Artykuły w czasopismach na temat „AIR COOLED BLAST”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „AIR COOLED BLAST”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Tole, Ilda, Magdalena Rajczakowska, Abeer Humad, Ankit Kothari i Andrzej Cwirzen. "Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag". Materials 13, nr 5 (4.03.2020): 1134. http://dx.doi.org/10.3390/ma13051134.
Pełny tekst źródłaRíos, José, Adelardo Vahí, Carlos Leiva, Antonio Martínez-De la Concha i Héctor Cifuentes. "Analysis of the Utilization of Air-Cooled Blast Furnace Slag as Industrial Waste Aggregates in Self-Compacting Concrete". Sustainability 11, nr 6 (21.03.2019): 1702. http://dx.doi.org/10.3390/su11061702.
Pełny tekst źródłaKováč, Marek, i Alena Sicakova. "Influence of Aggregate and Binder Content on the Properties of Pervious Concrete". Key Engineering Materials 838 (kwiecień 2020): 3–9. http://dx.doi.org/10.4028/www.scientific.net/kem.838.3.
Pełny tekst źródłaLee, Seung-Heun, Seol-Woo Park, Dong-Woo Yoo i Dong-Hyun Kim. "Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag". Journal of the Korean Ceramic Society 51, nr 6 (30.11.2014): 584–90. http://dx.doi.org/10.4191/kcers.2014.51.6.584.
Pełny tekst źródłaGrubb, Dennis G., i Dusty R. V. Berggren. "Air-Cooled Blast Furnace Slag. I: Characterization and Leaching Context". Journal of Hazardous, Toxic, and Radioactive Waste 22, nr 4 (październik 2018): 04018030. http://dx.doi.org/10.1061/(asce)hz.2153-5515.0000411.
Pełny tekst źródłaAhn, Byung-Hwan, Su-Jin Lee i Chan-Gi Park. "Physical and Mechanical Properties of Rural-Road Pavement Concrete in South Korea Containing Air-Cooled Blast-Furnace Slag Aggregates". Applied Sciences 11, nr 12 (18.06.2021): 5645. http://dx.doi.org/10.3390/app11125645.
Pełny tekst źródłaLuna-Galiano, Yolanda, Carlos Leiva Fernández, Rosario Villegas Sánchez i Constantino Fernández-Pereira. "Development of Geopolymer Mortars Using Air-Cooled Blast Furnace Slag and Biomass Bottom Ashes as Fine Aggregates". Processes 11, nr 6 (23.05.2023): 1597. http://dx.doi.org/10.3390/pr11061597.
Pełny tekst źródłaNisa, Ambreen u. "Study on Properties of Concrete After Incorporating Waste Materials". IOP Conference Series: Earth and Environmental Science 1110, nr 1 (1.02.2023): 012064. http://dx.doi.org/10.1088/1755-1315/1110/1/012064.
Pełny tekst źródłaZhou, Lvshan, Tongjiang Peng, Hongjuan Sun i Sanyuan Wang. "Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting". RSC Advances 12, nr 54 (2022): 34990–5001. http://dx.doi.org/10.1039/d2ra06237b.
Pełny tekst źródłaTripathy, Sunil Kumar, Jayalaxmi Dasu, Y. Rama Murthy, Gajanan Kapure, Atanu Ranajan Pal i Lev O. Filippov. "Utilisation perspective on water quenched and air-cooled blast furnace slags". Journal of Cleaner Production 262 (lipiec 2020): 121354. http://dx.doi.org/10.1016/j.jclepro.2020.121354.
Pełny tekst źródłaEndawati, Jul, Rochaeti i R. Utami. "Optimization of Concrete Porous Mix Using Slag as Substitute Material for Cement and Aggregates". Applied Mechanics and Materials 865 (czerwiec 2017): 282–88. http://dx.doi.org/10.4028/www.scientific.net/amm.865.282.
Pełny tekst źródłaGáspár, László, i Zsolt Bencze. "Blast furnace slag in road construction and maintenance". Dorogi i mosti 2021, nr 23 (25.03.2021): 53–59. http://dx.doi.org/10.36100/dorogimosti2021.23.053.
Pełny tekst źródłaShi, Jinyan, Baoju Liu, S. H. Chu, Yu Zhang, Zedi Zhang i Kaidong Han. "Recycling air-cooled blast furnace slag in fiber reinforced alkali-activated mortar". Powder Technology 407 (lipiec 2022): 117686. http://dx.doi.org/10.1016/j.powtec.2022.117686.
Pełny tekst źródłaGrubb, Dennis G., Dusty R. V. Berggren i Todd B. Weik. "Air-Cooled Blast Furnace Slag. II: Phosphate Removal from Simulated Rainfall Events". Journal of Hazardous, Toxic, and Radioactive Waste 22, nr 4 (październik 2018): 04018031. http://dx.doi.org/10.1061/(asce)hz.2153-5515.0000410.
Pełny tekst źródłaWang, Hong, Bin Ding, Xiao-Ying Liu, Xun Zhu, Xian-Yan He i Qiang Liao. "Solidification behaviors of a molten blast furnace slag droplet cooled by air". Applied Thermal Engineering 127 (grudzień 2017): 915–24. http://dx.doi.org/10.1016/j.applthermaleng.2017.07.215.
Pełny tekst źródłaWang, Hui, Su Ping Cui i Ya Li Wang. "Influence of Process Conditions on the Structure and Hydraulic Activity of Air-Cooling Blast Furnace Slag". Materials Science Forum 814 (marzec 2015): 476–82. http://dx.doi.org/10.4028/www.scientific.net/msf.814.476.
Pełny tekst źródłaBao, Ze Fu, Hai Feng Dai, Peng Zang i Jiang Ping Wang. "Design and Application of Forced Heat Dispersing Device of Superdeep Drilling Rig in High Temperature". Advanced Materials Research 339 (wrzesień 2011): 561–65. http://dx.doi.org/10.4028/www.scientific.net/amr.339.561.
Pełny tekst źródłaVerian, Kho Pin, Parth Panchmatia, Jan Olek i Tommy Nantung. "Pavement Concrete with Air-Cooled Blast Furnace Slag and Dolomite as Coarse Aggregates". Transportation Research Record: Journal of the Transportation Research Board 2508, nr 1 (styczeń 2015): 55–64. http://dx.doi.org/10.3141/2508-07.
Pełny tekst źródłaWang, Aiguo, Min Deng, Daosheng Sun, Bing Li i Mingshu Tang. "Effect of crushed air-cooled blast furnace slag on mechanical properties of concrete". Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, nr 4 (14.07.2012): 758–62. http://dx.doi.org/10.1007/s11595-012-0543-y.
Pełny tekst źródłaTobo, Hiroyuki, Yoko Miyamoto, Keiji Watanabe, Michihiro Kuwayama, Tatsuya Ozawa i Toshihiro Tanaka. "Solidification Conditions to Reduce Porosity of Air-cooled Blast Furnace Slag for Coarse Aggregate". Tetsu-to-Hagane 99, nr 8 (2013): 532–41. http://dx.doi.org/10.2355/tetsutohagane.99.532.
Pełny tekst źródłaLee, Seong-Ho, Joobeom Seo, Kwang-Suk You, Thenepalli Thriveni i Ji-Whan Ahn. "Synthesis of calcium carbonate powder from air-cooled blast furnace slag under pressurized CO2atmosphere". Geosystem Engineering 15, nr 4 (30.10.2012): 292–98. http://dx.doi.org/10.1080/12269328.2012.732317.
Pełny tekst źródłaTobo, Hiroyuki, Yoko Miyamoto, Keiji Watanabe, Michihiro Kuwayama, Tatsuya Ozawa i Toshihiro Tanaka. "Solidification Conditions to Reduce Porosity of Air-cooled Blast Furnace Slag for Coarse Aggregate". ISIJ International 54, nr 3 (2014): 704–13. http://dx.doi.org/10.2355/isijinternational.54.704.
Pełny tekst źródłaYuan-Sheng, Shen, Liu Zong-Ming, Zhu Tao, Yan Fu-Sheng, Xin Hong-Ni i Sun Rui-Lian. "The new technology and the partial thermotechnical computation for air-cooled blast furnace tuyere". Applied Thermal Engineering 29, nr 5-6 (kwiecień 2009): 1232–38. http://dx.doi.org/10.1016/j.applthermaleng.2008.06.026.
Pełny tekst źródłaWang, Guiqiang, Xiaohang Cheng, Zhiqiangè Kang i Guohui Feng. "Influence of Airflow Field on Food Freezing and Energy Consumption in Cold Storage". E3S Web of Conferences 53 (2018): 01038. http://dx.doi.org/10.1051/e3sconf/20185301038.
Pełny tekst źródłaPanchmatia, Parth, Taehwan Kim i Jan Olek. "Effects of Air-Cooled Blast Furnace Slag Aggregate on Pore Solution Chemistry of Cementitious Systems". Journal of Materials in Civil Engineering 32, nr 1 (styczeń 2020): 04019317. http://dx.doi.org/10.1061/(asce)mt.1943-5533.0002960.
Pełny tekst źródłaCao, Qi, Usman Nawaz, Xin Jiang, Lihua Zhang i Wajahat Sammer Ansari. "Effect of air-cooled blast furnace slag aggregate on mechanical properties of ultra-high-performance concrete". Case Studies in Construction Materials 16 (czerwiec 2022): e01027. http://dx.doi.org/10.1016/j.cscm.2022.e01027.
Pełny tekst źródłaWang, Aiguo, Min Deng, Daosheng Sun, Bing Li i Mingshu Tang. "Physical properties of crushed air-cooled blast furnace slag and numerical representation of its morphology characteristics". Journal of Wuhan University of Technology-Mater. Sci. Ed. 27, nr 5 (październik 2012): 973–78. http://dx.doi.org/10.1007/s11595-012-0584-2.
Pełny tekst źródłade Matos, Paulo R., Jade C. P. Oliveira, Taísa M. Medina, Diego C. Magalhães, Philippe J. P. Gleize, Rudiele A. Schankoski i Ronaldo Pilar. "Use of air-cooled blast furnace slag as supplementary cementitious material for self-compacting concrete production". Construction and Building Materials 262 (listopad 2020): 120102. http://dx.doi.org/10.1016/j.conbuildmat.2020.120102.
Pełny tekst źródłaNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Mihai Liviu Dragomir, Ioan Ardelean i Ofelia Corbu. "Potential Role of GGBS and ACBFS Blast Furnace Slag at 90 Days for Application in Rigid Concrete Pavements". Materials 16, nr 17 (29.08.2023): 5902. http://dx.doi.org/10.3390/ma16175902.
Pełny tekst źródłaManni, Mattia, Claudia Fabiani, Andrea Nicolini, Anna Laura Pisello, Federico Rossi i Franco Cotana. "Assessment of operating temperature within the new pavilion for slag management in Terni". Journal of Physics: Conference Series 2177, nr 1 (1.04.2022): 012008. http://dx.doi.org/10.1088/1742-6596/2177/1/012008.
Pełny tekst źródłaPark, Se-Ho, Seung-Tae Lee i Jae-Hong Jeong. "Experimental study on resistance of cement concrete pavement constructed using air-cooled and water-cooled ground blast-furnace slag exposed to combined carbonation and scaling". International Journal of Highway Engineering 22, nr 5 (30.10.2020): 47–54. http://dx.doi.org/10.7855/ijhe.2020.22.5.047.
Pełny tekst źródłaPark, Yong-Kyu, i Ki-Won Yoon. "The Properties of Air-Cooled Blast Furnace Slag as Coarse Aggregates and the Applicability Evaluation to PHC Pile". Journal of Korea Society of Waste Management 31, nr 6 (30.09.2014): 681–88. http://dx.doi.org/10.9786/kswm.2014.31.6.681.
Pełny tekst źródłaPark, Yong-Kyu, Hyun-Woo Kim, Seung-Il Kim, Kab-Soo Hur i Ki-Won Yoon. "The Optimal Mixing Design of the PHC Piles Utilizing the Air Cooled Blast Furnace Slag as Coarse Aggregate". Journal of the Korean Recycled Construction Resources Institute 2, nr 2 (30.06.2014): 137–44. http://dx.doi.org/10.14190/jrcr.2014.2.2.137.
Pełny tekst źródłaEndawati, Jul. "Permeability and Porosity of Pervious Concrete Containing Blast Furnace Slag as a Part of Binder Materials and Aggregate". Solid State Phenomena 266 (październik 2017): 272–77. http://dx.doi.org/10.4028/www.scientific.net/ssp.266.272.
Pełny tekst źródłaEndawati, Jul. "Properties of GGBFS-Based Pervious Concrete Containing Fly Ash and Silica Fume". Solid State Phenomena 266 (październik 2017): 278–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.266.278.
Pełny tekst źródłaPanchmatia, Parth, Jan Olek i Taehwan Kim. "The influence of air cooled blast furnace slag (ACBFS) aggregate on the concentration of sulfates in concrete’s pore solution". Construction and Building Materials 168 (kwiecień 2018): 394–403. http://dx.doi.org/10.1016/j.conbuildmat.2018.02.133.
Pełny tekst źródłaVerian, Kho Pin, i Ali Behnood. "Effects of deicers on the performance of concrete pavements containing air-cooled blast furnace slag and supplementary cementitious materials". Cement and Concrete Composites 90 (lipiec 2018): 27–41. http://dx.doi.org/10.1016/j.cemconcomp.2018.03.009.
Pełny tekst źródłaAhn, Byung-Hwan, Su-Jin Lee i Chan-Gi Park. "Chloride Ion Diffusion and Durability Characteristics of Rural-Road Concrete Pavement of South Korea Using Air-Cooled Slag Aggregates". Applied Sciences 11, nr 17 (4.09.2021): 8215. http://dx.doi.org/10.3390/app11178215.
Pełny tekst źródłaSemenov, Yu S., E. I. Shumelchik, V. V. Horupakha, S. V. Vashchenko, O. Yu Khudyakov, K. P. Ermolina, I. Yu Semion i I. V. Chychov. "INTRODUCTION OF DECISION SUPPORT SYSTEMS FOR BLAST SMELTING CONTROL IN THE CONDITIONS OF METALLURGICAL PRODUCTION OF PRJSC "DNIPROVSKYI COKE PLANT"". Fundamental and applied problems of ferrous metallurgy, nr 35 (2021): 78–94. http://dx.doi.org/10.52150/2522-9117-2021-35-78-94.
Pełny tekst źródłaShi, Jinyan, Jinxia Tan, Baoju Liu, Jiazhuo Chen, Jingdan Dai i Zhihai He. "Experimental study on full-volume slag alkali-activated mortars: Air-cooled blast furnace slag versus machine-made sand as fine aggregates". Journal of Hazardous Materials 403 (luty 2021): 123983. http://dx.doi.org/10.1016/j.jhazmat.2020.123983.
Pełny tekst źródłaAbdel-Ghani, Nour T., Hamdy A. El-Sayed i Amel A. El-Habak. "Utilization of by-pass cement kiln dust and air-cooled blast-furnace steel slag in the production of some “green” cement products". HBRC Journal 14, nr 3 (grudzień 2018): 408–14. http://dx.doi.org/10.1016/j.hbrcj.2017.11.001.
Pełny tekst źródłaOzbakkaloglu, Togay, Lei Gu i Ali Fallah Pour. "Normal- and high-strength concretes incorporating air-cooled blast furnace slag coarse aggregates: Effect of slag size and content on the behavior". Construction and Building Materials 126 (listopad 2016): 138–46. http://dx.doi.org/10.1016/j.conbuildmat.2016.09.015.
Pełny tekst źródłaRios, J. D., C. Arenas, H. Cifuentes, B. Peceño i C. Leiva. "Porous Structure by X-Ray Computed Tomography and Sound Absorption in Pervious Concretes with Air Cooled Blast Furnace Slag as Coarse Aggregate". Acoustics Australia 47, nr 3 (4.07.2019): 271–76. http://dx.doi.org/10.1007/s40857-019-00162-5.
Pełny tekst źródłaHarmaji, Andrie, Andri Hardiansyah, Neneng Annisa Widianingsih, Rodulotum Minriyadlil Jannah i Syoni Soepriyanto. "The effect of Basic Oxygen Furnace, Blast Furnace, and Kanbara Reactor Slag as Reinforcement to Cement Based Mortar". JPSE (Journal of Physical Science and Engineering) 7, nr 1 (9.04.2022): 56–61. http://dx.doi.org/10.17977/um024v7i12022p056.
Pełny tekst źródłaKim, Jun, Abdul Qudoos, Sadam Jakhrani, Atta-ur-Rehman, Jeong Lee, Seong Kim i Jae-Suk Ryou. "Mechanical Properties and Sulfate Resistance of High Volume Fly Ash Cement Mortars with Air-Cooled Slag as Fine Aggregate and Polypropylene Fibers". Materials 12, nr 3 (3.02.2019): 469. http://dx.doi.org/10.3390/ma12030469.
Pełny tekst źródłaKokane, Rushikesh S., Chintamani R. Upadhye i Avesahemad S. N. Husainy. "A Review on Recent Techniques for Food Preservation". Asian Review of Mechanical Engineering 10, nr 2 (5.11.2021): 4–9. http://dx.doi.org/10.51983/arme-2021.10.2.3009.
Pełny tekst źródłaWang, Aiguo, Peng Liu, Kaiwei Liu, Yan Li, Gaozhan Zhang i Daosheng Sun. "Application of Air-cooled Blast Furnace Slag Aggregates as Replacement of Natural Aggregates in Cement-based Materials: A Study on Water Absorption Property". Journal of Wuhan University of Technology-Mater. Sci. Ed. 33, nr 2 (kwiecień 2018): 445–51. http://dx.doi.org/10.1007/s11595-018-1843-6.
Pełny tekst źródłaNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Anca Becze i Mihai Liviu Dragomir. "The Influence of Blast Furnace Slag on Cement Concrete Road by Microstructure Characterization and Assessment of Physical-Mechanical Resistances at 150/480 Days". Materials 16, nr 9 (24.04.2023): 3332. http://dx.doi.org/10.3390/ma16093332.
Pełny tekst źródłaAhadi, Khalif, Guntur Tri Setiadanu, Yohanes Gunawan, Subhan Nafis i Dedi Suntoro. "Energy Consumption Analysis in Katsuwonus Pelamis sp. Freezing and Storaging Process". E3S Web of Conferences 232 (2021): 03017. http://dx.doi.org/10.1051/e3sconf/202123203017.
Pełny tekst źródłaNicula, Liliana Maria, Daniela Lucia Manea, Dorina Simedru, Oana Cadar, Ioan Ardelean i Mihai Liviu Dragomir. "The Advantages on Using GGBS and ACBFS Aggregate to Obtain an Ecological Road Concrete". Coatings 13, nr 8 (3.08.2023): 1368. http://dx.doi.org/10.3390/coatings13081368.
Pełny tekst źródła