stewart i D. O. Tall. "Algebraic Number Theory". Mathematical Gazette 73, nr 463 (marzec 1989): 65. http://dx.doi.org/10.2307/3618234.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

S., R., i Michael E. Pohst. "Computational Algebraic Number Theory." Mathematics of Computation 64, nr 212 (październik 1995): 1763. http://dx.doi.org/10.2307/2153389.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Karve, Aneesh, i Sebastian Pauli. "GiANT: Graphical Algebraic Number Theory". Journal de Théorie des Nombres de Bordeaux 18, nr 3 (2006): 721–27. http://dx.doi.org/10.5802/jtnb.569.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Lenstra Jr., H. W. "Algorithms in Algebraic Number Theory". Bulletin of the American Mathematical Society 26, nr 2 (1.10.1992): 211–45. http://dx.doi.org/10.1090/s0273-0979-1992-00284-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Platonov, V. P., i A. S. Rapinchuk. "Algebraic groups and number theory". Russian Mathematical Surveys 47, nr 2 (30.04.1992): 133–61. http://dx.doi.org/10.1070/rm1992v047n02abeh000879.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Appleby, Marcus, Steven Flammia, Gary McConnell i Jon Yard. "SICs and Algebraic Number Theory". Foundations of Physics 47, nr 8 (24.04.2017): 1042–59. http://dx.doi.org/10.1007/s10701-017-0090-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Belabas, Karim. "Topics in computational algebraic number theory". Journal de Théorie des Nombres de Bordeaux 16, nr 1 (2004): 19–63. http://dx.doi.org/10.5802/jtnb.433.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Schoof, Ren\'e. "Book Review: Algorithmic algebraic number theory". Bulletin of the American Mathematical Society 29, nr 1 (1.07.1993): 111–14. http://dx.doi.org/10.1090/s0273-0979-1993-00392-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Krishna, Amalendu, i Jinhyun Park. "Algebraic cobordism theory attached to algebraic equivalence". Journal of K-Theory 11, nr 1 (luty 2013): 73–112. http://dx.doi.org/10.1017/is013001028jkt210.

Pełny tekst źródła
Streszczenie:
AbstractBased on the algebraic cobordism theory of Levine and Morel, we develop a theory of algebraic cobordism modulo algebraic equivalence.We prove that this theory can reproduce Chow groups modulo algebraic equivalence and the semi-topological K0-groups. We also show that with finite coefficients, this theory agrees with the algebraic cobordism theory.We compute our cobordism theory for some low dimensional varieties. The results on infinite generation of some Griffiths groups by Clemens and on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms of this cobordism theory.
Style APA, Harvard, Vancouver, ISO itp.
10

Cremona, J. E., i Henri Cohen. "A Course in Computational Algebraic Number Theory". Mathematical Gazette 78, nr 482 (lipiec 1994): 221. http://dx.doi.org/10.2307/3618596.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Algebraic number theory"

1

Röttger, Christian Gottfried Johannes. "Counting problems in algebraic number theory". Thesis, University of East Anglia, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327407.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Swanson, Colleen M. "Algebraic number fields and codes /". Connect to online version, 2006. http://ada.mtholyoke.edu/setr/websrc/pdfs/www/2006/172.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hughes, Garry. "Distribution of additive functions in algebraic number fields". Title page, contents and summary only, 1987. http://web4.library.adelaide.edu.au/theses/09SM/09smh893.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

McCoy, Daisy Cox. "Irreducible elements in algebraic number fields". Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/39950.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gaertner, Nathaniel Allen. "Special Cases of Density Theorems in Algebraic Number Theory". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/33153.

Pełny tekst źródła
Streszczenie:
This paper discusses the concepts in algebraic and analytic number theory used in the proofs of Dirichlet's and Cheboterev's density theorems. It presents special cases of results due to the latter theorem for which greatly simplified proofs exist.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
6

Rozario, Rebecca. "The Distribution of the Irreducibles in an Algebraic Number Field". Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/RozarioR2003.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Nyqvist, Robert. "Algebraic Dynamical Systems, Analytical Results and Numerical Simulations". Doctoral thesis, Växjö : Växjö University Press, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-1142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Yan, Song Yuan. "On the algebraic theories and computations of amicable numbers". Thesis, University of York, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284133.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Haydon, James Henri. "Étale homotopy sections of algebraic varieties". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:88019ba2-a589-4179-ad7f-1eea234d284c.

Pełny tekst źródła
Streszczenie:
We define and study the fundamental pro-finite 2-groupoid of varieties X defined over a field k. This is a higher algebraic invariant of a scheme X, analogous to the higher fundamental path 2-groupoids as defined for topological spaces. This invariant is related to previously defined invariants, for example the absolute Galois group of a field, and Grothendieck’s étale fundamental group. The special case of Brauer-Severi varieties is considered, in which case a “sections conjecture” type theorem is proved. It is shown that a Brauer-Severi variety X has a rational point if and only if its étale fundamental 2-groupoid has a special sort of section.
Style APA, Harvard, Vancouver, ISO itp.
10

Green, Benjamin. "Galois representations attached to algebraic automorphic representations". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:77f01cbc-65d1-480d-ae3a-0a039a76671a.

Pełny tekst źródła
Streszczenie:
This thesis is concerned with the Langlands program; namely the global Langlands correspondence, Langlands functoriality, and a conjecture of Gross. In chapter 1, we cover the most important background material needed for this thesis. This includes material on reductive groups and their root data, the definition of automorphic representations and a general overview of the Langlands program, and Gross' conjecture concerning attaching l-adic Galois representations to automorphic representations on certain reductive groups G over ℚ. In chapter 2, we show that odd-dimensional definite unitary groups satisfy the hypotheses of Gross' conjecture and verify the conjecture in this case using known constructions of automorphic l-adic Galois representations. We do this by verifying a specific case of a generalisation of Gross' conjecture; one should still get l-adic Galois representations if one removes one of his hypotheses but with the cost that their image lies in CG(ℚl) as opposed to LG(ℚl). Such Galois representations have been constructed for certain automorphic representations on G, a definite unitary group of arbitrary dimension, and there is a map CG(ℚl) → LG(ℚl) precisely when G is odd-dimensional. In chapter 3, which forms the main part of this thesis, we show that G = Un(B) where B is a rational definite quaternion algebra satisfies the hypotheses of Gross' conjecture. We prove that one can transfer a cuspidal automorphic representation π of G to a π' on Sp2n (a Jacquet-Langlands type transfer) provided it is Steinberg at some finite place. We also prove this when B is indefinite. One can then transfer π′ to an automorphic representaion of GL2n+1 using the work of Arthur. Finally, one can attach l-adic Galois representations to these automorphic representations on GL2n+1, provided we assume π is regular algebraic if B is indefinite, and show that they have orthogonal image.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Algebraic number theory"

1

Weiss, Edwin. Algebraic number theory. Mineola, N.Y: Dover Publications, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Fröhlich, A. Algebraic number theory. Cambridge: Cambridge University Press, 1991.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Lang, Serge. Algebraic number theory. Wyd. 2. New York: Springer-Verlag, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Koch, H. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4684-0296-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Neukirch, Jürgen. Algebraic Number Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03983-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jarvis, Frazer. Algebraic Number Theory. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07545-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Lang, Serge. Algebraic Number Theory. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-0853-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Orme, Tall David, red. Algebraic number theory. Wyd. 2. London: Chapman and Hall, 1987.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Mollin, Richard A. Algebraic number theory. Wyd. 2. Boca Raton, FL: Chapman and Hall/CRC, 2011.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Algebraic number theory"

1

Geroldinger, Alfred. "Factorizations of algebraic integers". W Number Theory, 63–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0086545.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Ireland, Kenneth, i Michael Rosen. "Algebraic Number Theory". W A Classical Introduction to Modern Number Theory, 172–87. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4757-2103-4_12.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Stillwell, John. "Algebraic Number Theory". W Undergraduate Texts in Mathematics, 404–30. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/978-1-4684-9281-1_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Stillwell, John. "Algebraic Number Theory". W Undergraduate Texts in Mathematics, 439–66. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6053-5_21.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Weil, André. "Algebraic number-fields". W Basic Number Theory, 80–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61945-8_5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Kolmogorov, A. N., i A. P. Yushkevich. "Algebra and Algebraic Number Theory". W Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 2001. http://dx.doi.org/10.1007/978-3-0348-8293-4_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bashmakova, I. G., i A. N. Rudakov. "Algebra and Algebraic Number Theory". W Mathematics of the 19th Century, 35–135. Basel: Birkhäuser Basel, 1992. http://dx.doi.org/10.1007/978-3-0348-5112-1_2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Bourbaki, Nicolas. "Commutative Algebra. Algebraic Number Theory". W Elements of the History of Mathematics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-61693-8_7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Fine, Benjamin, i Gerhard Rosenberger. "Primes and Algebraic Number Theory". W Number Theory, 285–370. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43875-7_6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Koch, H. "Basic Number Theory". W Algebraic Number Theory, 8–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58095-6_1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Algebraic number theory"

1

Lam, S. P., i K. P. Shum. "Algebraic Structures and Number Theory". W First International Symposium on Algebraic Structures and Number Theory. WORLD SCIENTIFIC, 1990. http://dx.doi.org/10.1142/9789814540209.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Huang, Yu-Chih. "Lattice index codes from algebraic number fields". W 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, 2015. http://dx.doi.org/10.1109/isit.2015.7282903.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

van Dam, Wim, i Yoshitaka Sasaki. "QUANTUM ALGORITHMS FOR PROBLEMS IN NUMBER THEORY, ALGEBRAIC GEOMETRY, AND GROUP THEORY". W Summer School on Diversities in Quantum Computation/Information. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814425988_0003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tsuboi, Shoji. "The Euler number of the normalization of an algebraic threefold with ordinary singularities". W Geometric Singularity Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2004. http://dx.doi.org/10.4064/bc65-0-17.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Feng, Ke-Qin, i Ke-Zheng Li. "Proceedings of the Special Program at Nankai Institute of Mathematics ALGEBRAIC GEOMETRY and ALGEBRAIC NUMBER THEORY". W Special Program at Nankai Institute of Mathematics. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814537681.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Limniotis, Konstantinos, Nicholas Kolokotronis i Nicholas Kalouptsidis. "Constructing Boolean functions in odd number of variables with maximum algebraic immunity". W 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034059.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Xiaowen Xiong, Xia Yang i Chi Ma. "Analysis of the number of even-variable boolean functions with maximum algebraic immunity". W Symposium on ICT and Energy Efficiency and Workshop on Information Theory and Security (CIICT 2012). Institution of Engineering and Technology, 2012. http://dx.doi.org/10.1049/cp.2012.1869.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Alekseev, Yaroslav, Dima Grigoriev, Edward A. Hirsch i Iddo Tzameret. "Semi-algebraic proofs, IPS lower bounds, and the τ-conjecture: can a natural number be negative?" W STOC '20: 52nd Annual ACM SIGACT Symposium on Theory of Computing. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3357713.3384245.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Martino, Anthony J., i G. Michael Morris. "Optical generation of random numbers: theory and experiments". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/oam.1985.tue2.

Pełny tekst źródła
Streszczenie:
Simulation of physical processes and Monte Carlo solutions to numerical problems on digital computers require sources of random numbers that follow specified density functions. In our experiments, the spatial coordinates of detected photoevents are used as a fast source of true random numbers to solve numerical problems by the Monte Carlo method. The probability density function for the location of a photoevent on the detector surface is proportional to the irradiance. We have constructed an optical random number generator using a microchannel plate detector with a resistive anode. It can produce bivariate random deviates with any probability density and any correlation between the two variables. The numbers pass the standard tests for randomness and fit to the given distributions (chi-square, correlation, sequence tests). Nonuniform distributions can be obtained with no loss of speed by manipulating the irradiance distribution across the detector, e.g., by imaging a transparency onto it. In particular, we have produced uniformly distributed random numbers and normally distributed random numbers with various correlations between the variables. We have also used the optical random number generator to find approximate solutions to systems of large linear algebraic equations and approximations to the inverses of large matrices, with a maximum error of <5%.
Style APA, Harvard, Vancouver, ISO itp.
10

Sheppard, S. D., D. J. Wilde i Y. L. Hsu. "Algebraic Acceleration of Finite Element Optimization; Four Modeling Errors in a Weldment Design". W ASME 1989 Design Technical Conferences. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/detc1989-0063.

Pełny tekst źródła
Streszczenie:
Abstract A method is proposed for incorporating finite element stress analysis into the constraints of an optimization model. To reduce the number of computationally intensive finite element analyses, the more accurate FEA plate model is approximated by an algebraic beam model having an adjustable factor whose value is determined by comparing FEA stresses with the corresponding beam theory predictions. This factor compensates both for the inaccuracies of beam theory and the effect of stress concentration. The algebraic form is retained to permit application of powerful optimization techniques not applicable directly to finite element models. The optimization problem is thus reduced to the determination of the single factor by linear interpolation. When tested on Keith’s well-known welded cantilever problem, the method needs only three FEAs. Keith’s model is also shown to suffer from four errors, of which three are remedied here. Because of special problem structure, the resulting design is correct for three of the four design variables, but the length of the weld cannot be determined without a better weld stress model.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Algebraic number theory"

1

Xia, Xiang-Gen. Space-Time Coding Using Algebraic Number Theory for Broadband Wireless Communications. Fort Belvoir, VA: Defense Technical Information Center, maj 2008. http://dx.doi.org/10.21236/ada483791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Sultanov, S. R. Electronic textbook " Algebra and number theory. Part 2 "direction of training 02.03.03" Mathematical support and administration of information systems". OFERNIO, czerwiec 2018. http://dx.doi.org/10.12731/ofernio.2018.23685.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii