Artykuły w czasopismach na temat „Aimants van der Waals”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Aimants van der Waals.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Aimants van der Waals”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Arunan, E. "van der Waals". Resonance 15, nr 7 (lipiec 2010): 584–87. http://dx.doi.org/10.1007/s12045-010-0043-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Han, Jianing. "Two-Dimensional Six-Body van der Waals Interactions". Atoms 10, nr 1 (24.01.2022): 12. http://dx.doi.org/10.3390/atoms10010012.

Pełny tekst źródła
Streszczenie:
Van der Waals interactions, primarily attractive van der Waals interactions, have been studied over one and half centuries. However, repulsive van der Waals interactions are less widely studied than attractive van der Waals interactions. In this article, we focus on repulsive van der Waals interactions. Van der Waals interactions are dipole–dipole interactions. In this article, we study the van der Waals interactions between multiple dipoles. Specifically, we focus on two-dimensional six-body van der Waals interactions. This study has many potential applications. For example, the result may be applied to physics, chemistry, chemical engineering, and other fields of sciences and engineering, such as breaking molecules.
Style APA, Harvard, Vancouver, ISO itp.
3

Bernasek, Steven L. "Van der Waals rectifiers". Nature Nanotechnology 8, nr 2 (6.01.2013): 80–81. http://dx.doi.org/10.1038/nnano.2012.242.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Geim, A. K., i I. V. Grigorieva. "Van der Waals heterostructures". Nature 499, nr 7459 (lipiec 2013): 419–25. http://dx.doi.org/10.1038/nature12385.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Levitov, L. S. "Van Der Waals' Friction". Europhysics Letters (EPL) 8, nr 6 (15.03.1989): 499–504. http://dx.doi.org/10.1209/0295-5075/8/6/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Capozziello, S., S. De Martino i M. Falanga. "Van der Waals quintessence". Physics Letters A 299, nr 5-6 (lipiec 2002): 494–98. http://dx.doi.org/10.1016/s0375-9601(02)00753-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Bärwinkel, Klaus, i Jürgen Schnack. "van der Waals revisited". Physica A: Statistical Mechanics and its Applications 387, nr 18 (lipiec 2008): 4581–88. http://dx.doi.org/10.1016/j.physa.2008.03.019.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Levelt Sengers, J. M. H., i J. V. Sengers. "van der Waals fund, van der Waals laboratory and Dutch high-pressure science". Physica A: Statistical Mechanics and its Applications 156, nr 1 (marzec 1989): 1–14. http://dx.doi.org/10.1016/0378-4371(89)90107-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wu, Yan-Fei, Meng-Yuan Zhu, Rui-Jie Zhao, Xin-Jie Liu, Yun-Chi Zhao, Hong-Xiang Wei, Jing-Yan Zhang i in. "The fabrication and physical properties of two-dimensional van der Waals heterostructures". Acta Physica Sinica 71, nr 4 (2022): 048502. http://dx.doi.org/10.7498/aps.71.20212033.

Pełny tekst źródła
Streszczenie:
Two-dimensional van der Waals materials (2D materials for short) have developed into a novel material family that has attracted much attention, and thus the integration, performance and application of 2D van der Waals heterostructures has been one of the research hotspots in the field of condensed matter physics and materials science. The 2D van der Waals heterostructures provide a flexible and extensive platform for exploring diverse physical effects and novel physical phenomena, as well as for constructing novel spintronic devices. In this topical review article, starting with the transfer technology of 2D materials, we will introduce the construction, performance and application of 2D van der Waals heterostructures. Firstly, the preparation technology of 2D van der Waals heterostructures in detail will be presented according to the two classifications of wet transfer and dry transfer, including general equipment for transfer technology, the detailed steps of widely used transfer methods, a three-dimensional manipulating method for 2D materials, and hetero-interface cleaning methods. Then, we will introduce the performance and application of 2D van der Waals heterostructures, with a focus on 2D magnetic van der Waals heterostructures and their applications in the field of 2D van der Waals magnetic tunnel junctions and moiré superlattices. The development and optimization of 2D materials transfer technology will boost 2D van der Waals heterostructures to achieve breakthrough results in fundamental science research and practical application.
Style APA, Harvard, Vancouver, ISO itp.
10

Ao, Hong Rui, Ming Dong, Xi Chao Wang i Hong Yuan Jiang. "Analysis of Pressure Distribution on Head Disk Air Bearing Slider Involved Van der Waals Force". Applied Mechanics and Materials 419 (październik 2013): 111–16. http://dx.doi.org/10.4028/www.scientific.net/amm.419.111.

Pełny tekst źródła
Streszczenie:
This paper focuses on the pressure distribution on the surface of slider in hard disk drive when its flying height is in nanoscale. The gas rarefaction effect and van der Waals force are involved in the analysis process. Here the air bearing force model is based on F-K model and we establish the equation of van der Waals force between the head and disk. Using the finite element method, the modified Reynolds equation and the van der Waals force were obtained. The air bearing force on slider before and after the van der Waals force involved were compared. The results illustrate that the effect of van der Waals force on the air bearing force is different according to the slider shapes and flying heights. As a result, van der Waals force plays an important role when the flying height of slider is below 10 nm.
Style APA, Harvard, Vancouver, ISO itp.
11

Linder, Bruno, i Robert A. Kromhout. "van der Waals induced dipoles". Journal of Chemical Physics 84, nr 5 (marzec 1986): 2753–60. http://dx.doi.org/10.1063/1.450299.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Han, Xiaodong. "Ductile van der Waals materials". Science 369, nr 6503 (30.07.2020): 509. http://dx.doi.org/10.1126/science.abd4527.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Wells, B. H., i S. Wilson. "van der Waals interaction potentials". Molecular Physics 66, nr 2 (10.02.1989): 457–64. http://dx.doi.org/10.1080/00268978900100221.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Holstein, Barry R. "The van der Waals interaction". American Journal of Physics 69, nr 4 (kwiecień 2001): 441–49. http://dx.doi.org/10.1119/1.1341251.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Lu, J. X., i W. H. Marlow. "Nonsingular van der Waals potentials". Physical Review A 52, nr 3 (1.09.1995): 2141–54. http://dx.doi.org/10.1103/physreva.52.2141.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Wells, B. H., i S. Wilson. "van der Waals interaction potentials". Molecular Physics 55, nr 1 (maj 1985): 199–210. http://dx.doi.org/10.1080/00268978500101271.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Wells, Bryan H., i Stephen Wilson. "van der Waals interaction potentials". Molecular Physics 54, nr 4 (marzec 1985): 787–98. http://dx.doi.org/10.1080/00268978500103161.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Wells, B. H., i S. Wilson. "van der Waals interaction potentials". Molecular Physics 57, nr 1 (styczeń 1986): 21–32. http://dx.doi.org/10.1080/00268978600100021.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Wells, B. H., i S. Wilson. "van der Waals interaction potentials". Molecular Physics 57, nr 2 (10.02.1986): 421–26. http://dx.doi.org/10.1080/00268978600100331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wells, B. H. "Van der Waals interaction potentials". Molecular Physics 61, nr 5 (10.08.1987): 1283–93. http://dx.doi.org/10.1080/00268978700101791.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Wells, B. H., i S. Wilson. "van der Waals interaction potentials". Molecular Physics 65, nr 6 (20.12.1988): 1363–76. http://dx.doi.org/10.1080/00268978800101851.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Rajagopal, Aruna, David Kubizňák i Robert B. Mann. "Van der Waals black hole". Physics Letters B 737 (październik 2014): 277–79. http://dx.doi.org/10.1016/j.physletb.2014.08.054.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Han, Zhumin, Xinyuan Wei, Chen Xu, Chi-lun Chiang, Yanxing Zhang, Ruqian Wu i W. Ho. "Imaging van der Waals Interactions". Journal of Physical Chemistry Letters 7, nr 24 (5.12.2016): 5205–11. http://dx.doi.org/10.1021/acs.jpclett.6b02749.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Kiessling, M. K. H., i J. K. Percus. "Nonuniform van der Waals theory". Journal of Statistical Physics 78, nr 5-6 (marzec 1995): 1337–76. http://dx.doi.org/10.1007/bf02180135.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Cole, Milton W., Darrell Velegol, Hye-Young Kim i Amand A. Lucas. "Nanoscale van der Waals interactions". Molecular Simulation 35, nr 10-11 (14.08.2009): 849–66. http://dx.doi.org/10.1080/08927020902929794.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Magnasco, Valerio, Giuseppe Figari i Camilla Costa. "Understanding van der Waals bonding". Journal of Molecular Structure: THEOCHEM 261 (lipiec 1992): 237–53. http://dx.doi.org/10.1016/0166-1280(92)87078-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Feil, Sylvia. "Van der Waals: erstmals gemessen". Chemie in unserer Zeit 50, nr 5 (17.08.2016): 303. http://dx.doi.org/10.1002/ciuz.201680049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Liu, Chang-Hua, Jiajiu Zheng, Shane Colburn, Taylor K. Fryett, Yueyang Chen, Xiaodong Xu i Arka Majumdar. "Ultrathin van der Waals Metalenses". Nano Letters 18, nr 11 (8.10.2018): 6961–66. http://dx.doi.org/10.1021/acs.nanolett.8b02875.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kilian, H. G. "Filled van der Waals networks". Progress in Colloid & Polymer Science 75, nr 1 (grudzień 1987): 213–30. http://dx.doi.org/10.1007/bf01188373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Avramenko, Andriy A., Igor V. Shevchuk i Margarita M. Kovetskaya. "An Analytical Investigation of Natural Convection of a Van Der Waals Gas over a Vertical Plate". Fluids 6, nr 3 (15.03.2021): 121. http://dx.doi.org/10.3390/fluids6030121.

Pełny tekst źródła
Streszczenie:
The study focused on a theoretical study of natural convection in a van der Waals gas near a vertical plate. A novel simplified form of the van der Waals equation derived in the study enabled analytical modeling of fluid flow and heat transfer. Analytical solutions were obtained for the velocity and temperature profiles, as well as the Nusselt numbers. It was revealed that nonlinear effects considered by the van der Waals equation of state contribute to acceleration or deceleration of the flow. This caused respective enhancement or deterioration of heat transfer. Results for a van der Waals gas were compared with respective computations using an ideal gas model. Limits of the applicability of the simplified van der Waals equations were pinpointed.
Style APA, Harvard, Vancouver, ISO itp.
31

Zhang, Ya-ni, Zhuo-ying Song, Dun Qiao, Xiao-hui Li, Zhe Guang, Shao-peng Li, Li-bin Zhou i Xiao-han Chen. "2D van der Waals materials for ultrafast pulsed fiber lasers: review and prospect". Nanotechnology 33, nr 8 (3.12.2021): 082003. http://dx.doi.org/10.1088/1361-6528/ac3611.

Pełny tekst źródła
Streszczenie:
Abstract 2D van der Waals materials are crystals composed of atomic layers, which have atomic thickness scale layers and rich distinct properties, including ultrafast optical response, surface effects, light-mater interaction, small size effects, quantum effects and macro quantum tunnel effects. With the exploration of saturable absorption characteristic of 2D van der Waals materials, a series of potential applications of 2D van der Waals materials as high threshold, broadband and fast response saturable absorbers (SAs) in ultrafast photonics have been proposed and confirmed. Herein, the photoelectric characteristics, nonlinear characteristic measurement technique of 2D van der Waals materials and the preparation technology of SAs are systematically described. Furthermore, the ultrafast pulsed fiber lasers based on classical 2D van der Waals materials including graphene, transition metal chalcogenides, topological insulators and black phosphorus have been fully summarized and analyzed. On this basis, opportunities and directions in this field, as well as the research results of ultrafast pulsed fiber lasers based on the latest 2D van der Waals materials (such as PbO, FePSe3, graphdiyne, bismuthene, Ag2S and MXene etc), are reviewed and summarized.
Style APA, Harvard, Vancouver, ISO itp.
32

Gonzalez, R. I., J. Mella, P. Díaz, S. Allende, E. E. Vogel, C. Cardenas i F. Munoz. "Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures". 2D Materials 6, nr 4 (1.07.2019): 045002. http://dx.doi.org/10.1088/2053-1583/ab2501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Motoc, I., G. R. Marshall, R. A. Dammkoehler i J. Labanowski. "Molecular Shape Descriptors. 1. Three-Dimensional Molecular Shape Descriptor". Zeitschrift für Naturforschung A 40, nr 11 (1.11.1985): 1108–13. http://dx.doi.org/10.1515/zna-1985-1106.

Pełny tekst źródła
Streszczenie:
The paper presents and illustrates a method which uses numerical integration of the van der Waals envelope(s) to calculate with desired accuracy the molecular van der Waals volume and the three-dimensional molecular shape descriptor defined as the twin-number [OV(α, β); NOV(β, α), where OV and NOV represent the overlapping and, respectively, the nonoverlapping van der Waals volumes of the molecules α and ß superimposed according to appropriate criteria.
Style APA, Harvard, Vancouver, ISO itp.
34

Avramenko, A. A., I. V. Shevchuk, Yu Yu Kovetskaya i N. P. Dmitrenko. "An Integral Method for Natural Convection of Van Der Waals Gases over a Vertical Plate". Energies 14, nr 15 (27.07.2021): 4537. http://dx.doi.org/10.3390/en14154537.

Pełny tekst źródła
Streszczenie:
This paper focuses on a study of natural convection in a van der Waals gas over a vertical heated plate. In this paper, for the first time, an approximate analytical solution of the problem was obtained using an integral method for momentum and energy equations. A novel simplified form of the van der Waals equation for real gases enabled estimating the effects of the dimensionless van der Waals parameters on the normalized heat transfer coefficients and Nusselt numbers in an analytical form. Trends in the variation of the Nusselt number depending on the nature of the interaction between gas molecules and the wall were analyzed. The results of computations for a van der Waals gas were compared with the results for an ideal gas.
Style APA, Harvard, Vancouver, ISO itp.
35

Zhao, Lu, Lijuan Zhang, Houfu Song, Hongda Du, Junqiao Wu, Feiyu Kang i Bo Sun. "Incoherent phonon transport dominates heat conduction across van der Waals superlattices". Applied Physics Letters 121, nr 2 (11.07.2022): 022201. http://dx.doi.org/10.1063/5.0096861.

Pełny tekst źródła
Streszczenie:
Heat conduction mechanisms in superlattices could be different across different types of interfaces. Van der Waals superlattices are structures physically assembled through weak van der Waals interactions by design and may host properties beyond the traditional superlattices limited by lattice matching and processing compatibility, offering a different type of interface. In this work, natural van der Waals (SnS)1.17(NbS2)n superlattices are synthesized, and their thermal conductivities are measured by time-domain thermoreflectance as a function of interface density. Our results show that heat conduction of (SnS)1.17(NbS2)n superlattices is dominated by interface scattering when the coherent length of phonons is larger than the superlattice period, indicating that incoherent phonon transport dominates through-plane heat conduction in van der Waals superlattices even when the period is atomically thin and abrupt, in contrast to conventional superlattices. Our findings provide valuable insights into the understanding of the thermal behavior of van der Waals superlattices and devise approaches for effective thermal management of superlattices depending on the distinct types of interfaces.
Style APA, Harvard, Vancouver, ISO itp.
36

Apostol, M. "On the Van der Waals equation". Open Access Journal of Mathematical and Theoretical Physics 1, nr 5 (15.10.2018): 215–17. http://dx.doi.org/10.15406/oajmtp.2018.01.00037.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Quevedo, Hernando, María N. Quevedo i Alberto Sánchez. "Geometrothermodynamics of van der Waals systems". Journal of Geometry and Physics 176 (czerwiec 2022): 104495. http://dx.doi.org/10.1016/j.geomphys.2022.104495.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Housecroft, Catherine E. "Geckos, Ceilings and van der Waals". CHIMIA International Journal for Chemistry 72, nr 6 (27.06.2018): 428–29. http://dx.doi.org/10.2533/chimia.2018.428.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Tian, Shangjie, Jian-Feng Zhang, Chenghe Li, Tianping Ying, Shiyan Li, Xiao Zhang, Kai Liu i Hechang Lei. "Ferromagnetic van der Waals Crystal VI3". Journal of the American Chemical Society 141, nr 13 (11.03.2019): 5326–33. http://dx.doi.org/10.1021/jacs.8b13584.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Xiang, Rong, Taiki Inoue, Yongjia Zheng, Akihito Kumamoto, Yang Qian, Yuta Sato, Ming Liu i in. "One-dimensional van der Waals heterostructures". Science 367, nr 6477 (30.01.2020): 537–42. http://dx.doi.org/10.1126/science.aaz2570.

Pełny tekst źródła
Streszczenie:
We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer–diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.
Style APA, Harvard, Vancouver, ISO itp.
41

Jariwala, Deep, Tobin J. Marks i Mark C. Hersam. "Mixed-dimensional van der Waals heterostructures". Nature Materials 16, nr 2 (1.08.2016): 170–81. http://dx.doi.org/10.1038/nmat4703.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wentzell, R. A. "Van der Waals stabilization of bubbles". Physical Review Letters 56, nr 7 (17.02.1986): 732–33. http://dx.doi.org/10.1103/physrevlett.56.732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Manson, J. R., i R. H. Ritchie. "Corrections to van der Waals Forces". Physical Review Letters 57, nr 2 (14.07.1986): 261. http://dx.doi.org/10.1103/physrevlett.57.261.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ajayan, Pulickel, Philip Kim i Kaustav Banerjee. "Two-dimensional van der Waals materials". Physics Today 69, nr 9 (wrzesień 2016): 38–44. http://dx.doi.org/10.1063/pt.3.3297.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Yang, Ji-Hui, i Hongjun Xiang. "Van der Waals engineering of magnetism". Nature Materials 18, nr 12 (28.10.2019): 1273–74. http://dx.doi.org/10.1038/s41563-019-0524-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Oukouiss, A., i A. Daanoun. "Nematic van der Waals Free-energy". Journal of Scientific Research 1, nr 3 (29.08.2009): 409–21. http://dx.doi.org/10.3329/jsr.v1i3.2595.

Pełny tekst źródła
Streszczenie:
We develop the calculation of free energy in a nematic phase for a model of spherical particles with the long-range anisotropic interaction from the van der Waals theory. We map the gas-liquid equilibrium, which is coupled to a first-order isotropic-nematic transition. We discus how the topology of the phase diagrams changes upon varying the strengths of the isotropic and nematic interactions.Keywords: Phase diagrams; Nematic interactions; Free energy; Transitions.© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i3.2595 J. Sci. Res. 1(3), 409-421 (2009)
Style APA, Harvard, Vancouver, ISO itp.
47

Tomaš, Marin-Slobodan. "Surface enhanced van der Waals force". Physica Scripta T135 (lipiec 2009): 014020. http://dx.doi.org/10.1088/0031-8949/2009/t135/014020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Basov, D. N., M. M. Fogler i F. J. Garcia de Abajo. "Polaritons in van der Waals materials". Science 354, nr 6309 (13.10.2016): aag1992. http://dx.doi.org/10.1126/science.aag1992.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sutter, Peter, Shawn Wimer i Eli Sutter. "Chiral twisted van der Waals nanowires". Nature 570, nr 7761 (22.04.2019): 354–57. http://dx.doi.org/10.1038/s41586-019-1147-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kushima, Akihiro, Xiaofeng Qian, Peng Zhao, Sulin Zhang i Ju Li. "Ripplocations in van der Waals Layers". Nano Letters 15, nr 2 (14.01.2015): 1302–8. http://dx.doi.org/10.1021/nl5045082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii