Gotowa bibliografia na temat „Air Blasts”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Air Blasts”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Air Blasts"
Bartelt, Perry, Peter Bebi, Thomas Feistl, Othmar Buser i Andrin Caviezel. "Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts". Natural Hazards and Earth System Sciences 18, nr 3 (7.03.2018): 759–64. http://dx.doi.org/10.5194/nhess-18-759-2018.
Pełny tekst źródłaZhuang, Yu, Aiguo Xing, Perry Bartelt, Muhammad Bilal i Zhaowei Ding. "Dynamic response and breakage of trees subject to a landslide-induced air blast". Natural Hazards and Earth System Sciences 23, nr 4 (4.04.2023): 1257–66. http://dx.doi.org/10.5194/nhess-23-1257-2023.
Pełny tekst źródłaChandra, N., S. Ganpule, N. N. Kleinschmit, R. Feng, A. D. Holmberg, A. Sundaramurthy, V. Selvan i A. Alai. "Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling". Shock Waves 22, nr 5 (24.07.2012): 403–15. http://dx.doi.org/10.1007/s00193-012-0399-2.
Pełny tekst źródłaCurrin, Tina Haver. "Sound Politics: The Air Horn Orchestra Blasts HB2". Southern Cultures 24, nr 3 (2018): 107–24. http://dx.doi.org/10.1353/scu.2018.0036.
Pełny tekst źródłaHANSON, DAVID. "Business group blasts changes in clean air bill". Chemical & Engineering News 66, nr 11 (14.03.1988): 5. http://dx.doi.org/10.1021/cen-v066n011.p005.
Pełny tekst źródłaMonjezi, Masoud, Hamed Amiri, Mir Naser Seyed Mousavi, Jafar Khademi Hamidi i Manoj Khandelwal. "Comparison and application of top and bottom air decks to improve blasting operations". AIMS Geosciences 9, nr 1 (2022): 16–33. http://dx.doi.org/10.3934/geosci.2023002.
Pełny tekst źródłaAnas, S. M., Mehtab Alam i Mohammad Umair. "Air-blast and ground shockwave parameters, shallow underground blasting, on the ground and buried shallow underground blast-resistant shelters: A review". International Journal of Protective Structures 13, nr 1 (7.10.2021): 99–139. http://dx.doi.org/10.1177/20414196211048910.
Pełny tekst źródłaHoo Fatt, Michelle S., i Dushyanth Sirivolu. "Marine composite sandwich plates under air and water blasts". Marine Structures 56 (listopad 2017): 163–85. http://dx.doi.org/10.1016/j.marstruc.2017.08.004.
Pełny tekst źródłaStokstad, E. "TOXIC AIR POLLUTANTS: Inspector General Blasts EPA Mercury Analysis". Science 307, nr 5711 (11.02.2005): 829a—831a. http://dx.doi.org/10.1126/science.307.5711.829a.
Pełny tekst źródłaFernández, Pablo R., Rafael Rodríguez i Marc Bascompta. "Holistic Approach to Define the Blast Design in Quarrying". Minerals 12, nr 2 (31.01.2022): 191. http://dx.doi.org/10.3390/min12020191.
Pełny tekst źródłaRozprawy doktorskie na temat "Air Blasts"
Curry, Richard. "Response of plates subjected to air-blast and buried explosions". Doctoral thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/26877.
Pełny tekst źródłaChock, Jeffrey Mun Kong. "Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application". Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/32066.
Pełny tekst źródła
The code, BLAST.F, was used in conjunction with a commercial finite element code (NASTRAN) in a demonstration of method on a 30 by 30 inch aluminum 2519 quarter plate of fixed boundary conditions in hemispherical ground burst and showed good convergence with 256 elements for deflection and good agreement in equivalent stresses of a point near the blast between the 256 and 1024 element examples. Application of blasts to a hypothetical wing comprised of aluminum 7075-T6 was also conducted showing good versatility of method for using this program with other finite element models.
Master of Science
Magnusson, Johan. "Structural concrete elements subjected to air blast loading". Licentiate thesis, Stockholm : Byggvetenskap, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4441.
Pełny tekst źródłaIsmail, Mohamed Mohamed. "Blast wave parameter studies of fuel-air explosives". Thesis, Cranfield University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316143.
Pełny tekst źródłaAvasarala, Srikanti Rupa. "Blast overpressure relief using air vacated buffer medium". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54211.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 85-88).
Blast waves generated by intense explosions cause damage to structures and human injury. In this thesis, a strategy is investigated for relief of blast overpressure resulting from explosions in air. The strategy is based on incorporating a layer of low pressure-low density air in between the blast wave and the target structure. Simulations of blast waves interacting with this air-vacated layer prior to arrival at a fixed wall are conducted using a Computational Fluid Dynamics (CFD) framework. Pressure histories on the wall are recorded from the simulations and used to investigate the potential benefits of vacated air layers in mitigating blast metrics such as peak reflected pressure from the wall and maximum transmitted impulse to the wall. It is observed that these metrics can be reduced by a significant amount by introducing the air-vacated buffer especially for incident overpressures of the order of a few atmospheres. This range of overpressures could be fatal to the human body which makes the concept very relevant for mitigation of human blast injuries. We establish a functional dependence of the mitigation metrics on the blast intensity, the buffer pressure and the buffer length. In addition, Riemann solutions are utilized to analyze the wave structure obtained from the blast-buffer interactions for the interaction of a uniform wave an air-depleted buffer. Exact analytical expressions are obtained for the mitigation obtained in the incident wave momentum in terms of the incident shock pressure and the characteristics of the depleted buffer. The results obtained are verified through numerical simulations.
(cont.) It is found that the numerical results are in excellent agreement with the theory. The work presented could help in the design of effective blast protective materials and systems, for example in the construction of air-vacated sandwich panels. Keywords: Blast Mitigation, Air-depleted Buffer, Low Pressure, Blast Waves, Sandwich Plates, Numerical Simulations
by Srikanti Rupa Avasarala.
S.M.
Fox, Matthew J. "Numerical modeling of air blast effects on hybrid structures". Morgantown, W. Va. : [West Virginia University Libraries], 2002. http://etd.wvu.edu/templates/showETD.cfm?recnum=2630.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains x, 114 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 42-45).
Bigikocin, Onur. "Presplit Blast Induced Air Overpressure Investigation At Usak Kisladag Gold Mine". Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608741/index.pdf.
Pełny tekst źródłaDavids, Sean. "The influence of charge geometry on the response of cylinders to internal air blasting". Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/20400.
Pełny tekst źródłaAhmed, Tushar. "Atomization and Combustion of Hybrid Electrohydrodynamic-Air-Assisted Sprays". Thesis, The University of Sydney, 2022. https://hdl.handle.net/2123/28180.
Pełny tekst źródłaDeng, Tian. "LES combined with statistical models of spray formation closely to air-blast atomizer". Thesis, Ecully, Ecole centrale de Lyon, 2011. http://www.theses.fr/2011ECDL0037/document.
Pełny tekst źródłaThis thesis introduced an extension to stochastic approach for simulation of air-blast atomization closely to injector. This approach was previously proposed in publications of Gorokhovski with his PHD students. Our extension of this approach is as follows. In the framework of LES approach, the contribution of primary atomization zone is simulated as an immersed solid body with stochastic structure. The last one is defined by stochastic simulation of position-and-curvature of interface between the liquid and the gas. As it was done previously in this approach, the simulation of the interface position was based on statistical universalities of fragmentation under scaling symmetry. Additionally to this, we simulate the outwards normal to the interface, assuming its stochastic relaxation to isotropy along with propagation of spray in the down-stream direction. In this approach, the statistics of immersed body force plays role of boundary condition for LES velocity field, as well as for production of primary blobs, which are then tracked in the Lagrangian way. In this thesis, the inter-particle collisions in the primary atomisation zone are accounted also by analogy with standard kinetic approach for the ideal gas. The closure is proposed for the statistical temperature of droplets. The approach was assessed by comparison with measurements of Hong in his PHD. The results of computation showed that predicted statistics of the velocity and of the size in the spray at different distances from the center plane, at different distances from the nozzle orifice, at different inlet conditions (different gas velocity at constant gas-to-liquid momentum ratio, different gas-to-liquid momentum ratio) are relatively close to measurements. Besides, the specific role of recirculation zone in front of the liquid core was emphasized in the flapping of the liquid core and in the droplets production
Książki na temat "Air Blasts"
Houlston, R. Air-blast experiments on square plates (U). Ralston, Alta: Defence Research Establishment Suffield, 1986.
Znajdź pełny tekst źródłaJ, Smith Timothy. Orchard air-blast sprayer calibration, adjustment and operation. [Pullman]: Washington State University, Cooperative Extension, 1990.
Znajdź pełny tekst źródłaSlater, J. E. Air-blast studies on GRP composite structures: Final report. Ralston, Alberta: Defence Research Establishment Suffield, 1994.
Znajdź pełny tekst źródłaK, Lawrie Linda, i Construction Engineering Research Laboratory, red. Building comfort analysis using BLAST: A case study. Champaign, Ill: US Army Corps of Engineers, Construction Engineering Research Laboratory, 1991.
Znajdź pełny tekst źródłaHonma, Hiroki. Experimental and numerical studies of weak blast waves in air. [S.l.]: Springer-Verlag, 1991.
Znajdź pełny tekst źródłaByrtus, Joseph Edmond Darcy. The response of delaminated composite panels to air blast loading. Cambridge, Mass: Massachusetts Institute of Technology, 1988.
Znajdź pełny tekst źródłaDefense Nuclear Agency (U.S.). MABS monograph: Air blast instrumentation, 1943-1993 : measurement techniques and instrumentation. Alexandria, Va: Defense Nuclear Agency, 1995.
Znajdź pełny tekst źródłaAnnamraju, Gopal. Air pollution impacts when quenching blast furnace slag with contaminated water. Research Triangle Park, NC: U.S. Environmental Protection Agency, Air and Energy Engineering Research Laboratory, 1987.
Znajdź pełny tekst źródłaSlater, J. E. Air-blast loading and structural response of a ship stiffened panel in a re-entrant corner at event "misty picture". Ralston, Alta: Defence Research Establishement Suffield, 1993.
Znajdź pełny tekst źródłaBLAST: Babysitter lessons and safety training. Wyd. 3. Burlington, MA: Jones & Bartlett Learning, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Air Blasts"
Needham, Charles E. "Some Basic Air Blast Definitions". W Blast Waves, 3–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05288-0_2.
Pełny tekst źródłaNeedham, Charles E. "Some Basic Air Blast Definitions". W Blast Waves, 3–8. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65382-2_2.
Pełny tekst źródłaKinney, Gilbert Ford, i Kenneth Judson Graham. "Blast Waves". W Explosive Shocks in Air, 88–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-86682-1_6.
Pełny tekst źródłaKinney, Gilbert Ford, i Kenneth Judson Graham. "Internal Blast". W Explosive Shocks in Air, 137–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-86682-1_9.
Pełny tekst źródłaKinney, Gilbert Ford, i Kenneth Judson Graham. "Dynamic Blast Loads". W Explosive Shocks in Air, 161–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-86682-1_10.
Pełny tekst źródłaRamamurthi, K. "Blast Waves in Air". W Modeling Explosions and Blast Waves, 25–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74338-3_2.
Pełny tekst źródłaLeBlanc, James, i Arun Shukla. "Underwater Explosive Response of Submerged, Air-backed Composite Materials: Experimental and Computational Studies". W Blast Mitigation, 123–60. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7267-4_5.
Pełny tekst źródłaZong, Zhaowen. "First Aid Techniques for Blast Injury". W Explosive Blast Injuries, 167–86. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-2856-7_10.
Pełny tekst źródłaGazonas, George A., i Joseph A. Main. "Air Blast Loading of Cellular Media". W Experimental Analysis of Nano and Engineering Materials and Structures, 11–12. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-6239-1_5.
Pełny tekst źródłaVieira, Margarida, i Jorge Pereira. "Comparing Air Blast and Fluidized Bed Freezing". W Experiments in Unit Operations and Processing of Foods, 105–11. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68642-4_14.
Pełny tekst źródłaStreszczenia konferencji na temat "Air Blasts"
Alvarez, J. T., I. D. Alvarez i S. T. Lougedo. "Dust barriers in open pit blasts. Multiphase Computational Fluid Dynamics (CFD) simulations". W AIR POLLUTION 2008. Southampton, UK: WIT Press, 2008. http://dx.doi.org/10.2495/air080101.
Pełny tekst źródłaFedina, Ekaterina, Christer Fureby i Andreas Helte. "Predicting Mixing and Combustion in the Afterburn Stage of Air Blasts". W 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-773.
Pełny tekst źródłaKrol, Dariusz, i Jaroslaw Golaszewski. "A simulation study of a helicopter in hover subjected to air blasts". W 2011 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2011. http://dx.doi.org/10.1109/icsmc.2011.6084035.
Pełny tekst źródłaPreece, Dale S., i W. Venner Saul. "Blastwall Effects on Down Range Explosively-Induced Overpressure". W ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1826.
Pełny tekst źródłaBrundage, Aaron L., Stephen W. Attaway, Michael L. Hobbs, Michael Kaneshige i Lydia A. Boye. "Prediction of Spatial Distributions of Equilibrium Product Species from High Explosive Blasts in Air". W 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-3918.
Pełny tekst źródłaHinz, Brandon J., Matthew V. Grimm, Karim H. Muci-Ku¨chler i Shawn M. Walsh. "Comparative Study of the Dynamic Response of Different Materials Subjected to Compressed Gas Blast Loading". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64395.
Pełny tekst źródłaZieg, Parker, John Benson i Yang Liu. "An Experimental Study on the Effects of Burst Pressure on Air Blast Development in a Blast Wave Simulator". W ASME 2021 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/fedsm2021-65930.
Pełny tekst źródłaKarr, Dale G., Christian G. Kasey, Sung Ham Kim, Michael A. Cilenti, Suresh K. Pisini i Marc Perlin. "Fluid Encasement and Flow Within Sub-Structured Blast Panels". W ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71126.
Pełny tekst źródłaSettles, Gary S., Jeremy R. Benwood i Joseph A. Gatto. "Optical Shock Wave Imaging for Aviation Security". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45606.
Pełny tekst źródłaCowler, Malcolm S., Xiangyang Quan i Greg E. Fairlie. "A Computational Approach to Assessing Blast Damage in Urban Centers Using AUTODYN". W ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-3044.
Pełny tekst źródłaRaporty organizacyjne na temat "Air Blasts"
Glenn, L. A. Air Blasts from Cased and Uncased Explosives. Office of Scientific and Technical Information (OSTI), kwiecień 2016. http://dx.doi.org/10.2172/1248318.
Pełny tekst źródłaStewart, Joel B. Air Blast Calculations. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2013. http://dx.doi.org/10.21236/ada585119.
Pełny tekst źródłaVander Wiel, Gerrit. Air Blast Meshing & Pressure Mapping. Office of Scientific and Technical Information (OSTI), sierpień 2021. http://dx.doi.org/10.2172/1813806.
Pełny tekst źródłaSchnurr, Julie M., Arthur J. Rodgers, Keehoon Kim, Sean R. Ford i Abelardo L. Ramirez. Analysis of MINIE2013 Explosion Air-Blast Data. Office of Scientific and Technical Information (OSTI), październik 2016. http://dx.doi.org/10.2172/1331466.
Pełny tekst źródłaVander Wiel, Gerrit, Paula Rutherford i Phillip Wolfram. Air Blast Mesh Sensitivity and Pressure Mapping Study. Office of Scientific and Technical Information (OSTI), wrzesień 2021. http://dx.doi.org/10.2172/1819127.
Pełny tekst źródłaYager, Robert J. Blast Parameters From Explosions in Air (Coded in C++). Fort Belvoir, VA: Defense Technical Information Center, grudzień 2013. http://dx.doi.org/10.21236/ada593251.
Pełny tekst źródłaLundgren, Ronald G. Stand Alone Sensor for Air Bag and Restraint System Activation in an Underbody Blast Event. Fort Belvoir, VA: Defense Technical Information Center, marzec 2014. http://dx.doi.org/10.21236/ada601200.
Pełny tekst źródłaChipman, V. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN. Office of Scientific and Technical Information (OSTI), wrzesień 2011. http://dx.doi.org/10.2172/1035964.
Pełny tekst źródłaWillis, C., F. Jorgensen, S. A. Cawthraw, H. Aird, S. Lai, M. Chattaway, I. Lock, E. Quill i G. Raykova. A survey of Salmonella, Escherichia coli (E. coli) and antimicrobial resistance in frozen, part-cooked, breaded or battered poultry products on retail sale in the United Kingdom. Food Standards Agency, maj 2022. http://dx.doi.org/10.46756/sci.fsa.xvu389.
Pełny tekst źródłaRipoll, Santiago, Tabitha Hrynick, Ashley Ouvrier, Megan Schmidt-Sane, Federico Marco Federici i Elizabeth Storer. 10 façons dont les gouvernements locaux en milieu urbain multiculturel peuvent appuyer l’égalité vaccinale en cas de pandémie. SSHAP, styczeń 2023. http://dx.doi.org/10.19088/sshap.2023.001.
Pełny tekst źródła