Gotowa bibliografia na temat „AIR COOLED BLAST”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „AIR COOLED BLAST”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "AIR COOLED BLAST"
Tole, Ilda, Magdalena Rajczakowska, Abeer Humad, Ankit Kothari i Andrzej Cwirzen. "Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag". Materials 13, nr 5 (4.03.2020): 1134. http://dx.doi.org/10.3390/ma13051134.
Pełny tekst źródłaRíos, José, Adelardo Vahí, Carlos Leiva, Antonio Martínez-De la Concha i Héctor Cifuentes. "Analysis of the Utilization of Air-Cooled Blast Furnace Slag as Industrial Waste Aggregates in Self-Compacting Concrete". Sustainability 11, nr 6 (21.03.2019): 1702. http://dx.doi.org/10.3390/su11061702.
Pełny tekst źródłaKováč, Marek, i Alena Sicakova. "Influence of Aggregate and Binder Content on the Properties of Pervious Concrete". Key Engineering Materials 838 (kwiecień 2020): 3–9. http://dx.doi.org/10.4028/www.scientific.net/kem.838.3.
Pełny tekst źródłaLee, Seung-Heun, Seol-Woo Park, Dong-Woo Yoo i Dong-Hyun Kim. "Fluidity of Cement Paste with Air-Cooled Blast Furnace Slag". Journal of the Korean Ceramic Society 51, nr 6 (30.11.2014): 584–90. http://dx.doi.org/10.4191/kcers.2014.51.6.584.
Pełny tekst źródłaGrubb, Dennis G., i Dusty R. V. Berggren. "Air-Cooled Blast Furnace Slag. I: Characterization and Leaching Context". Journal of Hazardous, Toxic, and Radioactive Waste 22, nr 4 (październik 2018): 04018030. http://dx.doi.org/10.1061/(asce)hz.2153-5515.0000411.
Pełny tekst źródłaAhn, Byung-Hwan, Su-Jin Lee i Chan-Gi Park. "Physical and Mechanical Properties of Rural-Road Pavement Concrete in South Korea Containing Air-Cooled Blast-Furnace Slag Aggregates". Applied Sciences 11, nr 12 (18.06.2021): 5645. http://dx.doi.org/10.3390/app11125645.
Pełny tekst źródłaLuna-Galiano, Yolanda, Carlos Leiva Fernández, Rosario Villegas Sánchez i Constantino Fernández-Pereira. "Development of Geopolymer Mortars Using Air-Cooled Blast Furnace Slag and Biomass Bottom Ashes as Fine Aggregates". Processes 11, nr 6 (23.05.2023): 1597. http://dx.doi.org/10.3390/pr11061597.
Pełny tekst źródłaNisa, Ambreen u. "Study on Properties of Concrete After Incorporating Waste Materials". IOP Conference Series: Earth and Environmental Science 1110, nr 1 (1.02.2023): 012064. http://dx.doi.org/10.1088/1755-1315/1110/1/012064.
Pełny tekst źródłaZhou, Lvshan, Tongjiang Peng, Hongjuan Sun i Sanyuan Wang. "Thermodynamics analysis and experiments on Ti-bearing blast furnace slag leaching enhanced by sulfuric acid roasting". RSC Advances 12, nr 54 (2022): 34990–5001. http://dx.doi.org/10.1039/d2ra06237b.
Pełny tekst źródłaTripathy, Sunil Kumar, Jayalaxmi Dasu, Y. Rama Murthy, Gajanan Kapure, Atanu Ranajan Pal i Lev O. Filippov. "Utilisation perspective on water quenched and air-cooled blast furnace slags". Journal of Cleaner Production 262 (lipiec 2020): 121354. http://dx.doi.org/10.1016/j.jclepro.2020.121354.
Pełny tekst źródłaRozprawy doktorskie na temat "AIR COOLED BLAST"
Huang, Chi-Fong, i 黃基峰. "Study on Air-cooled Blast Furnace Slag Used for Pervious Concrete". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/75562026721968897095.
Pełny tekst źródła國立屏東科技大學
土木工程系所
102
This study used China Steel Corporation (CSC) byproduced air-cooled blast furnace slag as aggregate material in the making of pervious concrete. The pervious concrete specimens were built according to respective water-cement ratios W/C ranged from 0.37 to 0.49, whilst aggregate particle size was between 4.8~19.1 mm. Tamping tools were two steel rods, one with 5 cm diameter round bottom, 2 cm thickness and the other with 5×5 cm square bottom, 2 cm thickness, were used to impact cylindrical and beam specimens respectively. The specimens were made by the same degree of impacting, and were performed the compressive strength, flexural strength, permeability coefficient, and porosity tests. Hopefully, the W/C of maximum strength concrete was found, and the requirements of permeability and water retention were satisfied as well. Test results showed that, both the 28 day maximum compressive strength fc and maximum modulus of rupture R occurred at W/C=0.48. The values were fc=171.4kgf/cm2 and R=41.1kgf/cm2. The mix for this specific W/C was 350 kg cement, 160 kg water, 3.5 kg curing agent and 1375 kg slag aggregate. The ratio of the 28 day compressive strength to modulus of rupture R/fc were between 0.18~0.27, averaged at 0.22, higher than that of normal concrete about 0.15. The permeability coefficient k values ranged between 0.66~2.41 cm/sec, larger than the criteria value 0.01 cm/sec proposed by Architecture and Building Research. The n values ranged between 18.5%~32.5%, also larger than the criteria value 15%.
Lin, Cyun-Syuan, i 林群軒. "Study on Air-cooled Blast Furnace Slag Used for Pervious Concrete of Low Cement Amount". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/94544501454923624453.
Pełny tekst źródła國立屏東科技大學
土木工程系所
103
The thesis used the air-cooled blast furnace (ABF) slag by China Steel Corporation (CSC) as aggregate and added the inorganic ion curing agent by Johnson Corporation in the making of pervious concrete. The water-cement ratios W/C of pervious concrete specimens ranged from 0.62 to 0.76. Aggregate particle size was between 4.75~19.0 mm. Cement amount C in the mix is 150 kg. Tamping tools were two steel rods, one with 5 cm diameter round bottom, 2 cm thickness, and the other with 5#westeur024#5 cm square bottom, 2 cm thickness, were used to impact cylindrical and beam specimens respectively. The specimens were made by the same degree of impacting, and were performed the compressive strength, flexural strength, permeability coefficient, and porosity tests. The purpose of the tests is to find the W/C of maximum strength for the concrete, which also have to meet the permeability and water retention requirements. Test results showed that, both the W/C of the maximum strength of 28 day concrete were 0.72. The values of the compressive strength fc and modulus of rupture R were 41.3 kgf/cm2 and 16.3 kgf/cm2 respectively. Compared with the values 171 kgf/cm2 and R=41.1 kgf/cm2 of C=350 kg, the strengths were its 0.24 and 0.4 time. The mix for this specific W/C was 167 kg cement, 75.2 kg water, 1.7 kg curing agent and 1484 kg slag aggregate. The ratio of the 7 day to 28 day compressive strength fc7/fc28 were between 0.63~1.09, averaged at 0.87. The ratio of modulus of rupture Rc7/Rc28 were between 0.63~1.23, averaged at 0.99, higher than 0.70 of normal concrete or 0.85 and 0.92 of C=350 kg concrete. The ratio of the 28 day compressive strength to modulus of rupture R/fc were between 0.26~0.40, averaged at 0.31, higher than 0.15 of normal concrete or 0.22 of C=350 kg concrete. All the permeability coefficient k values exceeded 2.3 cm/sec, far beyond the criteria value 0.01 cm/sec proposed by Taiwan Architecture and Building Center. The porosity n values ranged between 37%~45%, were also larger than the criteria value 15%. The strengths fc=41.3 kgf/cm2 and R=16.3 kgf/cm2 of the tested C=150kg ABF slag previous concrete can be used in class B pavement proposed by Taiwan Architecture and Building Center for load layer of 6 cm depth, and can be used in class A pavement for load layer of 10 cm depth.
GUPTA, KARTIC. "EFFECT OF AIR COOLED BLAST FURNANCE SLAG AND METAKAOLIN ON COMPRESSIVE AND FLEXURAL STRENGHTH OF CONCRETE CONTAINING FLY ASH". Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16364.
Pełny tekst źródłaStreszczenia konferencji na temat "AIR COOLED BLAST"
Harmaji, Andrie, Aishah Mahyarni Imran, Bambang Sunendar, Muhammad Sofyan Lazuardi, Ikhsan Khairunnasari i Ahmad Sobandi. "Effect of air-cooled slag and granulated blast furnace slag addition as substitutor on fly ash based geopolymer". W GREEN CONSTRUCTION AND ENGINEERING EDUCATION FOR SUSTAINABLE FUTURE: Proceedings of the Green Construction and Engineering Education (GCEE) Conference 2017. Author(s), 2017. http://dx.doi.org/10.1063/1.5003502.
Pełny tekst źródłaValentin, Jan, Pavla Vacková, Nadia Maria Jose Tarifa i Dimitra Giannaka. "Potential substitutions of traditional hydraulic binders in cold recycled mixtures using blast furnace slag". W 6th International Conference on Road and Rail Infrastructure. University of Zagreb Faculty of Civil Engineering, 2021. http://dx.doi.org/10.5592/co/cetra.2020.1246.
Pełny tekst źródłaEriksson, Pontus, Steve Walsh, Rolf Gabrielsson, Lars Waldheim i Fredrik Hermann. "Design and Evaluation of an LCV Combustor for the Volvo VT4400 Industrial Gas Turbine". W ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30088.
Pełny tekst źródłaBauer, H. J., L. Eigenmann, B. Scherrer i S. Wittig. "Local Measurements in a Three Dimensional Jet-Stabilized Model Combustor". W ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-071.
Pełny tekst źródłaChockalingam, Prathap, Flavio Cesar Cunha Galeazzo, Plamen Kasabov, Peter Habisreuther, Nikolaos Zarzalis, Christian Beck, Werner Krebs i Bernhard Wegner. "Analysis of NOX Formation in an Axially Staged Combustion System at Elevated Pressure Conditions". W ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45239.
Pełny tekst źródłaRhyner, Daniel J. "Evaluation of Horizontal Recirculatory Air Curtain Efficiencies: Cooler to Conditioned Space". W ASME 2014 Citrus Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/cec2014-5801.
Pełny tekst źródła