Artykuły w czasopismach na temat „Air quality-Artificial intelligence”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Air quality-Artificial intelligence”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Schultz, Martin. "Artificial intelligence for air quality". Project Repository Journal 12, nr 1 (31.01.2022): 70–73. http://dx.doi.org/10.54050/prj1218384.
Pełny tekst źródłaMiguel, B. J., C. M. Guadalupe, B. F. Santiago, A. Diego i V. Antonio. "Air Quality Index Estimation Applying Artificial Intelligence". Epidemiology 18, Suppl (wrzesień 2007): S60. http://dx.doi.org/10.1097/01.ede.0000276612.47104.00.
Pełny tekst źródłaKulikova, Elena, Vladimir Sulimin i Vladislav Shvedov. "Artificial intelligence for ambient air quality control". E3S Web of Conferences 419 (2023): 03011. http://dx.doi.org/10.1051/e3sconf/202341903011.
Pełny tekst źródłaNeo, En Xin, Khairunnisa Hasikin, Khin Wee Lai, Mohd Istajib Mokhtar, Muhammad Mokhzaini Azizan, Hanee Farzana Hizaddin, Sarah Abdul Razak i Yanto. "Artificial intelligence-assisted air quality monitoring for smart city management". PeerJ Computer Science 9 (24.05.2023): e1306. http://dx.doi.org/10.7717/peerj-cs.1306.
Pełny tekst źródłaP, ShreeNandhini, Amudha P i Sivakumari S. "Comparative Analysis of Air Quality Prediction Using Artificial Intelligence Techniques". ECS Transactions 107, nr 1 (24.04.2022): 6059–66. http://dx.doi.org/10.1149/10701.6059ecst.
Pełny tekst źródłaMo, Zhang, Li i Qu. "A Novel Air Quality Early-Warning System Based on Artificial Intelligence". International Journal of Environmental Research and Public Health 16, nr 19 (20.09.2019): 3505. http://dx.doi.org/10.3390/ijerph16193505.
Pełny tekst źródłaSchürholz, Daniel, Sylvain Kubler i Arkady Zaslavsky. "Artificial intelligence-enabled context-aware air quality prediction for smart cities". Journal of Cleaner Production 271 (październik 2020): 121941. http://dx.doi.org/10.1016/j.jclepro.2020.121941.
Pełny tekst źródłaAli, Ahmad Najim, Ghalia Nassreddine i Joumana Younis. "Air Quality prediction using Multinomial Logistic Regression". Journal of Computer Science and Technology Studies 4, nr 2 (29.09.2022): 71–78. http://dx.doi.org/10.32996/jcsts.2022.4.2.9.
Pełny tekst źródłaLi, Yanzhao, Ju-e. Guo, Shaolong Sun, Jianing Li, Shouyang Wang i Chengyuan Zhang. "Air quality forecasting with artificial intelligence techniques: A scientometric and content analysis". Environmental Modelling & Software 149 (marzec 2022): 105329. http://dx.doi.org/10.1016/j.envsoft.2022.105329.
Pełny tekst źródłaRahardja, Untung, Qurotul Aini, Po Abas Sunarya, Danny Manongga i Dwi Julianingsih. "The Use of TensorFlow in Analyzing Air Quality Artificial Intelligence Predictions PM2.5". Aptisi Transactions on Technopreneurship (ATT) 4, nr 3 (31.10.2022): 313–24. http://dx.doi.org/10.34306/att.v4i3.282.
Pełny tekst źródłaCiric, Ivan, Zarko Cojbasic, Vlastimir Nikolic, Predrag Zivkovic i Mladen Tomic. "Air quality estimation by computational intelligence methodologies". Thermal Science 16, suppl. 2 (2012): 493–504. http://dx.doi.org/10.2298/tsci120503186c.
Pełny tekst źródłaFaleh, Rabeb, Souhir Bedoui i Abdennaceur Kachouri. "Review on Smart Electronic Nose Coupled with Artificial Intelligence for Air Quality Monitoring". Advances in Science, Technology and Engineering Systems Journal 5, nr 2 (2020): 739–47. http://dx.doi.org/10.25046/aj050292.
Pełny tekst źródłaYounes, Mohammad K., Ghassan Sulaiman i Ali Al-Mashni. "Integration of Traffic Management and an Artificial Intelligence to Evaluate Urban Air Quality". Asian Journal of Atmospheric Environment 14, nr 3 (30.09.2020): 225–35. http://dx.doi.org/10.5572/ajae.2020.14.3.225.
Pełny tekst źródłaZhang, Yongli. "Seasonal Disparity in the Effect of Meteorological Conditions on Air Quality in China Based on Artificial Intelligence". Atmosphere 12, nr 12 (13.12.2021): 1670. http://dx.doi.org/10.3390/atmos12121670.
Pełny tekst źródłaDamanhuri, Endang Agus, Yusni Ikhwan Siregar i Elfizar Elfizar. "PENERAPAN MODEL BERBASIS ARTIFICIAL NEURAL NETWORK UNTUK MEMPREDIKSI KUALITAS AIR DI SUNGAI SUBAYANG KABUPATEN KAMPAR". Jurnal Ilmu Lingkungan 14, nr 1 (18.03.2020): 18. http://dx.doi.org/10.31258/jil.14.1.p.18-28.
Pełny tekst źródłaMileva-Karova, Milena Nikolova, Tsvetelin Angelov Petrov, Kristian Ivanov Ivanov, Nayden Nikolaev Nikolov i Tony Angelov Gadzhev. "System for assessment and forecast of air quality in populated areas". ANNUAL JOURNAL OF TECHNICAL UNIVERSITY OF VARNA, BULGARIA 7, nr 1 (30.06.2023): 52–60. http://dx.doi.org/10.29114/ajtuv.vol7.iss1.267.
Pełny tekst źródłaPandey, Shirish, S. Hasan Saeed i N. R. Kidwai. "Simulation and optimization of genetic algorithm-artificial neural network based air quality estimator". Indonesian Journal of Electrical Engineering and Computer Science 19, nr 2 (1.08.2020): 775. http://dx.doi.org/10.11591/ijeecs.v19.i2.pp775-783.
Pełny tekst źródłaSafira, Aretha, L. M. Sarudi As., Afifa Puspitasari, Nur Mayke Eka Normasari i Achmad Pratama Rifai. "PENGEMBANGAN NEURAL NETWORK UNTUK PREDIKSI KUALITAS AIR". Jurnal Rekavasi 10, nr 2 (14.02.2023): 30–36. http://dx.doi.org/10.34151/rekavasi.v10i2.4014.
Pełny tekst źródłaSankar Ganesh, S., Pachaiyappan Arulmozhivarman i Rao Tatavarti. "Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models". Journal of Intelligent Systems 28, nr 5 (18.11.2017): 893–903. http://dx.doi.org/10.1515/jisys-2017-0277.
Pełny tekst źródłaPan, Zhengxiang, Han Yu, Chunyan Miao i Cyril Leung. "Crowdsensing Air Quality with Camera-Enabled Mobile Devices". Proceedings of the AAAI Conference on Artificial Intelligence 31, nr 2 (11.02.2017): 4728–33. http://dx.doi.org/10.1609/aaai.v31i2.19102.
Pełny tekst źródłaOh, Kyuetaek, Mintaek Yoo, Nayoung Jin, Jisu Ko, Jeonguk Seo, Hyojin Joo i Minsam Ko. "A Review of Deep Learning Applications for Railway Safety". Applied Sciences 12, nr 20 (19.10.2022): 10572. http://dx.doi.org/10.3390/app122010572.
Pełny tekst źródłaGulkari, Shruti S. "A Review on Advanced Home Automation System using GSM and AI". International Journal for Research in Applied Science and Engineering Technology 9, nr VI (10.06.2021): 459–61. http://dx.doi.org/10.22214/ijraset.2021.34882.
Pełny tekst źródłaJufriansah, Adi, Azmi Khusnani, Yudhiakto Pramudya, Nursina Sya’bania, Kristina Theresia Leto, Hamzarudin Hikmatiar i Sabarudin Saputra. "AI Big Data System to Predict Air Quality for Environmental Toxicology Monitoring". Journal of Novel Engineering Science and Technology 2, nr 01 (4.04.2023): 21–25. http://dx.doi.org/10.56741/jnest.v2i01.314.
Pełny tekst źródłaPiltan, Farzin, Mansour Bazregar, Marzieh Kamgari, Mojdeh Piran i Mehdi Akbari. "Quality Model and Artificial Intelligence Base Fuel Ratio Management with Applications to Automotive Engine". IAES International Journal of Artificial Intelligence (IJ-AI) 3, nr 1 (1.03.2014): 36. http://dx.doi.org/10.11591/ijai.v3.i1.pp36-48.
Pełny tekst źródłaAldakheel, Joud, Myriam Bahrar i Mohamed El Mankibi. "Indoor environmental quality evaluation of smart/artificial intelligence techniques in buildings – a review". E3S Web of Conferences 396 (2023): 01101. http://dx.doi.org/10.1051/e3sconf/202339601101.
Pełny tekst źródłaPetry, L., T. Meiers, D. Reuschenberg, S. Mirzavand Borujeni, J. Arndt, L. Odenthal, T. Erbertseder i in. "DESIGN AND RESULTS OF AN AI-BASED FORECASTING OF AIR POLLUTANTS FOR SMART CITIES". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences VIII-4/W1-2021 (3.09.2021): 89–96. http://dx.doi.org/10.5194/isprs-annals-viii-4-w1-2021-89-2021.
Pełny tekst źródłaNadiri, Ataallah, Marwa M. Hassan i Somayeh Asadi. "Supervised Intelligence Committee Machine to Evaluate Field Performance of Photocatalytic Asphalt Pavement for Ambient Air Purification". Transportation Research Record: Journal of the Transportation Research Board 2528, nr 1 (styczeń 2015): 96–105. http://dx.doi.org/10.3141/2528-11.
Pełny tekst źródłaFu, Leiming, Junlong Li i Yifei Chen. "An innovative decision making method for air quality monitoring based on big data-assisted artificial intelligence technique". Journal of Innovation & Knowledge 8, nr 2 (kwiecień 2023): 100294. http://dx.doi.org/10.1016/j.jik.2022.100294.
Pełny tekst źródłaYigitcanlar, Tan, i Federico Cugurullo. "The Sustainability of Artificial Intelligence: An Urbanistic Viewpoint from the Lens of Smart and Sustainable Cities". Sustainability 12, nr 20 (15.10.2020): 8548. http://dx.doi.org/10.3390/su12208548.
Pełny tekst źródłaSoares, Paulo Henrique, Johny Paulo Monteiro, Fernando José Gaioto, Luciano Ogiboski i Cid Marcos Gonçalves Andrade. "Use of Association Algorithms in Air Quality Monitoring". Atmosphere 14, nr 4 (30.03.2023): 648. http://dx.doi.org/10.3390/atmos14040648.
Pełny tekst źródłaShah, Sayed Khushal, Zeenat Tariq, Jeehwan Lee i Yugyung Lee. "Event-Driven Deep Learning for Edge Intelligence (EDL-EI)". Sensors 21, nr 18 (8.09.2021): 6023. http://dx.doi.org/10.3390/s21186023.
Pełny tekst źródłaAshikyan, Oganes, Donald Chan, Daniel S. Moore, Uma Thakur i Avneesh Chhabra. "Quality of Hand Radiograph Collimation Determined by Artificial Intelligence Algorithm Correlates with Radiograph Quality Scores Assigned by Radiologists". Radiation 1, nr 2 (8.04.2021): 116–22. http://dx.doi.org/10.3390/radiation1020010.
Pełny tekst źródłaArroyo, Patricia, Jesús Lozano i José Suárez. "Evolution of Wireless Sensor Network for Air Quality Measurements". Electronics 7, nr 12 (22.11.2018): 342. http://dx.doi.org/10.3390/electronics7120342.
Pełny tekst źródłaKrishnan, Srivatsan, Behzad Boroujerdian, William Fu, Aleksandra Faust i Vijay Janapa Reddi. "Air Learning: a deep reinforcement learning gym for autonomous aerial robot visual navigation". Machine Learning 110, nr 9 (7.07.2021): 2501–40. http://dx.doi.org/10.1007/s10994-021-06006-6.
Pełny tekst źródłaDemmler, Joanne C., Ákos Gosztonyi, Yaxing Du, Matti Leinonen, Laura Ruotsalainen, Leena Järvi i Sanna Ala-Mantila. "A novel approach of creating sustainable urban planning solutions that optimise the local air quality and environmental equity in Helsinki, Finland: The CouSCOUS study protocol". PLOS ONE 16, nr 12 (2.12.2021): e0260009. http://dx.doi.org/10.1371/journal.pone.0260009.
Pełny tekst źródłaLiu, Ruifang, Lixia Pang, Yidian Yang, Yuxing Gao, Bei Gao, Feng Liu i Li Wang. "Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network". Sustainability 15, nr 5 (3.03.2023): 4531. http://dx.doi.org/10.3390/su15054531.
Pełny tekst źródłaSpatola, Nicolas, i Karl F. Macdorman. "Why Real Citizens Would Turn to Artificial Leaders". Digital Government: Research and Practice 2, nr 3 (lipiec 2021): 1–24. http://dx.doi.org/10.1145/3447954.
Pełny tekst źródłaArroyo, Patricia, José Herrero, José Suárez i Jesús Lozano. "Wireless Sensor Network Combined with Cloud Computing for Air Quality Monitoring". Sensors 19, nr 3 (8.02.2019): 691. http://dx.doi.org/10.3390/s19030691.
Pełny tekst źródłaBlagovechshenskiy, Viktor, Akhmetkal Medeu, Tamara Gulyayeva, Vitaliy Zhdanov, Sandugash Ranova, Aidana Kamalbekova i Ulzhan Aldabergen. "Application of Artificial Intelligence in the Assessment and Forecast of Avalanche Danger in the Ile Alatau Ridge". Water 15, nr 7 (6.04.2023): 1438. http://dx.doi.org/10.3390/w15071438.
Pełny tekst źródłaPrzybył, Krzysztof, i Krzysztof Koszela. "Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying". Applied Sciences 13, nr 5 (25.02.2023): 2965. http://dx.doi.org/10.3390/app13052965.
Pełny tekst źródłaVeiga, Tiago, Arne Munch-Ellingsen, Christoforos Papastergiopoulos, Dimitrios Tzovaras, Ilias Kalamaras, Kerstin Bach, Konstantinos Votis i Sigmund Akselsen. "From a Low-Cost Air Quality Sensor Network to Decision Support Services: Steps towards Data Calibration and Service Development". Sensors 21, nr 9 (5.05.2021): 3190. http://dx.doi.org/10.3390/s21093190.
Pełny tekst źródłaHong, Hyunsu, IlHwan Choi, Hyungjin Jeon, Yumi Kim, Jae-Bum Lee, Cheong Hee Park i Hyeon Soo Kim. "An Air Pollutants Prediction Method Integrating Numerical Models and Artificial Intelligence Models Targeting the Area around Busan Port in Korea". Atmosphere 13, nr 9 (9.09.2022): 1462. http://dx.doi.org/10.3390/atmos13091462.
Pełny tekst źródłaEt. al., D. Saravanan ,. "Predict and Measure Air Quality Monitoring System Using Machine Learning". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 2 (10.04.2021): 2562–71. http://dx.doi.org/10.17762/turcomat.v12i2.2217.
Pełny tekst źródłaShan, Yulong, Ren Zhang, Ismail Gultepe, Yaojia Zhang, Ming Li i Yangjun Wang. "Gridded Visibility Products over Marine Environments Based on Artificial Neural Network Analysis". Applied Sciences 9, nr 21 (23.10.2019): 4487. http://dx.doi.org/10.3390/app9214487.
Pełny tekst źródłaČorný, Ivan. "Possibilities of Application of Computational Intelligence in Monitoring of Heat Production and Supply". Key Engineering Materials 669 (październik 2015): 560–67. http://dx.doi.org/10.4028/www.scientific.net/kem.669.560.
Pełny tekst źródłaSobrino García, Itziar. "Innovative cities for E-governments. Artificial Intelligence initiatives in the public sector and the conflicts with privacy". Revista de Direito Administrativo e Infraestrutura | RDAI 6, nr 21 (29.05.2022): 215–30. http://dx.doi.org/10.48143/rdai.21.isobrinho.
Pełny tekst źródłaMarzouk, Mohamed, i Mohamed Atef. "Assessment of Indoor Air Quality in Academic Buildings Using IoT and Deep Learning". Sustainability 14, nr 12 (8.06.2022): 7015. http://dx.doi.org/10.3390/su14127015.
Pełny tekst źródłaZhu, Yingbo, Shahriar Abdullah Al-Ahmed, Muhammad Zeeshan Shakir i Joanna Isabelle Olszewska. "LSTM-Based IoT-Enabled CO2 Steady-State Forecasting for Indoor Air Quality Monitoring". Electronics 12, nr 1 (27.12.2022): 107. http://dx.doi.org/10.3390/electronics12010107.
Pełny tekst źródłaAryal, Yog. "Application of Artificial Intelligence Models for Aeolian Dust Prediction at Different Temporal Scales: A Case with Limited Climatic Data". AI 3, nr 3 (22.08.2022): 707–18. http://dx.doi.org/10.3390/ai3030041.
Pełny tekst źródłaSpyrou, Evangelos D., Chrysostomos Stylios i Ioannis Tsoulos. "Classification of CO Environmental Parameter for Air Pollution Monitoring with Grammatical Evolution". Algorithms 16, nr 6 (15.06.2023): 300. http://dx.doi.org/10.3390/a16060300.
Pełny tekst źródła