Gotowa bibliografia na temat „AI Generated Text Detection”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „AI Generated Text Detection”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "AI Generated Text Detection"
Bhattacharjee, Amrita, i Huan Liu. "Fighting Fire with Fire: Can ChatGPT Detect AI-generated Text?" ACM SIGKDD Explorations Newsletter 25, nr 2 (26.03.2024): 14–21. http://dx.doi.org/10.1145/3655103.3655106.
Pełny tekst źródłaWang, Yu. "Survey for Detecting AI-generated Content". Advances in Engineering Technology Research 11, nr 1 (18.07.2024): 643. http://dx.doi.org/10.56028/aetr.11.1.643.2024.
Pełny tekst źródłaA, Nykonenko. "How Text Transformations Affect AI Detection". Artificial Intelligence 29, AI.2024.29(4) (30.12.2024): 233–41. https://doi.org/10.15407/jai2024.04.233.
Pełny tekst źródłaSingh, Dr Viomesh, Bhavesh Agone, Aryan More, Aryan Mengawade, Atharva Deshmukh i Atharva Badgujar. "SAVANA- A Robust Framework for Deepfake Video Detection and Hybrid Double Paraphrasing with Probabilistic Analysis Approach for AI Text Detection". International Journal for Research in Applied Science and Engineering Technology 12, nr 11 (30.11.2024): 2074–83. http://dx.doi.org/10.22214/ijraset.2024.65526.
Pełny tekst źródłaVismay Vora, Et al. "A Multimodal Approach for Detecting AI Generated Content using BERT and CNN". International Journal on Recent and Innovation Trends in Computing and Communication 11, nr 9 (30.10.2023): 691–701. http://dx.doi.org/10.17762/ijritcc.v11i9.8861.
Pełny tekst źródłaSubramaniam, Raghav. "Identifying Text Classification Failures in Multilingual AI-Generated Content". International Journal of Artificial Intelligence & Applications 14, nr 5 (28.09.2023): 57–63. http://dx.doi.org/10.5121/ijaia.2023.14505.
Pełny tekst źródłaSushma D S, Pooja C N, Varsha H S, Yasir Hussain i P Yashash. "Detection and Classification of ChatGPT Generated Contents Using Deep Transformer Models". International Research Journal on Advanced Engineering Hub (IRJAEH) 2, nr 05 (23.05.2024): 1404–7. http://dx.doi.org/10.47392/irjaeh.2024.0193.
Pełny tekst źródłaAlshammari, Hamed, i Khaled Elleithy. "Toward Robust Arabic AI-Generated Text Detection: Tackling Diacritics Challenges". Information 15, nr 7 (19.07.2024): 419. http://dx.doi.org/10.3390/info15070419.
Pełny tekst źródłaJeremie Busio Legaspi, Roan Joyce Ohoy Licuben, Emmanuel Alegado Legaspi i Joven Aguinaldo Tolentino. "Comparing ai detectors: evaluating performance and efficiency". International Journal of Science and Research Archive 12, nr 2 (30.07.2024): 833–38. http://dx.doi.org/10.30574/ijsra.2024.12.2.1276.
Pełny tekst źródłaKim, Min-Gyu, i Heather Desaire. "Detecting the Use of ChatGPT in University Newspapers by Analyzing Stylistic Differences with Machine Learning". Information 15, nr 6 (25.05.2024): 307. http://dx.doi.org/10.3390/info15060307.
Pełny tekst źródłaRozprawy doktorskie na temat "AI Generated Text Detection"
Pilana, Liyanage Vijini. "Detection of automatically generated academic Content". Electronic Thesis or Diss., Paris 13, 2024. http://www.theses.fr/2024PA131014.
Pełny tekst źródłaIn this thesis, we have focused our interest on identifying technologies /methodologies in detecting artificially generated academic content. The principal contributions of this thesis are threefold. First, we built several corpora that are composed of machine generated academic text. In this task we utilized several latest NLG models for the generation task. These corpora contain contents that are fully generated as well as contents that are composed in a hybrid manner (with human intervention). Then, we employed several statistical as well as deep learning models for the detection of generated contents from original (human written) content. In this scenario, we considered detection as a binary classification task. Thus several SOTA classification models were employed. The models were improved or modified using ensembling techniques to gain higher accuracies in detection. Moreover, we made use of several latest detection tools to identify their capability in distinguishing machine generated text. Finally, the generated corpora were tested against knowledge bases to find any mismatches that could help to improve the detection task. The results of this thesis underline the importance of mimicking human behavior in leveraging the generation models as well of using realistic and challenging corpora in future research aimed at detecting artificially generated text. Finally, we would like to highlight the fact that no matter how advanced the technology is, it is always crucial to concentrate on the ethical aspect of making use of such technology
Kurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Pełny tekst źródłaNguyen, Minh Tien. "Détection de textes générés automatiquement". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM025/document.
Pełny tekst źródłaAutomatically generated text has been used in numerous occasions with distinct intentions. It can simply go from generated comments in an online discussion to a much more mischievous task, such as manipulating bibliography information. So, this thesis first introduces different methods of generating free texts that resemble a certain topic and how those texts can be used. Therefore, we try to tackle with multiple research questions. The first question is how and what is the best method to detect a fully generated document.Then, we take it one step further to address the possibility of detecting a couple of sentences or a small paragraph of automatically generated text by proposing a new method to calculate sentences similarity using their grammatical structure. The last question is how to detect an automatically generated document without any samples, this is used to address the case of a new generator or a generator that it is impossible to collect samples from.This thesis also deals with the industrial aspect of development. A simple overview of a publishing workflow from a high-profile publisher is presented. From there, an analysis is carried out to be able to best incorporate our method of detection into the production workflow.In conclusion, this thesis has shed light on multiple important research questions about the possibility of detecting automatically generated texts in different setting. Besides the researching aspect, important engineering work in a real life industrial environment is also carried out to demonstrate that it is important to have real application along with hypothetical research
Nahnsen, Thade, Ozlem Uzuner i Boris Katz. "Lexical Chains and Sliding Locality Windows in Content-based Text Similarity Detection". 2005. http://hdl.handle.net/1721.1/30546.
Pełny tekst źródłaKsiążki na temat "AI Generated Text Detection"
Schuman, Corey. Specimens of AI Generated Text: Aphorism Edition. Independently Published, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "AI Generated Text Detection"
Zhang, Yuehan, Yongqiang Ma, Jiawei Liu, Xiaozhong Liu, Xiaofeng Wang i Wei Lu. "Detection Vs. Anti-detection: Is Text Generated by AI Detectable?" W Wisdom, Well-Being, Win-Win, 209–22. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57850-2_16.
Pełny tekst źródłaNajee-Ullah, Ahmad, Luis Landeros, Yaroslav Balytskyi i Sang-Yoon Chang. "Towards Detection of AI-Generated Texts and Misinformation". W Socio-Technical Aspects in Security, 194–205. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-10183-0_10.
Pełny tekst źródłaCarré, Marion. "Post-Truth". W Edition Museum, 187–98. Bielefeld, Germany: transcript Verlag, 2023. http://dx.doi.org/10.14361/9783839467107-017.
Pełny tekst źródła(Mary) Tai, Hsueh-Yung. "Applications of Big Data and Artificial Intelligence". W Digital Health Care in Taiwan, 207–17. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05160-9_11.
Pełny tekst źródłaZhang, Huidi, Junming Gong i Wei Wu. "Artificial Intelligence for Text Generation: An Intellectual Property Perspective". W AI-generated Content, 266–79. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_23.
Pełny tekst źródłaBokolo, Biodoumoye George, Praise Onyehanere, Ebikela Ogegbene-Ise, Itunu Olufemi i Josiah Nii Armah Tettey. "Leveraging Machine Learning for Crime Intent Detection in Social Media Posts". W AI-generated Content, 224–36. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-7587-7_19.
Pełny tekst źródłaGragnaniello, Diego, Francesco Marra i Luisa Verdoliva. "Detection of AI-Generated Synthetic Faces". W Handbook of Digital Face Manipulation and Detection, 191–212. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-87664-7_9.
Pełny tekst źródłaCozzolino, Davide, Giovanni Poggi, Matthias Nießner i Luisa Verdoliva. "Zero-Shot Detection of AI-Generated Images". W Lecture Notes in Computer Science, 54–72. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-72649-1_4.
Pełny tekst źródłaPham, Van Khien, i GueeSang Lee. "Robust Text Detection in Natural Scene Images". W AI 2016: Advances in Artificial Intelligence, 720–25. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-50127-7_66.
Pełny tekst źródłaLiu, Chien-Liang, i Hung-Yu Kao. "CopyCAT: Masking Strategy Conscious Augmented Text for Machine Generated Text Detection". W Advances in Knowledge Discovery and Data Mining, 367–79. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-33374-3_29.
Pełny tekst źródłaStreszczenia konferencji na temat "AI Generated Text Detection"
Chandana, Induri, Oruganti Mariya Reshma, Nerella Geetha Sree, Bommu Jagadeesh Reddy i Syed Shareefunnisa. "Detecting AI Generated Text". W 2024 2nd World Conference on Communication & Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692028.
Pełny tekst źródłaGupta, Shreya, i Deepa Gupta. "Detection and Classification of AI-Generated Text". W 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/icccnt61001.2024.10724991.
Pełny tekst źródłaJavaji, Prashanth, Pulaparthi Satya Sreeya i Sudha Rajesh. "Detection of AI Generated Text With BERT Model". W 2024 2nd World Conference on Communication & Computing (WCONF), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/wconf61366.2024.10692072.
Pełny tekst źródłaKalra, Mehar Prateek, Ansh Mathur i C. Patvardhan. "Detection of AI-generated Text: An Experimental Study". W 2024 IEEE 3rd World Conference on Applied Intelligence and Computing (AIC), 552–57. IEEE, 2024. http://dx.doi.org/10.1109/aic61668.2024.10731116.
Pełny tekst źródłaKuznetsov, Kristian, Eduard Tulchinskii, Laida Kushnareva, German Magai, Serguei Barannikov, Sergey Nikolenko i Irina Piontkovskaya. "Robust AI-Generated Text Detection by Restricted Embeddings". W Findings of the Association for Computational Linguistics: EMNLP 2024, 17036–55. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.992.
Pełny tekst źródłaGakpetor, Joshua Mawudem, Martin Doe, Michael Yeboah-Sarpong Damoah, Dominic Dalyngton Damoah, John Kingsley Arthur i Michael Tetteh Asare. "AI-Generated and Human-Written Text Detection Using DistilBERT". W 2024 IEEE SmartBlock4Africa, 1–7. IEEE, 2024. https://doi.org/10.1109/smartblock4africa61928.2024.10779494.
Pełny tekst źródłaVacariu, Andrei-Nicolae, Marian Bucos, Marius Otesteanu i Bogdan Dragulescu. "Automated Detection of AI-Generated Text Using LLM Embedding-Driven ML Models". W 2024 International Symposium on Electronics and Telecommunications (ISETC), 1–4. IEEE, 2024. https://doi.org/10.1109/isetc63109.2024.10797258.
Pełny tekst źródłaAggarwal, Kush, Sahib Singh, Parul, Vipin Pal i Satyendra Singh Yadav. "A Framework for Enhancing Accuracy in AI Generated Text Detection Using Ensemble Modelling". W 2024 IEEE Region 10 Symposium (TENSYMP), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/tensymp61132.2024.10752173.
Pełny tekst źródłaKavathekar, Ishan, Anku Rani, Ashmit Chamoli, Ponnurangam Kumaraguru, Amit P. Sheth i Amitava Das. "Counter Turing Test (CT2): Investigating AI-Generated Text Detection for Hindi - Ranking LLMs based on Hindi AI Detectability Index (ADI_hi)". W Findings of the Association for Computational Linguistics: EMNLP 2024, 4902–26. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.findings-emnlp.282.
Pełny tekst źródłaHuang, Guanhua, Yuchen Zhang, Zhe Li, Yongjian You, Mingze Wang i Zhouwang Yang. "Are AI-Generated Text Detectors Robust to Adversarial Perturbations?" W Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 6005–24. Stroudsburg, PA, USA: Association for Computational Linguistics, 2024. http://dx.doi.org/10.18653/v1/2024.acl-long.327.
Pełny tekst źródła