Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: AgBiTeO.

Artykuły w czasopismach na temat „AgBiTeO”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „AgBiTeO”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Mukherjee, Madhubanti, i Abhishek K. Singh. "Strong Chemical Bond Hierarchy Leading to Exceptionally High Thermoelectric Figure of Merit in Oxychalcogenide AgBiTeO". ACS Applied Materials & Interfaces 12, nr 7 (27.01.2020): 8280–87. http://dx.doi.org/10.1021/acsami.9b21358.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Wu, Di, Jun Guo, Zhen-Hua Ge i Jing Feng. "Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity". Nanomaterials 11, nr 12 (14.12.2021): 3390. http://dx.doi.org/10.3390/nano11123390.

Pełny tekst źródła
Streszczenie:
Varying structure Bi2Te3-based nanocomposite powders including pure Bi2Te3, Bi2Te3/Bi core−shell, and Bi2Te3/AgBiTe2 heterostructure were synthesized by hydrothermal synthesis using Bi2S3 as the template and hydrazine as the reductant. Successful realization of Bi2Te3-based nanostructures were concluded from XRD, FESEM, and TEM. In this work, the improvement in the performance of the rhodamine B (RhB) decomposition efficiency under visible light was discussed. The Bi2Te3/AgBiTe2 heterostructures revealed propitious photocatalytic performance ca. 90% after 60 min. The performance was over Bi2Te3/Bi core-shell nanostructures (ca. 40%) and more, exceeding pure Bi2Te3 (ca. 5%). The reason could be scrutinized in terms of the heterojunction structure, improving the interfacial contact between Bi2Te3 and AgBiTe2 and enabling retardation in the recombination rate of the photogenerated charge carriers. A credible mechanism of the charge transfer process in the Bi2Te3/AgBiTe2 heterostructures for the decomposition of an aqueous solution of RhB was also explicated. In addition, this work also investigated the stability and recyclability of a Bi2Te3/AgBiTe2 heterojunction nanostructure photocatalyst. In addition, this paper anticipates that the results possess broad potential in the photocatalysis field for the design of a visible light functional and reusable heterojunction nanostructure photocatalyst.
Style APA, Harvard, Vancouver, ISO itp.
3

Zhu, Huaxing, Bin Zhang, Ting Zhao, Sikang Zheng, Guiwen Wang, Guoyu Wang, Xu Lu i Xiaoyuan Zhou. "Achieving glass-like lattice thermal conductivity in PbTe by AgBiTe2 alloying". Applied Physics Letters 121, nr 24 (12.12.2022): 241903. http://dx.doi.org/10.1063/5.0131362.

Pełny tekst źródła
Streszczenie:
Here, we report the thermal transport properties of lead telluride (PbTe)1− x(AgBiTe2) x ( x = 0.05 and 0.15) alloys. It is found that the prominent peak in lattice thermal conductivity at 15 K for PbTe disappears after forming solid solution with AgBiTe2, exhibiting a typical glass-like thermal transport behavior. The high energy phonons are scattered by the point defects induced by cationic disorder, while the appearance of soft vibrational modes arises from Ag atoms acting like Einstein oscillators ( ΘE1 = 5.4 K, ΘE2 = 67.3 K), which substantially affects the lattice thermal conductivity. Further with nanostructuring, the mid-frequency phonons are scattered by the high-density disc-like Ag2Te precipitates. As a result, an ultralow lattice thermal conductivity (≤1.0 W m−1 K−1) for (PbTe)0.85(AgBiTe2)0.15 is obtained, which is the lowest value ever reported to date for the PbTe-based TE materials. Our work highlights a synthetic route to achieve glass-like lattice thermal conductivity in PbTe over the entire temperature range.
Style APA, Harvard, Vancouver, ISO itp.
4

Liu, Xiao-Cun, i Ming-Yan Pan. "Structural Phase Transition and Related Thermoelectric Properties in Sn Doped AgBiSe2". Crystals 11, nr 9 (25.08.2021): 1016. http://dx.doi.org/10.3390/cryst11091016.

Pełny tekst źródła
Streszczenie:
AgBiSe2, which exhibits complex structural phase transition behavior, has recently been considered as a potential thermoelectric material due to its intrinsically low thermal conductivity. In this work, we investigate the crystal structure of Sn-doped AgBiSe2 through powder X-ray diffraction and differential scanning calorimetry measurements. A stable cubic Ag1−x/2Bi1−x/2SnxSe2 phase can be obtained at room temperature when the value of x is larger than 0.2. In addition, the thermoelectric properties of Ag1−x/2Bi1−x/2SnxSe2 (x = 0.2, 0.25, 0.3, 0.35) are investigated, revealing that Ag1−x/2Bi1−x/2SnxSe2 compounds are intrinsic semiconductors with a low lattice thermal conductivity. This work provides new insights into the crystal structure adjustment of AgBiSe2 and shows that Ag1−x/2Bi1−x/2SnxSe2 is a potentially lead-free thermoelectric material candidate.
Style APA, Harvard, Vancouver, ISO itp.
5

Tan, Gangjian, Fengyuan Shi, Hui Sun, Li-Dong Zhao, Ctirad Uher, Vinayak P. Dravid i Mercouri G. Kanatzidis. "SnTe–AgBiTe2 as an efficient thermoelectric material with low thermal conductivity". J. Mater. Chem. A 2, nr 48 (2014): 20849–54. http://dx.doi.org/10.1039/c4ta05530f.

Pełny tekst źródła
Streszczenie:
SnTe–AgBiTe2 is not only a solid solution but a nanocomposite. The alloying effect coupled with intense interface scattering leads to considerably decreased lattice thermal conductivity. Bi is much more powerful in neutralizing holes than Sb, giving rise to a much higher Seebeck coefficient. A high ZT was then obtained.
Style APA, Harvard, Vancouver, ISO itp.
6

Sakakibara, Tsutomu, Yasuo Takigawa i Kou Kurosawa. "Hall Mobility Enhancement in AgBiTe2–Ag2Te Composites". Japanese Journal of Applied Physics 41, Part 1, No. 5A (15.05.2002): 2842–44. http://dx.doi.org/10.1143/jjap.41.2842.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

SAKAKIBARA, Tsutomu, Yasuo TAKIGAWA, Akihiro KAMEYAMA i Kou KUROSAWA. "Improvement of Thermoelectric Properties by Dispersing Ag2Te Grains in AgBiTe2 Matrix: Composition Effects in (AgBiTe2)1-x(Ag2Te)x." Journal of the Ceramic Society of Japan 110, nr 1280 (2002): 259–63. http://dx.doi.org/10.2109/jcersj.110.259.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Guin, Satya N., Velaga Srihari i Kanishka Biswas. "Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping". Journal of Materials Chemistry A 3, nr 2 (2015): 648–55. http://dx.doi.org/10.1039/c4ta04912h.

Pełny tekst źródła
Streszczenie:
Halide ion (Cl/Br/I) aliovalently dopes on the Se2−sublattice and contributes one n-type carrier in AgBiSe2, which gives rise to improved electronic transport properties. A peakZT, value of ∼0.9 at ∼810 K has been achieved for the AgBiSe1.98Cl0.02sample, which makes it a promising n-type thermoelectric material for mid-temperature applications.
Style APA, Harvard, Vancouver, ISO itp.
9

SAKAKIBARA, Tsutomu, Takanori IMOTO, Yasuo TAKIGAWA i Kou KUROSAWA. "Thermoelectric properties of (AgBiTe2)1-x(Ag2Te)x composites". Journal of Advanced Science 12, nr 4 (2000): 392–96. http://dx.doi.org/10.2978/jsas.12.392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Goto, Y., A. Nishida, H. Nishiate, M. Murata, C. H. Lee, A. Miura, C. Moriyoshi, Y. Kuroiwa i Y. Mizuguchi. "Effect of Te substitution on crystal structure and transport properties of AgBiSe2thermoelectric material". Dalton Transactions 47, nr 8 (2018): 2575–80. http://dx.doi.org/10.1039/c7dt04821a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Zou, Minmin, Qing Liu, Chao-Feng Wu, Tian-Ran Wei, Qing Tan, Jing-Feng Li i Fei Chen. "Comparing the role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2". RSC Advances 8, nr 13 (2018): 7055–61. http://dx.doi.org/10.1039/c7ra12819c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Böcher, Felix, Sean P. Culver, Jan Peilstöcker, Kai S. Weldert i Wolfgang G. Zeier. "Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics". Dalton Transactions 46, nr 12 (2017): 3906–14. http://dx.doi.org/10.1039/c7dt00381a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Plachkova, S. K., i I. A. Avramova. "Materials for Thermoelectric Application Based on the System GeTe-AgBiTe2". physica status solidi (a) 184, nr 1 (marzec 2001): 195–200. http://dx.doi.org/10.1002/1521-396x(200103)184:1<195::aid-pssa195>3.0.co;2-e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Zayed, H. A. "Optical properties of agbise2 thin films". Thin Solid Films 274, nr 1-2 (marzec 1996): 128–32. http://dx.doi.org/10.1016/0040-6090(95)07095-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Paduchina, Yu A., N. S. Chukhareva, K. A. Novoselov, E. E. Palenova, E. V. Belogub, I. A. Blinov, D. A. Artemyev i M. A. Rassomakhin. "Precious metal mineralogy of the Murtykty gold deposit, South Urals". МИНЕРАЛОГИЯ (MINERALOGY) 5 (16.07.2019): 57–68. http://dx.doi.org/10.35597/2313-545x-2019-5-2-57-68.

Pełny tekst źródła
Streszczenie:
Ore mineralogy of the Murtykty gold deposit is presented in the paper and main attention is paid to the mode of occurrence of precious metals. Ores are pyrite-bearing quartz-chlorite (±sericite, ±carbonate of the dolomite-ankerite series) metasomatites with variable ratios between rock-forming minerals. Pyrite is the major sulfde; sphalerite, galena and chalcopyrite are secondary in abundance. Rare minerals include pyrrhotite, arsenopyrite, altaite, coloradoite, hessite, petzite, calaverite, volynskite, rucklidgeite, and native gold. The Ag content of native gold ranges from 6.11 to 35.32 wt. %. Signifcant amount of Au and Ag occurs in a telluride form: hessite Ag2Te, petzite Ag3AuTe2, calaverite AuTe2, and volynskite AgBiTe2. The refractory features of sulfde ores are caused by diverse modes of occurrences of precious metal.
Style APA, Harvard, Vancouver, ISO itp.
16

Termsaithong, Patamaporn, i Aphichart Rodchanarowan. "Synthesis of Ternary Semiconductor Silver Bismuth Telluride by Chemical Bath Deposition". Key Engineering Materials 751 (sierpień 2017): 489–93. http://dx.doi.org/10.4028/www.scientific.net/kem.751.489.

Pełny tekst źródła
Streszczenie:
In this study, the synthesis of the ternary semiconductor sensitized silver bismuth telluride (AgBiTe2: SBT) particles was produced in the solution of AgNO3, Bi (NO3)3×5H2O and Na2O3Te by using a chemical bath deposition (CBD) method and annealing at 200°C for 1 h. According to scanning electron microscopy (SEM), the particle size of SBT after annealing was bigger than before annealing. Based on X-ray diffraction, the SBT after annealing for 1h became more crystalline. In addition, the XRF data also demonstrated that the SBT powder consists of Ag, Bi, and Te as dominant elements. The XRD result confirms a successful growth of the SBT particles with rhombohedral crystal structure. Based on the obtaining results, the SBT particles were successfully synthesized and potentially applied for solar cell application.
Style APA, Harvard, Vancouver, ISO itp.
17

Pan, Lin, David Bérardan i Nita Dragoe. "High Thermoelectric Properties of n-Type AgBiSe2". Journal of the American Chemical Society 135, nr 13 (22.03.2013): 4914–17. http://dx.doi.org/10.1021/ja312474n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Plachkova, S. K. "Thermoelectric power of GeTe-rich (GeTe)1–x(AgBiTe2)x solid solutions". physica status solidi (a) 92, nr 1 (16.11.1985): 273–77. http://dx.doi.org/10.1002/pssa.2210920127.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Copping, Len. "AgBio and AgFutures Conference". Outlooks on Pest Management 29, nr 4 (1.08.2018): 174–76. http://dx.doi.org/10.1564/v29_aug_06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Kaiser, J. "Agbio Lab List Pared". Science 313, nr 5789 (18.08.2006): 903c. http://dx.doi.org/10.1126/science.313.5789.903c.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Fox, Jeffrey L. "US agbio controversies continue". Nature Biotechnology 17, nr 7 (lipiec 1999): 628. http://dx.doi.org/10.1038/10836.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Lawrence, Stacy. "Agbio keeps on growing". Nature Biotechnology 23, nr 3 (marzec 2005): 281. http://dx.doi.org/10.1038/nbt0305-281.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Marketos, Peter. "Agbio Not the Problem". Nature Biotechnology 11, nr 5 (maj 1993): 532. http://dx.doi.org/10.1038/nbt0593-532d.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Wrubel, Roger, i Sheldon Krimsky. "Agbio benefits and pitfalls". Nature Biotechnology 11, nr 9 (wrzesień 1993): 964. http://dx.doi.org/10.1038/nbt0993-964a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Akgul, M. Zafer, i Gerasimos Konstantatos. "AgBiSe2 Colloidal Nanocrystals for Use in Solar Cells". ACS Applied Nano Materials 4, nr 3 (3.03.2021): 2887–94. http://dx.doi.org/10.1021/acsanm.1c00048.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Velieva, G. M., N. B. Babanly, V. P. Zlomanov i M. B. Babanly. "Phase equilibria in the Ag2Se-AgAsSe2-AgBiSe2 system". Inorganic Materials 46, nr 11 (listopad 2010): 1171–80. http://dx.doi.org/10.1134/s0020168510110038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Zhang, Qiang, Zhe Guo, Xiaojian Tan, Lisha Mao, Yinong Yin, Yukun Xiao, Haoyang Hu i in. "Effects of AgBiSe2 on thermoelectric properties of SnTe". Chemical Engineering Journal 390 (czerwiec 2020): 124585. http://dx.doi.org/10.1016/j.cej.2020.124585.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Rossi-Bergmann, Bartira, Wallace Pacienza-Lima, Priscyla D. Marcato, Roseli de Conti i Nelson Durán. "Therapeutic Potential of Biogenic Silver Nanoparticles in Murine Cutaneous Leishmaniasis". Journal of Nano Research 20 (grudzień 2012): 89–97. http://dx.doi.org/10.4028/www.scientific.net/jnanor.20.89.

Pełny tekst źródła
Streszczenie:
Many efforts in these last years have dedicated in the development of new drugs due to an increase of microbial organisms resistant to multiple antibiotics, and silver nanoparticles appears as a novel antimicrobial agent. The aim of our work was to evaluate the in vitro and in vivo antileishmanial activity of the silver nanoparticles prepared by chemical process and by biosynthesis from Fusarium oxysporum. In vitro antipromastigote activity of L. amazonensis showed that silver nanoparticles chemically synthesized (AgCHEM), biogenic silver nanoparticles (AgBIO) and amphotericin B decreased the parasite load up to 13%, 61%, and 68%, respectively. The IC50 of AgCHEM and AgBIO was 103.5 ± 11.5 μM and 31.6 ± 8.2 μM respectively. The assay of antileishmanial effect of these nanoparticles was evaluated in vivo (BALB/c mice) against L. amazonensis. The mice infected with promastigotes of L. amazonensis in the ear showed that after 10 days of treatment (twice a week for four weeks) the wound in the control (mice treated with PBS solution) was large, while the wound of the mice treated with amphotericin B (positive control) exhibited low size of lesion. The same parasitemia inhibition with amphotericin B was observed when AgBIO were used at 300 fold lower concentration, and 100 fold less concentration of AgCHEM than amphotericin B. Thus, these nanoparticles can be used in wound helping like cutaneous leishmaniasis.
Style APA, Harvard, Vancouver, ISO itp.
29

Budak, S., S. Guner, C. Muntele i D. Ila. "Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam". Journal of Electronic Materials 44, nr 6 (8.01.2015): 1884–89. http://dx.doi.org/10.1007/s11664-014-3581-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Misheva, M., I. Avramova, St Plachkova i N. Djourelov. "Study of Defects in GeTe and (GeTe)1-x(AgBiTe2)xSolid Solutions by Positrons". Acta Physica Polonica A 99, nr 3-4 (marzec 2001): 423–28. http://dx.doi.org/10.12693/aphyspola.99.423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Plachkovka, S. K., i T. I. Georgiev. "Thermoelectric power of some compositions of GeTe-rich (GeTe)1-x(AgBiTe2)xsolid solutions". Journal of Physics: Condensed Matter 5, nr 1 (4.01.1993): 67–84. http://dx.doi.org/10.1088/0953-8984/5/1/008.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Shi, Liang, Chunyan Wu i Jia Ding. "Effect of solvent on the synthesis of AgBiSe2 nanostructures". Journal of Alloys and Compounds 684 (listopad 2016): 112–15. http://dx.doi.org/10.1016/j.jallcom.2016.05.180.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Fox, Jeffrey L. "Erratum: Agbio groups join BIO". Nature Biotechnology 23, nr 1 (styczeń 2005): 117. http://dx.doi.org/10.1038/nbt0105-117b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Shand, Hope. "Agbio and Third World Development". Bio/Technology 11, nr 3 (marzec 1993): S13. http://dx.doi.org/10.1038/nbt0393-s13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Fox, Jeffrey L. "Erratum: Agbio groups join BIO". Nature Biotechnology 23, nr 4 (kwiecień 2005): 488. http://dx.doi.org/10.1038/nbt0405-488a.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Hodgson, John. "Kick-start for Canada's agbio". Nature Biotechnology 27, nr 11 (listopad 2009): 970. http://dx.doi.org/10.1038/nbt1109-970b.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Eom, Hyeonjin, Saeeun Lee, Dong-uk Kim, Young Keun Jung i Bongyoung Yoo. "Synthesis of a Ag–AgBiTe hybrid nano-segmented structure by a galvanic displacement reaction". Materials Chemistry and Physics 139, nr 2-3 (maj 2013): 885–89. http://dx.doi.org/10.1016/j.matchemphys.2013.02.049.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Plachkova, S. K., i T. I. Georgiev. "Thermoelectric Power of Some Compositions of GeTe-Rich (GeTe)1—x(AgBiTe2)2 Solid Solution". Physica Status Solidi (a) 136, nr 2 (16.04.1993): 509–28. http://dx.doi.org/10.1002/pssa.2211360224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Avramova, I. A., i S. K. Plachkova. "Electrical Resistivity and Scattering Mechanisms of GeTe-Rich Thermoelectric Materials in the System GeTe-AgBiTe2". physica status solidi (a) 179, nr 1 (maj 2000): 171–77. http://dx.doi.org/10.1002/1521-396x(200005)179:1<171::aid-pssa171>3.0.co;2-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Shi, Fanfan, Hongxiang Wang, Qiang Zhang, Xiaojian Tan, Yinong Yin, Haoyang Hu, Zhixiang Li, Jacques G. Noudem, Guoqiang Liu i Jun Jiang. "Improved Thermoelectric Properties of BiSbTe-AgBiSe2 Alloys by Suppressing Bipolar Excitation". ACS Applied Energy Materials 4, nr 3 (10.03.2021): 2944–50. http://dx.doi.org/10.1021/acsaem.1c00388.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Zhu, Baichun, Hongbo Li i Weishen Yang. "AgBiVMo oxide catalytic membrane for selective oxidation of propane to acrolein". Catalysis Today 82, nr 1-4 (lipiec 2003): 91–98. http://dx.doi.org/10.1016/s0920-5861(03)00206-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Wu, Hsin-Jay, Pai-Chun Wei, Hao-Yen Cheng, Jie-Ru Deng i Yang-Yuan Chen. "Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials". Acta Materialia 141 (grudzień 2017): 217–29. http://dx.doi.org/10.1016/j.actamat.2017.09.029.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Dorey, Emma. "EuropaBio unit created to boost agbio defense". Nature Biotechnology 17, nr 7 (lipiec 1999): 631–32. http://dx.doi.org/10.1038/10840.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Rangel-Aldao, Rafael. "International agbio consortium takes shape in Beijing". Nature Biotechnology 17, nr 11 (listopad 1999): 1044. http://dx.doi.org/10.1038/14988.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Potera, Carol. "Microplate Alternative Finds a Home in AgBio". Genetic Engineering & Biotechnology News 31, nr 8 (15.04.2011): 10–11. http://dx.doi.org/10.1089/gen.31.8.02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Fox, Jeffrey L. "NAS report: strengthen agbio regs and relations". Nature Biotechnology 18, nr 5 (maj 2000): 486. http://dx.doi.org/10.1038/75331.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Rajaji, V., Pallavi S. Malavi, Sharma S. R. K. C. Yamijala, Y. A. Sorb, Utpal Dutta, Satya N. Guin, B. Joseph i in. "Pressure induced structural, electronic topological, and semiconductor to metal transition in AgBiSe2". Applied Physics Letters 109, nr 17 (24.10.2016): 171903. http://dx.doi.org/10.1063/1.4966275.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Li, Shan, Zhenzhen Feng, Zhongjia Tang, Fanghao Zhang, Feng Cao, Xingjun Liu, David J. Singh, Jun Mao, Zhifeng Ren i Qian Zhang. "Defect Engineering for Realizing p-Type AgBiSe2 with a Promising Thermoelectric Performance". Chemistry of Materials 32, nr 8 (3.04.2020): 3528–36. http://dx.doi.org/10.1021/acs.chemmater.0c00481.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Liu, Xiaocun, Dou Jin i Xin Liang. "Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping". Applied Physics Letters 109, nr 13 (26.09.2016): 133901. http://dx.doi.org/10.1063/1.4963779.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Mashadieva, Leyla F., Jem O. Kevser, Imir I. Aliev, Yusif A. Yusibov, Dilgam B. Tagiyev, Ziya S. Aliev i Mahammad B. Babanly. "The Ag2Te-SnTe-Bi2Te3 system and thermodynamic properties of the (2SnTe)1-x(AgBiTe2)x solid solutions series". Journal of Alloys and Compounds 724 (listopad 2017): 641–48. http://dx.doi.org/10.1016/j.jallcom.2017.06.338.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii