Artykuły w czasopismach na temat „Age hardening”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Age hardening.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Age hardening”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

KODA, Shigeyasu. "Age-hardening of aluminum alloys." Journal of Japan Institute of Light Metals 36, nr 8 (1986): 525–33. http://dx.doi.org/10.2464/jilm.36.525.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Chen, Zhong Wei, Li Fan i Pei Chen. "Early Age Hardening Response of Al-Cu-Mg Alloys". Advanced Materials Research 146-147 (październik 2010): 1327–30. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1327.

Pełny tekst źródła
Streszczenie:
The early age hardening behavior in Al-Cu-Mg alloys with fixed Cu content (0.50 wt%) and varying amounts of Mg has been studied by hardness tests and TEM observation. Two alloys both exhibit the early rapid hardening phenomenon based on large solute-aggregates analysis. Ageing time of early stage rapid hardening of Al-0.5Cu-1.99Mg alloys is less than that of Al-0.5Cu-1.48Mg alloys. For two alloys, ageing time of early stage rapid age hardening reduces with artificial ageing temperature increasing. The early stage rapid age hardening is depended on the composition and artificial ageing temperature. Forming larger solute-aggregates may give rise to early rapid age hardening.
Style APA, Harvard, Vancouver, ISO itp.
3

Ichikawa, Fumitaka, Masayoshi Sawada i Yusuke Kohigashi. "Age-hardening Behavior in γ′-phase Precipitation-hardening Ni-based Superalloy". Tetsu-to-Hagane 108, nr 1 (2022): 54–63. http://dx.doi.org/10.2355/tetsutohagane.tetsu-2021-053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

KODA, Shigeyasu. "Age-hardening of aluminum alloys. (II)". Journal of Japan Institute of Light Metals 36, nr 9 (1986): 594–606. http://dx.doi.org/10.2464/jilm.36.594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Khan, Shabana, Jung B. Singh i A. Verma. "Age hardening behaviour of Alloy 693". Materials Science and Engineering: A 697 (czerwiec 2017): 86–94. http://dx.doi.org/10.1016/j.msea.2017.04.109.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Antipov, A. I., V. N. Moiseev i N. I. Moder. "Age hardening of VT35 titanium alloy". Metal Science and Heat Treatment 38, nr 12 (grudzień 1996): 522–26. http://dx.doi.org/10.1007/bf01154082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Saheb, Nouari, Abdullah Khalil, Abbas Saeed Hakeem, Tahar Laoui, N. Al-Aqeeli i A. M. Al-Qutub. "Age Hardening Behavior of Carbon Nanotube Reinforced Aluminum Nanocomposites". Journal of Nano Research 21 (grudzień 2012): 29–35. http://dx.doi.org/10.4028/www.scientific.net/jnanor.21.29.

Pełny tekst źródła
Streszczenie:
In the present work, age hardening behavior of CNT reinforced Al6061 and Al2124 nanocomposites, prepared by ball milling and spark plasma sintering, was investigated. The effect of CNT content, annealing time and temperature on the age hardening behavior of the nanocomposites was evaluated and compared to the monolithic alloys prepared and age hardened under the same conditions. It was found that CNTs have a negative influence on the age hardening of the alloys. The alloys displayed standard age hardening behavior i.e. a sharp increase in hardness during initial aging followed by a steady decrease in hardness. Whereas the nanocomposites did not only display initial softening during aging but also showed reduced age hardening efficiency. The hardening efficiency was found to decrease with increasing CNT content. The complicated behavior of nanocomposites was explained in terms of dislocation recovery, large thermal mismatch between matrix and CNTs and bulk microstructure of the composites.
Style APA, Harvard, Vancouver, ISO itp.
8

Jahn, R., W. T. Donlon i J. E. Allison. "Characterization of Age Hardening in a 319 AL Alloy". Microscopy and Microanalysis 4, S2 (lipiec 1998): 514–15. http://dx.doi.org/10.1017/s1431927600022698.

Pełny tekst źródła
Streszczenie:
319 Al (7.2-7.7wt% Si, 3.3-3.7%Cu, 0.25-0.35%Mg, 0.4%max.Fe, 0.2-0.3%Mn, 0.25%max Zn, 0.25%max Ti) is utilized by the automotive industry for engine blocks and cylinder heads. Detailed understanding of the age hardening behavior of these types of alloys is important to optimize the processing of these components to yield the desired physical properties. Age hardening curves for temperatures between 100 and 305°C have been determined for a commercial grade 319 Al alloy having a dendrite arm spacing of 30(im. Samples for TEM were prepared by conventional grinding and dimpling followed by ion milling at 4keV at liquid nitrogen temperatures. The phases formed within the primary aluminum dendrites during age hardening were characterized by JEOL 2000FX and an OXFORD ISIS microanalysis system.Age hardening curves for Al-Cu alloys are characterized by multiple hardening stages as shown by Silcock, et al. Figure 1 shows an example of a 150°C age hardening curve for 319 Al.
Style APA, Harvard, Vancouver, ISO itp.
9

Lee, Che-Fu, i Tao-Tsung Shun. "Age Heat Treatment of Al0.5CoCrFe1.5NiTi0.5 High-Entropy Alloy". Metals 11, nr 1 (5.01.2021): 91. http://dx.doi.org/10.3390/met11010091.

Pełny tekst źródła
Streszczenie:
In this study, Al0.5CoCrFe1.5NiTi0.5 high-entropy alloy was heat-treated from 500 °C to 1200 °C for 24 h to investigate age-hardening phenomena and microstructure evolution. The as-cast alloy, with a hardness of HV430, exhibited a dendritic structure comprising an (Fe,Cr)-rich FCC phase and a (Ni,Al,Ti)-rich B2 phase, and the interdendrite exhibited a spinodal decomposed structure comprising an (Fe,Cr)-rich BCC phase and a (Ni,Al,Ti)-rich B2 phase. Age hardening and softening occurred at 500 °C to 800 °C and 900 °C to 1100 °C, respectively. We observed optimal age hardening at 700 °C, and alloy hardness increased to HV556. The hardening was attributed to the precipitation of the σ phase, and the softening was attributed to the dissolution of the σ phase back into the matrix and coarsening of the microstructure. The appearance of fine Widmanstätten precipitates formed by the (Al,Ti)-rich BCC phase and (Ni,Al,Ti)-rich B2 phase at 1200 °C led to secondary hardening.
Style APA, Harvard, Vancouver, ISO itp.
10

Ismail, Z. H., i B. Bouchra. "Age-Hardening characteristics of an AlMgSi Alloy". Acta Physica Hungarica 71, nr 1-2 (kwiecień 1992): 3–7. http://dx.doi.org/10.1007/bf03156279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Bertagnoli, G., G. Mancini i F. Tondolo. "Numerical modelling of early-age concrete hardening". Magazine of Concrete Research 61, nr 4 (maj 2009): 299–307. http://dx.doi.org/10.1680/macr.2008.00071.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

DEXTER, A. R., R. HORN i W. D. KEMPER. "Two mechanisms for age-hardening of soil". Journal of Soil Science 39, nr 2 (czerwiec 1988): 163–75. http://dx.doi.org/10.1111/j.1365-2389.1988.tb01203.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Semboshi, Satoshi, Shigeo Sato, Akihiro Iwase i Takayuki Takasugi. "Discontinuous precipitates in age-hardening CuNiSi alloys". Materials Characterization 115 (maj 2016): 39–45. http://dx.doi.org/10.1016/j.matchar.2016.03.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Mayrhofer, P. H., M. Stoiber i C. Mitterer. "Age hardening of PACVD TiBN thin films". Scripta Materialia 53, nr 2 (lipiec 2005): 241–45. http://dx.doi.org/10.1016/j.scriptamat.2005.03.031.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Carter, D. H., A. C. McGeorge, L. A. Jacobson i P. W. Stanek. "Age hardening in beryllium-aluminum-silver alloys". Acta Materialia 44, nr 11 (listopad 1996): 4311–15. http://dx.doi.org/10.1016/1359-6454(96)00113-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Zaharieva, K., T. Nedeva i O. Sherbanov. "HARDENING OF CHILDREN UNDER 3 YEARS OF AGE – AN IMPORTANT COMPONENT OF DISPOSITION PROPHYLAXIS". EurasianUnionScientists 2, nr 12(81) (18.01.2021): 30–34. http://dx.doi.org/10.31618/esu.2413-9335.2020.2.81.1150.

Pełny tekst źródła
Streszczenie:
The hardening is a variety of activities which help increase the sustainability of the organisam to influnece the factors of the outer environment. Through natural factors and other physical means, the hardening aims to achieve perfection over the thermoregulation of the organisam. In its core the hardening is a conditional reflective process that is done through different outer irritants - air, sun baths, swimming.
Style APA, Harvard, Vancouver, ISO itp.
17

Westermann, Ida, Odd Sture Hopperstad, Knut Marthinsen i Bjørn Holmedal. "Work- and Age-Hardening Behaviour of a Commercial AA7108 Aluminium Alloy". Materials Science Forum 618-619 (kwiecień 2009): 555–58. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.555.

Pełny tekst źródła
Streszczenie:
Understanding and prediction of the mechanical properties of aluminium alloys are of great importance with respect to e.g. strength requirements and forming operations. In the 7xxx alloying system several mechanisms influence the hardening behaviour of the alloys, e.g. particle size and distribution, dislocation density, and alloying elements in solid solution. This work is an experimental study of work- and age-hardening considering a commercial AA7108 alloy in the as-cast and homogenized condition. Tensile specimens have been exposed to a solution heat treatment and a two-step age-hardening treatment with varying time at the final temperature. The tensile data for the different tempers have been evaluated in elucidation of already existing models based on the one-parameter framework by Kocks, Mecking, and Estrin. The particle size has been further investigated in the transmission electron microscope for one under- and one over-aged condition and the influence of particles on work-hardening behavior has been discussed.
Style APA, Harvard, Vancouver, ISO itp.
18

Feng, Chai, Cai Fu Yang, Su Hang, Yong Quan Zhang i Xu Zhou. "Cracking Resistance of Cu-Bearing Age-Hardening Steel". Key Engineering Materials 353-358 (wrzesień 2007): 2015–20. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.2015.

Pełny tekst źródła
Streszczenie:
In this paper, the weldablity of a low-carbon Cu-bearing age-hardening steel was evaluated using Y-groove cracking evaluation test. The results show that the steel has a low hardenability characteristic and cold-cracking susceptibility. It is also indicated that a crack-free weldment can be obtained during welding of this type of steel even at an ambient temperature as low as -5°C as well as in an absolute humidity lower than 4000Pa without any preheat treatment. A slight preheat treatment can prevent the joint from cracking when welding is carried out at lower ambient temperature or in higher absolute humidity.
Style APA, Harvard, Vancouver, ISO itp.
19

Humaun Kabir, Abu Syed, Jing Su, Mehdi Sanjari, In Ho Jung i Stephen Yue. "Age-Hardening Response of Mg-Al-Sn Alloys". Materials Science Forum 828-829 (sierpień 2015): 250–55. http://dx.doi.org/10.4028/www.scientific.net/msf.828-829.250.

Pełny tekst źródła
Streszczenie:
Precipitation hardening has been used before as one of the most effective strengthening methods for many metallic alloys. However, this method has not been studied completely in magnesium alloys, and the numbers of precipitation hardenable wrought Mg alloys are still very limited compared to aluminum alloys and steels. The age hardening responses of Mg-Al-Sn alloys in cast-homogenized condition were investigated by isothermal aging at 200°C for prolonged time. It was found that hardness can be improved significantly for the alloy with higher amounts of tin. The improvement in hardness was reasoned by the formation of precipitates. The shapes and morphology of the precipitates were different depending on the orientations of the grains. The precipitates were characterized by scanning electron microscope.
Style APA, Harvard, Vancouver, ISO itp.
20

Krishna, S. Chenna, K. Thomas Tharian, Bhanu Pant i Ravi S. Kottada. "Age-Hardening Characteristics of Cu-3Ag-0.5Zr Alloy". Materials Science Forum 710 (styczeń 2012): 563–68. http://dx.doi.org/10.4028/www.scientific.net/msf.710.563.

Pełny tekst źródła
Streszczenie:
Among the copper alloys, the Cu-3Ag-0.5Zr alloy is one of the potential candidates for combustion chamber of liquid rocket engine because of its optimum combination of high strength with thermal conductivity. The present study is a detailed characterization of microstructure, strength, and electrical conductivity during the aging treatment. The aging cycle for Cu-3Ag-0.5Zr alloy after the solution treatment (ST) was optimized to obtain higher hardness without compromising on electrical conductivity. The precipitates responsible for strengthening in aged samples are identified as nanocrystalline Ag precipitates with an average diameter of 9.0±2.0 nm.
Style APA, Harvard, Vancouver, ISO itp.
21

YANAGAWA, Masahiro, Shojiro OIE i Mutsumi ABE. "Age-hardening process of Al-Mg-Si alloys." Journal of Japan Institute of Light Metals 43, nr 3 (1993): 146–51. http://dx.doi.org/10.2464/jilm.43.146.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Shun, Tao-Tsung, Liang-Yi Chang i Ming-Hua Shiu. "Age-hardening of the CoCrFeNiMo0.85 high-entropy alloy". Materials Characterization 81 (lipiec 2013): 92–96. http://dx.doi.org/10.1016/j.matchar.2013.04.012.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Durmuş, Hülya Kaçar, i Cevdet Meriç. "Age-hardening behavior of powder metallurgy AA2014 alloy". Materials & Design 28, nr 3 (styczeń 2007): 982–86. http://dx.doi.org/10.1016/j.matdes.2005.11.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Guo, F., X. F. Huang, Z. W. Xie, K. S. Li, F. Gong, Y. J. Chen i Q. Chen. "Understanding the age-hardening mechanism of CrWN coating". Thin Solid Films 711 (październik 2020): 138298. http://dx.doi.org/10.1016/j.tsf.2020.138298.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Rogström, L., L. J. S. Johnson, M. P. Johansson, M. Ahlgren, L. Hultman i M. Odén. "Age hardening in arc-evaporated ZrAlN thin films". Scripta Materialia 62, nr 10 (maj 2010): 739–41. http://dx.doi.org/10.1016/j.scriptamat.2010.01.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Song, Z. Y., Q. Y. Sun, L. Xiao, J. Sun, L. C. Zhang, X. D. Guo i X. D. Li. "Age hardening and its modeling of Ti–2.5Cualloy". Materials Science and Engineering: A 568 (kwiecień 2013): 118–22. http://dx.doi.org/10.1016/j.msea.2013.01.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Mulligan, C. P., R. Wei, G. Yang, P. Zheng, R. Deng i D. Gall. "Microstructure and age hardening of C276 alloy coatings". Surface and Coatings Technology 270 (maj 2015): 299–304. http://dx.doi.org/10.1016/j.surfcoat.2015.02.030.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

del Valle, J. A., A. C. Picasso, I. Alvarez i R. Romero. "Age-hardening behavior of Inconel X-750 superalloy". Scripta Materialia 41, nr 3 (lipiec 1999): 237–43. http://dx.doi.org/10.1016/s1359-6462(99)00151-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Park, Won-Wook, i Tong-Hoon Kim. "Age hardening phenomena in rapidly solidified Al alloys". Scripta Metallurgica 22, nr 11 (styczeń 1988): 1709–14. http://dx.doi.org/10.1016/s0036-9748(88)80270-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Soffa, W. A., i D. E. Laughlin. "High-strength age hardening copper–titanium alloys: redivivus". Progress in Materials Science 49, nr 3-4 (styczeń 2004): 347–66. http://dx.doi.org/10.1016/s0079-6425(03)00029-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Medrano, S., i C. W. Sinclair. "Transient strain age hardening of Al–Mg alloys". Materialia 12 (sierpień 2020): 100796. http://dx.doi.org/10.1016/j.mtla.2020.100796.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Jia, S. G., X. M. Ning, P. Liu, M. S. Zheng i G. S. Zhou. "Age hardening characteristics of Cu-Ag-Zr alloy". Metals and Materials International 15, nr 4 (sierpień 2009): 555–58. http://dx.doi.org/10.1007/s12540-009-0555-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

MORRIS, D., L. REQUEJO i M. MUNOZMORRIS. "Age hardening in some Fe–Al–Nb alloys". Scripta Materialia 54, nr 3 (luty 2006): 393–97. http://dx.doi.org/10.1016/j.scriptamat.2005.10.022.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Ning, Y. T., S. H. Whang, S. C. Hsu i R. V. Raman. "Age-hardening response in rapidly quenched molybdenum alloys". Materials Science and Engineering 98 (luty 1988): 363–67. http://dx.doi.org/10.1016/0025-5416(88)90187-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Shun, Tao-Tsung, i Yu-Chin Du. "Age hardening of the Al0.3CoCrFeNiC0.1 high entropy alloy". Journal of Alloys and Compounds 478, nr 1-2 (czerwiec 2009): 269–72. http://dx.doi.org/10.1016/j.jallcom.2008.12.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Mendoza, L. Vargas, A. Barba, A. Bolarín i F. Sánchez. "Age hardening of Ni–P–Mo electroless deposit". Surface Engineering 22, nr 1 (luty 2006): 58–62. http://dx.doi.org/10.1179/174329406x84976.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Macchi, C. E., A. Somoza i J. F. Nie. "Age-hardening in a commercial Mg-based alloy". physica status solidi (c) 4, nr 10 (wrzesień 2007): 3538–41. http://dx.doi.org/10.1002/pssc.200675831.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Ringer, S. P., i K. Hono. "Microstructural Evolution and Age Hardening in Aluminium Alloys". Materials Characterization 44, nr 1-2 (styczeń 2000): 101–31. http://dx.doi.org/10.1016/s1044-5803(99)00051-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Blake, N., i M. A. Hopkins. "Constitution and age hardening of Al-Sc alloys". Journal of Materials Science 20, nr 8 (sierpień 1985): 2861–67. http://dx.doi.org/10.1007/bf00553049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Lee, Che-Fu, i Tao-Tsung Shun. "Age Hardening of the Al0.5CoCrNiTi0.5 High-Entropy Alloy". Metallurgical and Materials Transactions A 45, nr 1 (13.08.2013): 191–95. http://dx.doi.org/10.1007/s11661-013-1931-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Ahmed, T., F. H. Hayes i H. J. Rack. "Age-hardening response of β2 TiAlV". Materials Science and Engineering: A 192-193 (luty 1995): 155–64. http://dx.doi.org/10.1016/0921-5093(94)03230-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Yamasaki, S., i K. Takano. "Effect of Nitrogen on Age-Hardening of Metastable Austenitic Stainless Steel after Cold Drawing". Materials Science Forum 879 (listopad 2016): 2164–69. http://dx.doi.org/10.4028/www.scientific.net/msf.879.2164.

Pełny tekst źródła
Streszczenie:
Metastable austenitic stainless steels transform to the deformation-induced martensite by cold working. Especially, metastable stainless steel with high nitrogen content has high age-hardening property after aging treatment. In this work, effect of nitrogen on age-hardening of metastable austenitic stainless steel (SUS304: 0.04% N, type-SUS201: 0.18% N) after cold drawing was investigated, and age-hardening mechanism was elucidated. Strength after cold drawing of SUS201 containing high N is higher than that of SUS304, and the age-hardening of SUS201 is significantly higher than that of SUS304 at the aging temperature of 200 ~ 500°C. It is suggested that strengthening mechanism of SUS201 is caused by aging products of N, because exothermal reaction in SUS201 is clearly recognized at low aging temperature by DSC analysis.
Style APA, Harvard, Vancouver, ISO itp.
43

Wu, Hai Jun, Xiao Qing Zuo, Ying Wu Wang, Kun Hua Zhang i Yu Zeng Chen. "Age-Hardening Behavior of Pd-Ag-Sn-In-Zn Alloy". Advanced Materials Research 1028 (wrzesień 2014): 14–19. http://dx.doi.org/10.4028/www.scientific.net/amr.1028.14.

Pełny tekst źródła
Streszczenie:
Pd-Ag-Sn-In-Zn alloy was subjected to isothermal aging treatments at 400°C, 500°C, and 650°C. Age-hardening behaviour and related microstructure changes of the aged alloy were studied by means of hardness test, X-ray diffraction (XRD), scanning electron microscopic (SEM) and energy dispersive spectrometer (EDS). The results indicate that the hardness of the alloy reaches a highest value of 348Hv after aging at 650°C for 20min. Further increasing the aging time leads to softening. The hardening of the alloy at early stage of the age-hardening at 650°C is ascribed to the formation of lamellar (α1+ β) precipitates along the grain boundaries of α matrix. The softening of the alloy occurred by further increasing aging time is caused by the coarsening of the precipitates.
Style APA, Harvard, Vancouver, ISO itp.
44

Yu, Shilun, Yingchun Wan, Chuming Liu i Jian Wang. "Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy". Materials Characterization 156 (październik 2019): 109841. http://dx.doi.org/10.1016/j.matchar.2019.109841.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Wang, Gui Qing, Yan Liu, Guo Cheng Ren i Zhong Kui Zhao. "Comparing Age Hardening Behaviors of Al-3Cu and Al-8Si-3Cu Alloys". Advanced Materials Research 146-147 (październik 2010): 1667–70. http://dx.doi.org/10.4028/www.scientific.net/amr.146-147.1667.

Pełny tekst źródła
Streszczenie:
The aging hardening behaviors of Al-8Si-3%Cu (wt%) and Al-3Cu (wt%) alloys have been investigated. Samples were solution treated at 500 for 24 h followed by water quenching before aging. Hardness has been measured for quenched samples aging at 150°C. Strong age hardening occurs for Al-3Cu alloy and hardness increases by about 60% after peak aging. There is a hardness decrease in the early aging stage of Al-8Si-3Cu alloy and hardness increases by about 15% after peak aging. The age precipitation behaviors have been analyzed using DSC and TEM. Effects of microstructure characteristics on age precipitation and age hardening response of Al-8Si-3Cu alloy have been discussed.
Style APA, Harvard, Vancouver, ISO itp.
46

Zhou, Ying, i Gui Qing Wang. "Analyzing Age Hardening Behaviors of an Al-Si-Mg Cast Alloy". Advanced Materials Research 189-193 (luty 2011): 3945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.3945.

Pełny tekst źródła
Streszczenie:
The age hardening process for permanent mold samples of Al-7Si-0.3Mg cast alloy has been investigated by hardness measurement, differential scanning calorimetry (DSC), transmission electron microscope (TEM) and electron probe micro analyzer (EPMA). Age hardening results show that the age hardening response of Al-7Si-0.3Mg alloy is independent on cooling rate. There is a hardness value decrease about 10 HV after T4 treatment. Hardness value after as-cast aging at 150 °C for 20 h is just a little smaller than that after T6 treatment for permanent mold samples. The precipitation behaviors during T6 treatment and as cast aging treatment have been analyzed by DSC analyses. The hardness measurement results have been discussed by analyzing the precipitation behaviors and the Mg and Si concentration in α (Al).
Style APA, Harvard, Vancouver, ISO itp.
47

Hansen, Vidar, Aferdita Vevecka-Priftaj, J. Fjerdingen, Y. Langsrud i J. Gjønnes. "The Influence of Silicon on Age Hardening Kinetics and Phase Precipitation in Al-Mg-Zn Alloys". Materials Science Forum 519-521 (lipiec 2006): 579–84. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.579.

Pełny tekst źródła
Streszczenie:
Solid solution treatment at 450°C and 550°C and subsequent two step age hardening at 100°C and 150 °C up to 144 hrs. have been carried out for two conventional and four experimental 7xxx type of alloys with different Mg, Zn, Fe and Si content. The influence of silicon on phase and kinetics of age hardening zones and particles has been followed. Increase in silicon required higher solid solution temperature in order to achieve reasonable age hardening response. High silicon alloys, solid solution treated at high temperature, have tendency to recrystallize during aging. The GP-zone formation is affected by the ratio between Mg, Zn and Si. In alloys with Mg/Zn ratio in the range 1:2 GP(I)-type zones are formed, at higher solid solution temperature also GP(II); low Mg-content favor GP(II)- zones. In high silicon alloys GP-zones of b’’’-type (from the Al-Mg-Si) system contribute to age hardening. The precipitation kinetics of the main hardening phase h’, is influenced by the preceding GP-zone stage.
Style APA, Harvard, Vancouver, ISO itp.
48

Ding, Zhu, Xiao Dong Wang, Bi Qin Dong, Zong Jin Li i Feng Xing. "Early Age Property Study of Phosphate Cement by Electrical Conductivity Measurement". Key Engineering Materials 544 (marzec 2013): 409–14. http://dx.doi.org/10.4028/www.scientific.net/kem.544.409.

Pełny tekst źródła
Streszczenie:
The properties and electrical conductivity at early age of magnesium phosphate cement (MPC) was studied. Electrical resistivity or conductivity had been used for explaining the microstructure development of cement materials. In the current study, an electrodeless resistivity meter (ERM) was used to study the early property of MPC, which was mixed with and without fly ash respectively. The hardening process was investigated by the conductivity variation, incorporating with strength development and temperature rise during the initial reaction. The products and microstructure morphology of MPC paste were analysed by XRD and SEM. Results showed the mechanical property of MPC can be improved by fly ash. Fly ash lowers the maximum temperature rise during initial reaction of MPC with water. The electrical conductivity results divids the hardening process of MPC into three stages: acceleration, deceleration and stabilization. Conductivity measurement is an excellent method to explain the hardening process of MPC.
Style APA, Harvard, Vancouver, ISO itp.
49

Luo, Xiaobing, Chongchen Xiang, Feng Chai, Zijian Wang, Zhengyan Zhang i Hanlin Ding. "A Comparison Study on the Strengthening and Toughening Mechanism between Cu-Bearing Age-Hardening Steel and NiCrMoV Steel". Materials 14, nr 15 (30.07.2021): 4276. http://dx.doi.org/10.3390/ma14154276.

Pełny tekst źródła
Streszczenie:
Cu-bearing age-hardening steel has significant potential in shipbuilding applications due to its excellent weldability as compared to conventional NiCrMoV steel. Not much research has been carried out to analyze the differences in the mechanisms of strength and toughness between Cu-bearing age-hardening and NiCrMoV steel. Both steels were heat treated under the same conditions: they were austenized at 900 °C and then quenched to room temperature, followed by tempering at 630 °C for 2 h. The uniaxial tensile test reveals that the Cu-bearing age-hardening steel exhibits relatively lower strength but larger plasticity than NiCrMoV steel. The lower contents of Carbon and other alloying elements is one of possible reasons for these differences in mechanical properties. Transmission Electron Microscope observations show that two types of precipitates, Cr carbides and Cu-rich particles, exist in tempered Cu-bearing age-hardening steel. Cu-rich particles with sizes of 20–40 nm can inhibit the dislocation motion during deformation, which then results in dislocation pile ups and multiplication; this makes up the strength loss of Cu-bearing age-hardening steel and simultaneously improves its plasticity.
Style APA, Harvard, Vancouver, ISO itp.
50

Hirosawa, Shoichi, Yong Peng Tang, Zenji Horita, Seung Won Lee, Kenji Matsuda i Daisuke Terada. "Three Strategies to Achieve Concurrent Strengthening by Ultrafine-Grained and Precipitation Hardenings for Severely Deformed Age-Hardnable Aluminum Alloys". Advanced Materials Research 1135 (styczeń 2016): 161–66. http://dx.doi.org/10.4028/www.scientific.net/amr.1135.161.

Pełny tekst źródła
Streszczenie:
In this paper, comprehensive studies on the age-hardening behavior and precipitate microstructures of severely deformed and then artificially aged aluminum alloys have been conducted to clarify whether or not concurrent strengthening by ultrafine-grained and precipitation hardenings can be achieved. From our graphically-illustrated equivalent strain dependence of both the attained hardness and increment/decrement in hardness during aging (i.e. age-hardenability), three strategies to maximize the combined processing of severe plastic deformation and age-hardening technique are proposed. (1) Lowering of aging temperature and (2) utilization of microalloying elements can improve not only the attained hardness but also the age-hardenability of high-pressure torsion (HPT) specimens of Al-Mg-Si (-Cu) alloy due to the increased volume fraction of transgranular precipitates. A further increase in hardness can be achieved by (3) taking advantage of spinodal decomposition for HPTed Al-Li-Cu alloy, in which nanoscale precipitates of δ’ phase are successfully formed within ultrafine grains, irrespective of the higher number density of grain boundaries. The attained hardness of >HV290 in the latter alloy is almost the highest among conventional wrought aluminum alloys, and therefore our proposed strategies will be useful for designing concurrently strengthened severely-deformed age-hardenable aluminum alloys.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii