Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Air-water interface dynamics.

Artykuły w czasopismach na temat „Air-water interface dynamics”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Air-water interface dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Wick, Collin D. "NaCl Dissociation Dynamics at the Air−Water Interface". Journal of Physical Chemistry C 113, nr 6 (21.01.2009): 2497–502. http://dx.doi.org/10.1021/jp807901j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Liu, Pu, Edward Harder i B. J. Berne. "Hydrogen-Bond Dynamics in the Air−Water Interface". Journal of Physical Chemistry B 109, nr 7 (luty 2005): 2949–55. http://dx.doi.org/10.1021/jp046807l.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Segur, Harvey, i Soroush Khadem. "Wind-Driven Waves on the Air-Water Interface". Fluids 6, nr 3 (16.03.2021): 122. http://dx.doi.org/10.3390/fluids6030122.

Pełny tekst źródła
Streszczenie:
An ocean swell refers to a train of periodic or nearly periodic waves. The wave train can propagate on the free surface of a body of water over very long distances. A great deal of the current study in the dynamics of water waves is focused on ocean swells. These swells are typically created initially in the neighborhood of an ocean storm, and then the swell propagates away from the storm in all directions. We consider a different kind of wave, called seas, which are created by and driven entirely by wind. These waves typically have no periodicity, and can rise and fall with changes in the wind. Specifically, this is a two-fluid problem, with air above a moveable interface, and water below it. We focus on the local dynamics at the air-water interface. Various properties at this locality have implications on the waves as a whole, such as pressure differentials and velocity profiles. The following analysis provides insight into the dynamics of seas, and some of the features of these intriguing waves, including a process known as white-capping.
Style APA, Harvard, Vancouver, ISO itp.
4

Zimdars, David, Jerry I. Dadap, Kenneth B. Eisenthal i Tony F. Heinz. "Femtosecond dynamics of solvation at the air/water interface". Chemical Physics Letters 301, nr 1-2 (luty 1999): 112–20. http://dx.doi.org/10.1016/s0009-2614(99)00017-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Martynowycz, Michael, Andrey Ivankin i David Gidalevitz. "Dynamics of Bilayer Interactions at the Air-Water Interface". Biophysical Journal 106, nr 2 (styczeń 2014): 512a. http://dx.doi.org/10.1016/j.bpj.2013.11.2862.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bhattacharya, R., i J. K. Basu. "Microscopic dynamics of nanoparticle monolayers at air–water interface". Journal of Colloid and Interface Science 396 (kwiecień 2013): 69–74. http://dx.doi.org/10.1016/j.jcis.2013.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Theodoratou, Antigoni, Ulrich Jonas, Benoit Loppinet, Thomas Geue, René Stangenberg, Dan Li, Rüdiger Berger i Dimitris Vlassopoulos. "Photoswitching the mechanical properties in Langmuir layers of semifluorinated alkyl-azobenzenes at the air–water interface". Physical Chemistry Chemical Physics 17, nr 43 (2015): 28844–52. http://dx.doi.org/10.1039/c5cp04242a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Zhang, Zhe, i Xiaoyu Song. "Nanoscale soil-water retention curve of unsaturated clay via molecular dynamics". E3S Web of Conferences 382 (2023): 10007. http://dx.doi.org/10.1051/e3sconf/202338210007.

Pełny tekst źródła
Streszczenie:
This paper characterizes nanoscale soil-water retention mechanism of unsaturated clay through molecular dynamics simulation. Series of molecular dynamics simulations of clay at low degrees of saturation were conducted. Soil water was represented by a point cloud through the centre-of-massmethod. Water-air interface area was measured numerically by the alpha shape method. Spatial variation of water number density is characterized and used to determine the adsorbed water layer. The soil-water retention mechanism at the nanoscale was analysed by distinguishing adsorptive pressure and capillary pressure at different mass water contents and considering apparent interface area (water-air interface area per unit water volume).
Style APA, Harvard, Vancouver, ISO itp.
9

Benderskii, Alexander V., i Kenneth B. Eisenthal. "Aqueous Solvation Dynamics at the Anionic Surfactant Air/Water Interface†". Journal of Physical Chemistry B 105, nr 28 (lipiec 2001): 6698–703. http://dx.doi.org/10.1021/jp010401g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Donovan, Michael A., Yeneneh Y. Yimer, Jim Pfaendtner, Ellen H. G. Backus, Mischa Bonn i Tobias Weidner. "Ultrafast Reorientational Dynamics of Leucine at the Air–Water Interface". Journal of the American Chemical Society 138, nr 16 (18.04.2016): 5226–29. http://dx.doi.org/10.1021/jacs.6b01878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Dhathathreyan, A., i S. J. Collins. "Molecular Dynamics Simulation of (Octadecylamino)dihydroxysalicylaldehyde at Air/Water Interface". Langmuir 18, nr 3 (luty 2002): 928–31. http://dx.doi.org/10.1021/la011073e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Stocco, Antonio, Klaus Tauer, Stergios Pispas i Reinhard Sigel. "Dynamics of amphiphilic diblock copolymers at the air–water interface". Journal of Colloid and Interface Science 355, nr 1 (marzec 2011): 172–78. http://dx.doi.org/10.1016/j.jcis.2010.11.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Koens, Lyndon, Wendong Wang, Metin Sitti i Eric Lauga. "The near and far of a pair of magnetic capillary disks". Soft Matter 15, nr 7 (2019): 1497–507. http://dx.doi.org/10.1039/c8sm02215a.

Pełny tekst źródła
Streszczenie:
We develop a series of models in order to elucidate the non-linear dynamics of interacting magnetic micro-disks floating on an air–water interface and exhibiting both dynamic and static self-assembly.
Style APA, Harvard, Vancouver, ISO itp.
14

Zhou, Zhibin, Zhijun Xu i Xiaoning Yang. "Molecular dynamics simulation of interface-mediated GO-GO interaction at the air-water interface". Journal of Molecular Liquids 291 (październik 2019): 111340. http://dx.doi.org/10.1016/j.molliq.2019.111340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Martins-Costa, Marilia T. C., Josep M. Anglada, Joseph S. Francisco i Manuel F. Ruiz-López. "Photosensitization mechanisms at the air–water interface of aqueous aerosols". Chemical Science 13, nr 9 (2022): 2624–31. http://dx.doi.org/10.1039/d1sc06866k.

Pełny tekst źródła
Streszczenie:
First-principles molecular dynamics simulations of imidazole-2-carboxaldehyde at the air–water interface highlight the role of surfactants in stabilising the reactive triplet state involved in photosensitisation reactions in aqueous aerosols.
Style APA, Harvard, Vancouver, ISO itp.
16

Swean, T. F., i A. N. Beris. "Dynamics of Free-Surface Flows With Surfactants". Applied Mechanics Reviews 47, nr 6S (1.06.1994): S173—S177. http://dx.doi.org/10.1115/1.3124399.

Pełny tekst źródła
Streszczenie:
There is ample quantitative evidence (through, for example, surface tension measurements) of the presence of surfactants at the air-sea interface in sufficient quantities to influence the sea surface dynamics and its interactions with ambient flow turbulence. The importance of the role of the surfactants can also be judged from independent observations of phenomena such as suppression of short wavelength capillary waves and the presence of long-lived slick structures at the ship wakes. Although there is consensus on the presence of surfactants as the underlying reason behind these phenomena, the capability of quantitative predictions is still lacking for most of them. The objective of the present work is to introduce to the general engineering mechanics community the governing equations and the relevant issues associated with the study of free surface flows with surfactants. In particular, we focus on the interactions between a high Reynolds number flow, interface deformation and surfactant distribution next to and at the water-air interface. In addition, recent progress is briefly reviewed. Then, the remaining outstanding issues to allow the understanding of the dynamics of nonlinear interactions between turbulent flow and surfactant structure and concentration at the air-water interface are outlined.
Style APA, Harvard, Vancouver, ISO itp.
17

Takamure, K., i T. Uchiyama. "Air–water interface dynamics and energy transition in air of a sphere passed vertically upward through the interface". Experimental Thermal and Fluid Science 118 (październik 2020): 110167. http://dx.doi.org/10.1016/j.expthermflusci.2020.110167.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Wickman, H. Hollis, i Julius N. Korley. "Colloid crystal self-organization and dynamics at the air/water interface". Nature 393, nr 6684 (czerwiec 1998): 445–47. http://dx.doi.org/10.1038/30930.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Bianchi, Silvio, Filippo Saglimbeni, Giacomo Frangipane, Dario Dell'Arciprete i Roberto Di Leonardo. "3D dynamics of bacteria wall entrapment at a water–air interface". Soft Matter 15, nr 16 (2019): 3397–406. http://dx.doi.org/10.1039/c9sm00077a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Ahmad, Farhan, i Kwanwoo Shin. "Dendrimers at the air-water interface: surface dynamics and molecular ordering". International Journal of Nanotechnology 3, nr 2/3 (2006): 353. http://dx.doi.org/10.1504/ijnt.2006.009588.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Nowakowski, Paweł J., David A. Woods i Jan R. R. Verlet. "Charge Transfer to Solvent Dynamics at the Ambient Water/Air Interface". Journal of Physical Chemistry Letters 7, nr 20 (3.10.2016): 4079–85. http://dx.doi.org/10.1021/acs.jpclett.6b01985.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

ANDOH, Yoshimichi, i Kenji YASUOKA. "Investigation of the surfactant-molecule dynamics near the air/water interface". Proceedings of The Computational Mechanics Conference 2003.16 (2003): 203–4. http://dx.doi.org/10.1299/jsmecmd.2003.16.203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Gang, Hong-Ze, Jin-Feng Liu i Bo-Zhong Mu. "Molecular Dynamics Study of Surfactin Monolayer at the Air/Water Interface". Journal of Physical Chemistry B 115, nr 44 (10.11.2011): 12770–77. http://dx.doi.org/10.1021/jp206350j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Akella, V. S., Dhiraj K. Singh, Shreyas Mandre i M. M. Bandi. "Dynamics of a camphoric acid boat at the air–water interface". Physics Letters A 382, nr 17 (maj 2018): 1176–80. http://dx.doi.org/10.1016/j.physleta.2018.02.026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Pérez, Oscar E., Cecilio Carrera Sánchez, Ana M. R. Pilosof i Juan M. Rodríguez Patino. "Dynamics of adsorption of hydroxypropyl methylcellulose at the air–water interface". Food Hydrocolloids 22, nr 3 (maj 2008): 387–402. http://dx.doi.org/10.1016/j.foodhyd.2006.12.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Goggin, David M., i Joseph R. Samaniuk. "Dynamics of pristine graphite and graphene at an air-water interface". AIChE Journal 64, nr 8 (16.02.2018): 3177–87. http://dx.doi.org/10.1002/aic.16112.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Creazzo, Fabrizio, Simone Pezzotti, Sana Bougueroua, Alessandra Serva, Jiri Sponer, Franz Saija, Giuseppe Cassone i Marie-Pierre Gaigeot. "Enhanced conductivity of water at the electrified air–water interface: a DFT-MD characterization". Physical Chemistry Chemical Physics 22, nr 19 (2020): 10438–46. http://dx.doi.org/10.1039/c9cp06970d.

Pełny tekst źródła
Streszczenie:
DFT-based molecular dynamics simulations of the electrified air–liquid water interface are presented, where a homogeneous field is applied parallel to the surface plane (i.e. parallel to the 2D-HBonded-Network/2DN).
Style APA, Harvard, Vancouver, ISO itp.
28

Tang, Xionghui, i Yiou Liu. "Numerical simulation of gas-liquid interface in high-pressure water-blowing chamber". Journal of Physics: Conference Series 2441, nr 1 (1.03.2023): 012062. http://dx.doi.org/10.1088/1742-6596/2441/1/012062.

Pełny tekst źródła
Streszczenie:
Abstract The load on the water chamber increases with the pressure level and blowing rate of the system, and the demand for theoretical and experimental studies related to the quantitative parameters of water chamber blowing safety becomes more and more frequent. In this paper, CFD computational fluid dynamics method is used to carry out the dynamics modeling and simulation of three-dimensional non-constant gas-liquid two-phase internal flow field of the test water chamber and the actual water chamber blowdown process to obtain the dynamic distribution of flow parameters in the water chamber under different working conditions. The results found that to ensure the safety of the water tank, as long as to ensure that the high-pressure air into the water tank at the end of the first two stages, the “bubble” movement process always does not interfere with the bulkhead, you can ensure that the high-pressure air in the water tank in the free expansion and gravity floating state, the water tank pressure will be only slightly higher than “gas - water cross-section” of the static pressure, at this moment the water chamber safety.
Style APA, Harvard, Vancouver, ISO itp.
29

Bickel, Thomas. "Spreading dynamics of reactive surfactants driven by Marangoni convection". Soft Matter 15, nr 18 (2019): 3644–48. http://dx.doi.org/10.1039/c8sm02641f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Kumar, Manoj, i Joseph S. Francisco. "Ion pair particles at the air–water interface". Proceedings of the National Academy of Sciences 114, nr 47 (6.11.2017): 12401–6. http://dx.doi.org/10.1073/pnas.1709118114.

Pełny tekst źródła
Streszczenie:
Although the role of methanesulfonic acid (HMSA) in particle formation in the gas phase has been extensively studied, the details of the HMSA-induced ion pair particle formation at the air–water interface are yet to be examined. In this work, we have performed Born–Oppenheimer molecular dynamics simulations and density functional theory calculations to investigate the ion pair particle formation from HMSA and (R1)(R2)NH (for NH3, R1= R2= H; for CH3NH2, R1= H and R2= CH3; and for CH3NH2, R1= R2= CH3) at the air–water interface. The results show that, at the air–water interface, HMSA deprotonates within a few picoseconds and results in the formation of methanesulfonate ion (MSA−)⋅⋅H3O+ion pair. However, this ion pair decomposes immediately, explaining why HMSA and water alone are not sufficient for forming stable particles in atmosphere. Interestingly, the particle formation from the gas-phase hydrogen-bonded complexes of HMSA with (R1)(R2)NH on the water droplet is observed with a few femtoseconds, suggesting a mechanism for the gas to particle conversion in aqueous environments. The reaction involves a direct proton transfer between HMSA and (R1)(R2)NH, and the resulting MSA−⋅⋅(R1)(R2)NH2+complex is bound by one to four interfacial water molecules. The mechanistic insights gained from this study may serve as useful leads for understanding about the ion pair particle formation from other precursors in forested and polluted urban environments.
Style APA, Harvard, Vancouver, ISO itp.
31

Han, Fei, Qian Shen, Wei Zheng, Jingnan Zuo, Xinyu Zhu, Jingwen Li, Chao Peng, Bin Li i Yijie Chen. "The Conformational Changes of Bovine Serum Albumin at the Air/Water Interface: HDX-MS and Interfacial Rheology Analysis". Foods 12, nr 8 (10.04.2023): 1601. http://dx.doi.org/10.3390/foods12081601.

Pełny tekst źródła
Streszczenie:
The characterization and dynamics of protein structures upon adsorption at the air/water interface are important for understanding the mechanism of the foamability of proteins. Hydrogen–deuterium exchange, coupled with mass spectrometry (HDX-MS), is an advantageous technique for providing conformational information for proteins. In this work, an air/water interface, HDX-MS, for the adsorbed proteins at the interface was developed. The model protein bovine serum albumin (BSA) was deuterium-labeled at the air/water interface in situ for different predetermined times (10 min and 4 h), and then the resulting mass shifts were analyzed by MS. The results indicated that peptides 54–63, 227–236, and 355–366 of BSA might be involved in the adsorption to the air/water interface. Moreover, the residues L55, H63, R232, A233, L234, K235, A236, R359, and V366 of these peptides might interact with the air/water interface through hydrophobic and electrostatic interactions. Meanwhile, the results showed that conformational changes of peptides 54–63, 227–236, and 355–366 could lead to structural changes in their surrounding peptides, 204–208 and 349–354, which could cause the reduction of the content of helical structures in the rearrangement process of interfacial proteins. Therefore, our air/water interface HDX-MS method could provide new and meaningful insights into the spatial conformational changes of proteins at the air/water interface, which could help us to further understand the mechanism of protein foaming properties.
Style APA, Harvard, Vancouver, ISO itp.
32

Rufeil-Fiori, Elena, i Adolfo J. Banchio. "Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence". Soft Matter 14, nr 10 (2018): 1870–78. http://dx.doi.org/10.1039/c7sm02099f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Phan, C. M., H. Nakahara, O. Shibata, Y. Moroi, C. V. Nguyen i D. Chaudhary. "Surface Potential of MIBC at Air/Water Interface: a Molecular Dynamics Study". e-Journal of Surface Science and Nanotechnology 10 (2012): 437–40. http://dx.doi.org/10.1380/ejssnt.2012.437.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Kawaguchi, Masami, Bryan B. Sauer i Hyuk Yu. "Polymeric monolayer dynamics at the air/water interface by surface light scattering". Macromolecules 22, nr 4 (lipiec 1989): 1735–43. http://dx.doi.org/10.1021/ma00194a039.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Yoneya, Makoto, Keiko M. Aoki, Yuka Tabe i Hiroshi Yokoyama. "MOLECULAR DYNAMICS SIMULATIONS OF LIQUID CRYSTAL MOLECULES AT AN AIR-WATER INTERFACE". Molecular Crystals and Liquid Crystals 413, nr 1 (styczeń 2004): 161–69. http://dx.doi.org/10.1080/15421400490437196.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Stocco, A., K. Tauer, S. Pispas i R. Sigel. "Dynamics at the air-water interface revealed by evanescent wave light scattering". European Physical Journal E 29, nr 1 (maj 2009): 95–105. http://dx.doi.org/10.1140/epje/i2009-10455-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Zimdars, David, i Kenneth B. Eisenthal. "Effect of Solute Orientation on Solvation Dynamics at the Air/Water Interface". Journal of Physical Chemistry A 103, nr 49 (grudzień 1999): 10567–70. http://dx.doi.org/10.1021/jp992746t.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Jiang, Q., i Y. C. Chiew. "Dynamics of adsorption and desorption of proteins at an air/water interface". Colloids and Surfaces B: Biointerfaces 20, nr 4 (kwiecień 2001): 303–8. http://dx.doi.org/10.1016/s0927-7765(00)00154-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Svitova, T. F., M. J. Wetherbee i C. J. Radke. "Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry". Journal of Colloid and Interface Science 261, nr 1 (maj 2003): 170–79. http://dx.doi.org/10.1016/s0021-9797(02)00241-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Tarek, Mounir, Douglas J. Tobias i Michael L. Klein. "Molecular Dynamics Simulation of Tetradecyltrimethylammonium Bromide Monolayers at the Air/Water Interface". Journal of Physical Chemistry 99, nr 5 (luty 1995): 1393–402. http://dx.doi.org/10.1021/j100005a006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Chang, C. H., N. H. L. Wang i E. I. Franses. "Adsorption dynamics of single and binary surfactants at the air/water interface". Colloids and Surfaces 62, nr 4 (marzec 1992): 321–32. http://dx.doi.org/10.1016/0166-6622(92)80058-a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Kim, Junhyung, i Dongil Lee. "Electron Hopping Dynamics in Au38Nanoparticle Langmuir Monolayers at the Air/Water Interface". Journal of the American Chemical Society 128, nr 14 (kwiecień 2006): 4518–19. http://dx.doi.org/10.1021/ja058395f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Liu, Bin, Matthew I. Hoopes i Mikko Karttunen. "Molecular Dynamics Simulations of DPPC/CTAB Monolayers at the Air/Water Interface". Journal of Physical Chemistry B 118, nr 40 (26.09.2014): 11723–37. http://dx.doi.org/10.1021/jp5050892.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Deshmukh, Omkar S., Armando Maestro, Michel H. G. Duits, Dirk van den Ende, Martien Cohen Stuart i Frieder Mugele. "Equation of state and adsorption dynamics of soft microgel particles at an air–water interface". Soft Matter 10, nr 36 (2014): 7045–50. http://dx.doi.org/10.1039/c4sm00566j.

Pełny tekst źródła
Streszczenie:
PNIPAM microgel particles deform substantially upon adsorbing onto an air–water interface. The adsorption is initially controlled by the diffusion of particles to the interface followed by a slow exponential relaxation at long times.
Style APA, Harvard, Vancouver, ISO itp.
45

Galib, Mirza, i Gabriel Hanna. "Molecular dynamics simulations predict an accelerated dissociation of H2CO3 at the air–water interface". Phys. Chem. Chem. Phys. 16, nr 46 (2014): 25573–82. http://dx.doi.org/10.1039/c4cp03302g.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Li, Yunzhi, Yaoyao Wei, Xia Leng, Guokui Liu, Qiying Xia i Honglei Wang. "Molecular dynamics simulations on fullerene surfactants with different charges at the air–water interface". Physical Chemistry Chemical Physics 22, nr 28 (2020): 16353–58. http://dx.doi.org/10.1039/d0cp01979h.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Bonn, Mischa, Cho-Shuen Hsieh, Lukasz Piatkowski, Huib J. Bakker i Zhen Zhang. "Ultrafast dynamics of water at the water-air interface studied by femtosecond surface vibrational spectroscopy". EPJ Web of Conferences 41 (2013): 06009. http://dx.doi.org/10.1051/epjconf/20134106009.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Krägel, J., M. O'Neill, A. V. Makievski, M. Michel, M. E. Leser i R. Miller. "Dynamics of mixed protein–surfactant layers adsorbed at the water/air and water/oil interface". Colloids and Surfaces B: Biointerfaces 31, nr 1-4 (wrzesień 2003): 107–14. http://dx.doi.org/10.1016/s0927-7765(03)00047-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Khatib, Rémi, Taisuke Hasegawa, Marialore Sulpizi, Ellen H. G. Backus, Mischa Bonn i Yuki Nagata. "Molecular Dynamics Simulations of SFG Librational Modes Spectra of Water at the Water–Air Interface". Journal of Physical Chemistry C 120, nr 33 (17.08.2016): 18665–73. http://dx.doi.org/10.1021/acs.jpcc.6b06371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Murdachaew, Garold, Gilbert M. Nathanson, R. Benny Gerber i Lauri Halonen. "Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations". Physical Chemistry Chemical Physics 18, nr 43 (2016): 29756–70. http://dx.doi.org/10.1039/c6cp06071d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii