Gotowa bibliografia na temat „Ag2TeNW”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Ag2TeNW”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Ag2TeNW"
Klein, Wilhelm, Jan Curda, Eva-Maria Peters i Martin Jansen. "Disilberoxotellurat(VI), Ag2TeO4". Zeitschrift f�r anorganische und allgemeine Chemie 631, nr 4 (marzec 2005): 723–27. http://dx.doi.org/10.1002/zaac.200400457.
Pełny tekst źródłaEl Zaibani, M. El Zaibani, A. Altawaf Altawaf i E. F. El Agammyc. "Tracking of Formed Crystalline Phases in the Binary Silver Tellurite Glass-ceramics". مجلة جامعة عمران 3, nr 5 (24.06.2023): 12. http://dx.doi.org/10.59145/jaust.v3i5.56.
Pełny tekst źródłaSu, Xin, Yuan Gao, Qi Wu, Haizeng Song, Shancheng Yan i Yi Shi. "Robust UV Plasmonic Properties of Co-Doped Ag2Te". Crystals 12, nr 10 (17.10.2022): 1469. http://dx.doi.org/10.3390/cryst12101469.
Pełny tekst źródłaRagimov, S. S., M. A. Musayev i N. N. Hashimova. "Transport properties of (AgSbТe2)0.7(PbTe)0.3 thermoelectric compound". Low Temperature Physics 48, nr 10 (październik 2022): 787–90. http://dx.doi.org/10.1063/10.0014020.
Pełny tekst źródłaLee, Sunghun, Ho Sun Shin, Jae Yong Song i Myung-Hwa Jung. "Thermoelectric Properties of a Single Crystalline Ag2Te Nanowire". Journal of Nanomaterials 2017 (2017): 1–5. http://dx.doi.org/10.1155/2017/4308968.
Pełny tekst źródłaUruno, Aya, i Masakazu Kobayashi. "Formation of AgGaTe2 films from (Ag2Te+Ga2Te3)/Ag2Te or Ga2Te3/Ag2Te bilayer structures". AIP Advances 8, nr 11 (listopad 2018): 115023. http://dx.doi.org/10.1063/1.5039992.
Pełny tekst źródłaPandiaraman, M., N. Soundararajan i R. Ganesan. "Optical Studies of Physically Deposited Nano-Ag2Te Thin Films". Defect and Diffusion Forum 319-320 (październik 2011): 185–92. http://dx.doi.org/10.4028/www.scientific.net/ddf.319-320.185.
Pełny tekst źródłaMoroz, Mykola, Fiseha Tesfaye, Pavlo Demchenko, Myroslava Prokhorenko, Nataliya Yarema, Daniel Lindberg, Oleksandr Reshetnyak i Leena Hupa. "The Equilibrium Phase Formation and Thermodynamic Properties of Functional Tellurides in the Ag–Fe–Ge–Te System". Energies 14, nr 5 (28.02.2021): 1314. http://dx.doi.org/10.3390/en14051314.
Pełny tekst źródłaSom, Anirban, i T. Pradeep. "Heterojunction double dumb-bell Ag2Te–Te–Ag2Te nanowires". Nanoscale 4, nr 15 (2012): 4537. http://dx.doi.org/10.1039/c2nr30730h.
Pełny tekst źródłaAli, Liqaa S., i Aliyah A. Shihab. "Ag2Te thin films' structural and optical characteristics as a result of Al doping". Journal of Ovonic Research 19, nr 4 (sierpień 2023): 433–38. http://dx.doi.org/10.15251/jor.2023.194.433.
Pełny tekst źródłaRozprawy doktorskie na temat "Ag2TeNW"
Boubali, Mahjoub. "Equilibres de phases dans les systèmes Ag2Te-Tl2Te et AgTlTe-Cu2Te : propriétés thermoélectriques des phases isolées". Montpellier 2, 1991. http://www.theses.fr/1991MON20013.
Pełny tekst źródłaLiu, Bing-Fong, i 劉秉豐. "Magnetic properties and microstructure of exchange-coupled disorder/order (FePt-Ag2Te)/(Ag/FePt) Film". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/00073787106311560444.
Pełny tekst źródła國立中興大學
材料科學與工程學系所
98
A soft/hard chemically disordered/ordered (FePt-Ag2Te)/(Ag-FePt) films was prepared on a glass substrate. Annealed (FePt-Ag2Te)/(Ag-FePt) film at 700oC for 1 minute allowed modification of the sharp interface to graded interface and the FePt-Ag2Te layer was changed from disordered to ordered. The out-of-plane magnetic hysteresis loops show perpendicular anisotropy with rigid magnetization which was due to the nanoscale interface exchange coupling. When the thickness of (FePt-Ag2Te) layer increased from 3nm to 10nm, the out-of-plane coercivity increased continuously which was interpreted by the degree of ordering and graded magnetic anisotropy. The exchange coupled composite film with perpendicular magnetization can be performed in the chemically disordered/ordered FePt system. In addition, a soft/hard chemically disordered/ordered (FePt-Fe)/(Ag/FePt) films was prepared on a glass substrate. The (FePt-Fe)/(Ag/FePt) film was exchange coupled and shows single switching field. Annealed (FePt-Fe)/(Ag/FePt) film from 200oC to 700oC for 1 minute allowed modification of the sharp interface to graded interface and the FePt-Fe layer was changed from disordered to ordered gradually. The 13% Ag2Te was alloyed into the FePt-Fe layer to separate the magnetic grains. The (FePt-Fe)/(Ag/FePt) films annealed from 200-600oC show two-steps out-of-plane magnetization curves. The magnetization of partially disordered FePt-Fe reversed first and followed by the ordered Ag/FePt film. When the film annealed at 700oC, the out-of-plane magnetic hysteresis loops show perpendicular anisotropy with rigid magnetization which was due to the nanoscale interface exchange coupling. The magnetization was reversed at a single switching field and interpreted by the two-spin model. The exchange coupled composite film with perpendicular magnetization can be performed in the chemically disordered/ ordered FePt system.
Yang, Ting-ruei, i 楊庭瑞. "Interfacial reactions between Ni barrier layer and thermoelectric substrates: Ag2Te, (Bi,Sb)2Te3, and Bi2(Te,Se)3". Thesis, 2015. http://ndltd.ncl.edu.tw/handle/72675320497357823558.
Pełny tekst źródła國立清華大學
化學工程學系
103
Thermoelectric devices can convert heat into electricity directly, and have attracted enormous research interests. There are usually numerous solder (or braze) joints in thermoelectric devices. To prevent direct contact and interfacial reactions between solder (or braze) and thermoelectric materials, barrier layer is often used. Ni is the most commonly used barrier layer material. Examination of the interfacial reactions between Ni and thermoelectric substrates is fundamentally important for reliability assessment of the thermoelectric devices. This study investigates interfacial reactions between Ni and three kinds of thermoelectric materials: Ag2Te, (Bi,Sb)2Te3, and Bi2(Te,Se)3. The thermoelectric substrates are prepared with proper amounts of pure constituent elements, and are then plated with Ni. The thickness of Ni layer is 60μm. Ni3Te2, NiTe0.775 and NiTe2 are formed in the Ni/Te couple reacted at 200oC for 720 hours. Two reaction regions are observed in the Ni/Ag2Te couple reacted at 200oC for 720 hours. A continuous Ag layer is formed adjacent to the Ni substrate. The other reaction region is a two-phase finger-type mixture. The darker phase in this two-phase region is the Ni3Te2 phase and the other brighter phase is Ag2Te phase with Ni solubility. This study also investigates the interfacial reactions between Ni/Te couple and Ag2Te couple at 250 oC. Ni3Te2, NiTe0.775 and NiTe2 are also formed in the Ni/Te couple reacted at 250oC for 720 hours, and the thickness of reaction layer is about 102.6μm. Two reaction regions are observed in the Ni/Ag2Te couple reacted at 250oC for 720 hours. A continuous Ag layer is formed adjacent to the Ni substrate. Comparing with those in the Ni/Ag2Te 200oC reaction couple, a continuous Ni3Te2 reaction layer is formed adjacent to the Ag2Te substrate. The interfacial reactions between the Ni barrier layer and the P-type (Bi1-xSbx)2Te3 and n-type Bi2(Te1-ySey)3 thermoelectric materials at 300oC are examined. Two reaction phase layers are observed in the Ni/(Bi0.25Sb0.75)2Te3 couples reacted at 300oC. The phase layer adjacent to the Ni substrate is likely a Sb-Ni-Te ternary compound or the Ni3Te2 phase with significant Sb solubility.In the In the Ni/ Bi2(Te0.9Se0.1)3 couple reacted at 300oC two reaction phase layers are also found. The BiTe phase is adjacent to the Bi2(Te0.9Se0.1) substrate, while a Bi-Ni-Te ternary compound or the NiTe2 phase with Bi solubility is formed adjacent to the Ni substrate. It can be found that the thickness of the reaction layers in the Ni/Bi2(Te0.9Se0.1)3 couple is thicker than that in the Ni/(Bi0.25Sb0.75)2Te3. Furthermore, the reaction rate at 300oC is faster than that at 250oC.
Tseng, Hsi-Te, i 曾信得. "The Magnetic properties and microstructure of exchange-coupled Fe/FePt bilayer and particulate (Ag2Te/FePt)n film with perpendicular magnetization". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/43991014446173495643.
Pełny tekst źródła國立中興大學
材料科學與工程學系所
98
A [FePt (1 nm)/Ag2Te(t)]10 (thickness t = 0.1-0.3 nm) multilayer was deposited alternately on glass substrate and subsequently annealed by a rapid thermal process (RTP). After the RTP, the interface between FePt and Ag2Te was intermixed, forming particulate films. The L10 FePt grain size decreases from 23 nm to 14 nm as t of the Ag2Te intermediate layer increases from 0.1 to 0.3 nm. The (FePt/Ag2Te)10 particulate film shows perpendicular magnetization. Compared to (FePt/Ag2Te)10, the Ag/FePt/Ag trilayer also shows perpendicular magnetization with less c-axis dispersion. The Ag capping and seed layers reduce the ordering temperature of FePt but facilitate its grain growth during RTP. As a result, the FePt grains are refined and well-separated by the Ag2Te phase, but change to a continuous film after inserting Ag capping and seed layers. A soft/hard Fe/FePt bilayer with perpendicular magnetization was prepared on a glass substrate. Annealed Fe/FePt film allowed modification of the Fe/FePt sharp interface to Fe/(Fe-rich FePt)/FePt graded interface with rigid magnetization due to the nanoscale soft/hard interface coupling. The magnetization was reversed at a single switching field and interpreted by the two-spin model. When the annealed temperature of the Fe/FePt film increased, the reamnence magnetization decreased continuously but the out-of-plane coercivity increased obviously at 600-700oC which was interpreted by the graded magnetic anisotropy. The coercivity can be tuning in the exchange coupled composite film.
Książki na temat "Ag2TeNW"
Jaireth, Subhash. Hydrothermal geochemistry of Te, Ag2Te, and AuTe2 in epithermal precious metal deposits. Townsville, Q: Economic Geology Research Unit, Geology Dept., James Cook University of North Queensland, 1991.
Znajdź pełny tekst źródłaStreszczenia konferencji na temat "Ag2TeNW"
Bhatt, Ranu, Gopika Krishnan, Shovit Bhattacharya, Anil Bohra, Pramod Bhatt, Ranita Basu, Ajay Singh, D. K. Aswal i S. K. Gupta. "Chemical synthesis and characterization of PdTe-Ag2Te nanowires heterostructure". W DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4947779.
Pełny tekst źródłaMa, Hao, Tianyi Li i Jie Huang. "Study on electronic structure and optical properties of bulk and monolayer Ag2Te". W 2022 International Conference on Applied Physics and Computing (ICAPC). IEEE, 2022. http://dx.doi.org/10.1109/icapc57304.2022.00007.
Pełny tekst źródłaUruno, Aya, Shinichiro Kikai, Yuri Suetsugu i Masakazu Kobayashi. "Growth and solar cell applications of AgGaTe2 layers by closed space sublimation using the mixed source of Ag2Te and Ga2Te3". W 2016 Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS)]. IEEE, 2016. http://dx.doi.org/10.1109/iciprm.2016.7528605.
Pełny tekst źródłaSchlecht, S., M. Yosef i S. Weimer. "Synthesis and Characterization of nanoscale Bi2Te3, Sb2Te3, PbTe and Ag2Te powders: activated Metals and soluble Tellurium sources as synthetic Tools". W 2006 25th International Conference on Thermoelectrics. IEEE, 2006. http://dx.doi.org/10.1109/ict.2006.331224.
Pełny tekst źródłaRaporty organizacyjne na temat "Ag2TeNW"
Neyedley, K., J. J. Hanley, P. Mercier-Langevin i M. Fayek. Ore mineralogy, pyrite chemistry, and S isotope systematics of magmatic-hydrothermal Au mineralization associated with the Mooshla Intrusive Complex (MIC), Doyon-Bousquet-LaRonde mining camp, Abitibi greenstone belt, Québec. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328985.
Pełny tekst źródła