Gotowa bibliografia na temat „Air in liquid compound droplets”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Air in liquid compound droplets”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Air in liquid compound droplets"
Mota, Alisson A. B., Ulisses R. Antuniassi, Rodolfo G. Chechetto, Rone B. de Oliveira i Anne C. A. e. Silva. "Effect of adjuvants on the amount of air included in droplets generated by spray nozzles". Engenharia Agrícola 33, nr 6 (grudzień 2013): 1281–88. http://dx.doi.org/10.1590/s0100-69162013000600020.
Pełny tekst źródłaShinjo, J., J. Xia, L. C. Ganippa i A. Megaritis. "Puffing-enhanced fuel/air mixing of an evaporating -decane/ethanol emulsion droplet and a droplet group under convective heating". Journal of Fluid Mechanics 793 (18.03.2016): 444–76. http://dx.doi.org/10.1017/jfm.2016.130.
Pełny tekst źródłaYasuda, Naohiro, Koji Yamamura i Yasuhiko H. Mori. "Impingement of liquid jets at atmospheric and elevated pressures: an observational study using paired water jets or water and methylcyclohexane jets". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, nr 2124 (9.06.2010): 3501–26. http://dx.doi.org/10.1098/rspa.2010.0144.
Pełny tekst źródłaShibaev, P. V., M. Wenzlick, J. Murray, A. Tantillo i J. Howard-Jennings. "Rebirth of Liquid Crystals for Sensoric Applications: Environmental and Gas Sensors". Advances in Condensed Matter Physics 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/729186.
Pełny tekst źródłaDupuy, R., P. Laj i K. Sellegri. "Cn to ccn relationships and cloud microphysical properties in different air masses at a free tropospheric site". Atmospheric Chemistry and Physics Discussions 6, nr 1 (1.02.2006): 879–98. http://dx.doi.org/10.5194/acpd-6-879-2006.
Pełny tekst źródłaKim, Jinhong, i Sung-Jin Park. "In-Situ Photo-Dissociation and Polymerization of Carbon Disulfide with Vacuum Ultraviolet Microplasma Flat Lamp for Organic Thin Films". Applied Sciences 11, nr 6 (15.03.2021): 2597. http://dx.doi.org/10.3390/app11062597.
Pełny tekst źródłaHuang, Shuquan, Jessica Connolly, Andrei Khlystov i Richard B. Fair. "Digital Microfluidics for the Detection of Selected Inorganic Ions in Aerosols". Sensors 20, nr 5 (27.02.2020): 1281. http://dx.doi.org/10.3390/s20051281.
Pełny tekst źródłaZamora, Rosendo, Juan Martínez-Pastor i Félix Faura. "Thermal, Viscoelastic and Surface Properties of Oxidized Field’s Metal for Additive Microfabrication". Materials 14, nr 23 (2.12.2021): 7392. http://dx.doi.org/10.3390/ma14237392.
Pełny tekst źródłaSimon, Julianna C., Oleg A. Sapozhnikov, Vera A. Khokhlova, Lawrence A. Crum i Michael R. Bailey. "Ultrasonic atomization of liquids in drop-chain acoustic fountains". Journal of Fluid Mechanics 766 (2.02.2015): 129–46. http://dx.doi.org/10.1017/jfm.2015.11.
Pełny tekst źródłaZhao, Ning-Ning, Xin-Yu Xiao, Feng-Xian Fan i Ming-Xu Su. "Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method". Acta Physica Sinica 71, nr 7 (2022): 074303. http://dx.doi.org/10.7498/aps.71.20211869.
Pełny tekst źródłaRozprawy doktorskie na temat "Air in liquid compound droplets"
Wang, Miao. "Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC080.
Pełny tekst źródłaVolatile Organic Compounds (VOC), including saturated, unsaturated, and other substituted hydrocarbons, play a major role in atmospheric chemistry. They are primarily emitted by anthropogenic and biogenic sources into the atmosphere; they are also transformed in situ by chemical reactions, and more specifically, by photo-oxidation leading to the formation of ozone (O3) and Secondary Organic Aerosol (SOA). By altering the organic fraction of aerosol particles, VOC modify the Earth’s radiative balance through a direct effect (absorption and scattering of solar radiation) or through indirect effect by altering cloud microphysical properties. They also present a direct effect on human health and on the environment.During their atmospheric transport, VOC and their oxidation products, Oxygenated Volatile Organic Compounds (OVOC), may partition between the gaseous and aqueous phases depending on their solubility. Clouds have a significant effect on tropospheric chemistry by redistributing trace constituents between phases and by providing liquid water in which aqueous phase chemistry can take place. Indeed, during the cloud lifetime, chemical compounds and particularly VOC are efficiently transformed since clouds favor the development of complex “multiphase chemistry”. The latter presents several particularities. First, photochemical processes inside the droplets are important in the transformation of chemical compounds. Second, aqueous chemical reactions are efficient and can be faster than the equivalent reactions in the gas phase. This can be related to the presence of strong oxidants such as hydrogen peroxide H2O2 or Transition Metal Ions (TMI), which participate in the formation of radicals such as hydroxyl radicals (HO•) that favor oxidation processes. Furthermore, the presence of viable microorganisms has been highlighted and shown to participate in transformations of the chemical species. Finally, these transformations in clouds are also strongly perturbed by microphysical processes that control formation, lifetime and dissipation of clouds. These processes will redistribute the chemical species between the different reservoirs (cloud water, rain, particle phase, gaseous phase, and solid ice phase). In this frame, the transformation of VOC in the cloud medium can lead to the production of secondary compounds contributing to SOA formation, reported as “cloud aqSOA”. This secondary organic aerosol mass produced during the cloud lifetime could explain in part the ubiquity of small dicarboxylic and keto acids and high molecular-weight compounds measured in aerosol particles, fog water, cloud water, or rainwater at many locations, as they have neither substantial direct emission sources nor any identified important source in the gas phase. This aqSOA mass stays in the particle phase after cloud evaporation implying a modification of the (micro)physical and chemical properties of aerosol particles (particle size, chemical composition, morphology). This leads to modifications of their impacts on consecutive cloud or fog cycles (aerosol indirect effects) and of their interactions with incoming radiation by scattering/absorbing (aerosol direct effect). (...)
Wiese, Jessica A. "Determination of benzotriazole and analog compounds by liquid chromatography-mass spectrometry in surface runoff water samples from Wilmington Air Park". Wright State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=wright1576573860964496.
Pełny tekst źródłaGunawardana, Wahalathanthriga Dhanapala. "A study of the efficiency of recovery of micron size droplets from high velocity air-liquid mixtures in a centrifugal field, employing a metal and plastic porous disc". Thesis, University of East London, 2002. http://roar.uel.ac.uk/3871/.
Pełny tekst źródłaBois, André. "Proprietes dynamiques des monocouches de molecules amphiphiles a l'interface eau-air". Aix-Marseille 1, 1987. http://www.theses.fr/1987AIX11080.
Pełny tekst źródłaMalý, Milan. "Internal Flow of Spill-Return Pressure-Swirl Atomizers". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-437981.
Pełny tekst źródłaJadaud, Philippe. "Separation d'hydrocarbures polynucleaires aromatiques par chromatographie en phase liquide". Paris 6, 1987. http://www.theses.fr/1987PA066442.
Pełny tekst źródłaNaidu, Ponnana Deekshith. "Classical Approach to Understanding the Impact Dynamics of Hollow Droplets". Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5914.
Pełny tekst źródłayen-wen, Chen, i 陳彥文. "Experiment and Analysis of the Drag Force of Freely-Falling Liquid Droplets in Air". Thesis, 2002. http://ndltd.ncl.edu.tw/handle/61478820771518499845.
Pełny tekst źródła國立臺灣大學
機械工程學研究所
90
In this study we investigated the effect of freely-falling droplets on drag force. A single stream of mono-sized stable droplets were generated by piezo-electric transducer and fell into quiescent surrounding air, then we recorded the trajectory of droplets by CCD camera. The species of droplets included water, hexadecane and heptane. By measuring the velocity and diameter of droplet with time, we got the acceleration profile of droplets and the drag force of droplet along the path. Our experiments included two parts. One was the effect of acceleration and properties on the drag coefficient in isolated droplet;the other was the influence of droplet spacing on the drag coefficient in steady, monodisperse droplet stream. We then tried to nondimensionalize the experiment data as CD, Re, Ac, and S/d ratio. The range of Reynolds numbers were from 5 to 200 and experimental uncertainties were typically less than 5 percent.
Roy, Durbar. "Experimental and Theoretical Insights into Impact Phenomena of Small Scale Liquid Interfacial Systems". Thesis, 2023. https://etd.iisc.ac.in/handle/2005/6128.
Pełny tekst źródłaCzęści książek na temat "Air in liquid compound droplets"
Holló, G., Á. Leelossy, R. Tóth i I. Lagzi. "Chapter 7. Tactic Droplets at the Liquid–Air Interface". W Theoretical and Computational Chemistry Series, 167–81. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781788013499-00167.
Pełny tekst źródłaMutenhabundo, Winnie, Tawanda Mushiri, Timothy Gutu i Patson Zvandasara. "Liquid Desiccant Dehumidification Systems: Jet Cross-Talking Effect in Multi-electrosprays". W Lecture Notes in Mechanical Engineering, 258–65. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_29.
Pełny tekst źródłaEckhoff, Rolf K. "Explosions of Clouds of Combustible Liquid Droplets in Air". W Explosion Hazards in the Process Industries, 209–32. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-803273-2.00005-0.
Pełny tekst źródłaEckhoff, Rolf K. "Explosions in Clouds of Liquid Droplets in Air (Spray/Mist)". W Explosion Hazards in the Process Industries, 149–73. Elsevier, 2005. http://dx.doi.org/10.1016/b978-0-9765113-4-2.50008-7.
Pełny tekst źródłaWhiteman, C. David. "Air Pollution Dispersion". W Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0021.
Pełny tekst źródłaMishra, Loveneet, Usha Chauhan, S. P. S. Chauhan i Harshit Singh. "Air Pollution Effects on the Habitat of Insects and Strategic Control to Improve Productivity". W Advances in Electronic Government, Digital Divide, and Regional Development, 216–27. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-6418-2.ch012.
Pełny tekst źródłaBrendler Goettems Fiorin, Pauline, Mirna Stela Ludwig, Matias Nunes Frizzo i Thiago Gomes Heck. "Environmental Particulate Air Pollution Exposure and the Oxidative Stress Responses: A Brief Review of the Impact on the Organism and Animal Models of Research". W Reactive Oxygen Species [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.101394.
Pełny tekst źródłaSchumann, Ulrich. "Contrail Cirrus". W Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0015.
Pełny tekst źródłaWhiteman, C. David. "Precipitation". W Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0015.
Pełny tekst źródłaFawcett, W. Ronald. "Liquids and Solutions at Interfaces". W Liquids, Solutions, and Interfaces. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195094329.003.0012.
Pełny tekst źródłaStreszczenia konferencji na temat "Air in liquid compound droplets"
Nakao, Yasuhiro, Naoki Horiguchi, Hiroyuki Yoshida, Tetsuya Kanagawa, Akiko Kaneko i Yutaka Abe. "Measurement of Flow Rate of Droplets and Liquid Film in Venturi Scrubber". W 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60641.
Pełny tekst źródłaWei, Sheng, Brandon Sforzo i Jerry Seitzman. "Fuel Composition Effects on Forced Ignition of Liquid Fuel Sprays". W ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-77196.
Pełny tekst źródłaPonticaud, C., A. Grimaud, A. Denoirjean, P. Lefort i P. Fauchais. "Atmospheric Plasma Spraying of Ti Particles — In-Flight Particle Reactivity — Coating Properties". W ITSC2001, redaktorzy Christopher C. Berndt, Khiam A. Khor i Erich F. Lugscheider. ASM International, 2001. http://dx.doi.org/10.31399/asm.cp.itsc2001p0691.
Pełny tekst źródłaRahman, Mosfequr, Andrew Hudson, Gustavo Molina i Valentin Soloiu. "Numerical Analysis of Laminar Natural Convection in Rectangular Enclosures of Different Aspect Ratios With and Without Aerosol Nanofluid". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-65056.
Pełny tekst źródłaVoleník, K., B. Kolman, J. Dubský i P. Chráska. "In-Flight Behavior of Ni-Al Powder During Its Plasma Spraying". W ITSC2005, redaktor E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p1175.
Pełny tekst źródłaGordon, Robert, Christos Markides i Epaminondas Mastorakos. "Autoignition of Liquid Fuel Droplets in a Turbulent Cross-Flow of Air". W 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-794.
Pełny tekst źródłaLiu, L., Q. C. Bi, Victor I. Terekhov, Nikolay E. Shishkin, Liejin Guo, D. D. Joseph, Y. Matsumoto, Y. Sommerfeld i Yueshe Wang. "Experimental Investigation Evaporation of Liquid Mixture Droplets during Depressurization into Air Stream". W THE 6TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION. AIP, 2010. http://dx.doi.org/10.1063/1.3366370.
Pełny tekst źródłaPalaniappan, D. "Viscous Flows Involving a Liquid-Vapor Compound Droplet". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24942.
Pełny tekst źródłaChen, Morgan J., i Seyed A. Tabatabaei. "Broadband, Thin-Film, Liquid Crystal Polymer Air-Cavity Quad Flat No-Lead (QFN) Package". W 2009 Annual IEEE Compound Semiconductor Integrated Circuit Symposium. IEEE, 2009. http://dx.doi.org/10.1109/csics.2009.5315596.
Pełny tekst źródłaArmstrong, Robert L., i A. Zardecki. "Diffusive and convective evaporation of irradiated droplets". W International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thi7.
Pełny tekst źródłaRaporty organizacyjne na temat "Air in liquid compound droplets"
Lawson. L51597 Feasibility Study of New Technology for Intake Air Filtration. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1989. http://dx.doi.org/10.55274/r0010105.
Pełny tekst źródła