Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Aerospace structures.

Artykuły w czasopismach na temat „Aerospace structures”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Aerospace structures”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Krebs, Neil E., i Eric W. Rahnenfuehrer. "Aerospace Application of Braided Structures". Journal of the American Helicopter Society 34, nr 3 (1.07.1989): 69–74. http://dx.doi.org/10.4050/jahs.34.69.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Springer, George S. "Aerospace Composites in Civil Structures". IABSE Symposium Report 92, nr 31 (1.01.2006): 13–19. http://dx.doi.org/10.2749/222137806796168859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Hanuska, A. R., E. P. Scott i K. Daryabeigi. "Thermal Characterization of Aerospace Structures". Journal of Thermophysics and Heat Transfer 14, nr 3 (lipiec 2000): 322–29. http://dx.doi.org/10.2514/2.6548.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Dorey, G., C. J. Peel i P. T. Curtis. "Advanced Materials for Aerospace Structures". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 208, nr 1 (styczeń 1994): 1–8. http://dx.doi.org/10.1243/pime_proc_1994_208_247_02.

Pełny tekst źródła
Streszczenie:
The role of materials in aerospace structures is discussed in terms of engineering performance, at affordable costs, for a variety of applications. Vehicle performance can be extended by improved materials performance and examples are given of new materials (alloys, polymer matrix composites, metal matrix composites and hybrid laminates), from the concept of new microstructures through development of new manufacturing processes to pilot scale production.
Style APA, Harvard, Vancouver, ISO itp.
5

Hiraoka, Koichi. "Weight Reduction of Aerospace Structures". Journal of the Society of Mechanical Engineers 96, nr 893 (1993): 285–89. http://dx.doi.org/10.1299/jsmemag.96.893_285.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Abrate, Serge. "Soft impacts on aerospace structures". Progress in Aerospace Sciences 81 (luty 2016): 1–17. http://dx.doi.org/10.1016/j.paerosci.2015.11.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Jadhav, Prakash. "Passive Morphing in Aerospace Composite Structures". Key Engineering Materials 889 (16.06.2021): 53–58. http://dx.doi.org/10.4028/www.scientific.net/kem.889.53.

Pełny tekst źródła
Streszczenie:
Attempts to add the advanced technologies to aerospace composite structures like fan blade have been on in recent times to further improve its performance. As part of these efforts, it has been proposed that the blade morph feasibility could be studied by building and optimizing asymmetric lay up of composite plies inside the blade which will help generate enough passive morphing between max cruise and climb conditions of the flight. This will have a direct efficiency (Specific Fuel Consumption) benefit. This research describes the various ideas that were tried using in house-developed lay-up optimization code and Ansys commercial software to study the possibility of generating enough passive morphing in the blade. In the end, this report concludes that the required degree of passive morphing could not be generated using various ideas with passive morphing technology and only up to some extent of morphing is shown to be feasible using the technologies used here.
Style APA, Harvard, Vancouver, ISO itp.
8

Spottswood, S. Michael, Benjamin P. Smarslok, Ricardo A. Perez, Timothy J. Beberniss, Benjamin J. Hagen, Zachary B. Riley, Kirk R. Brouwer i David A. Ehrhardt. "Supersonic Aerothermoelastic Experiments of Aerospace Structures". AIAA Journal 59, nr 12 (grudzień 2021): 5029–48. http://dx.doi.org/10.2514/1.j060403.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Baldelli, Dario H., i Ricardo S. Sanchez Pena. "Uncertainty Modeling in Aerospace Flexible Structures". Journal of Guidance, Control, and Dynamics 22, nr 4 (lipiec 1999): 611–14. http://dx.doi.org/10.2514/2.7637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Rittweger, A., J. Albus, E. Hornung, H. Öry i P. Mourey. "Passive Damping Devices For Aerospace Structures". Acta Astronautica 50, nr 10 (maj 2002): 597–608. http://dx.doi.org/10.1016/s0094-5765(01)00220-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Noor, Ahmed K., Samuel L. Venneri, Donald B. Paul i Mark A. Hopkins. "Structures technology for future aerospace systems". Computers & Structures 74, nr 5 (luty 2000): 507–19. http://dx.doi.org/10.1016/s0045-7949(99)00067-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Roach, T. A. "Future Fastening Systems for Aerospace Structures". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 204, nr 2 (lipiec 1990): 71–74. http://dx.doi.org/10.1243/pime_proc_1990_204_213_02.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

ITO, KOJI. "Structural adhesives. Application for aerospace structures." NIPPON GOMU KYOKAISHI 60, nr 2 (1987): 78–84. http://dx.doi.org/10.2324/gomu.60.78.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Yamazaki, Masahiko, i Yasuyuki Miyazaki. "63739 Empirical Model Reduction of Geometrical Constrained Gossamer Structures(Aerospace Dynamics)". Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _63739–1_—_63739–6_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._63739-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

DOS SANTOS E LUCATO, S. L., R. M. MCMEEKING i A. G. EVANS. "SMS-12: Shape Morphing Truss Structure for Aerospace and Marine Applications(SMS-II: SMART MATERIALS AND STRUCTURES, NDE)". Proceedings of the JSME Materials and Processing Conference (M&P) 2005 (2005): 30. http://dx.doi.org/10.1299/jsmeintmp.2005.30_4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Nesterenkov, V. M., i K. S. Khripko. "Technology and equipment for electron beam welding of structures in aerospace industry". Paton Welding Journal 2016, nr 6 (28.06.2016): 35–42. http://dx.doi.org/10.15407/tpwj2016.06.06.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Lee, In. "OS17-1-1 Application of Smart and Composite Materials to Aerospace Structures". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2007.6 (2007): _OS17–1–1——_OS17–1–1—. http://dx.doi.org/10.1299/jsmeatem.2007.6._os17-1-1-.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Ehrström, Jean-Christophe, i Timothy Warner. "Metallurgical Design of Alloys for Aerospace Structures". Materials Science Forum 331-337 (maj 2000): 5–16. http://dx.doi.org/10.4028/www.scientific.net/msf.331-337.5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Lee, In, Jin-Ho Roh i Il-Kwon Oh. "AEROTHERMOELASTIC PHENOMENA OF AEROSPACE AND COMPOSITE STRUCTURES". Journal of Thermal Stresses 26, nr 6 (czerwiec 2003): 525–46. http://dx.doi.org/10.1080/713855957.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Wells, Paul J., Arthur Stephens i Andy Ibbotson. "Localization of acoustic emissions in aerospace structures". Journal of the Acoustical Society of America 103, nr 5 (maj 1998): 2896. http://dx.doi.org/10.1121/1.421835.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

ISHIKAWA, Takashi, Yoichi HAYASHI, Masamichi MATSUSHIMA i Sunao SUGIMOTO. "Visualization of Damage in Aerospace Composite Structures". Journal of the Visualization Society of Japan 12, nr 47 (1992): 231–38. http://dx.doi.org/10.3154/jvs.12.47_231.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Bao, Xiao‐Qi, Vasundara V. Varadan i Vijay K. Varadan. "Sensors for ice detection on aerospace structures". Journal of the Acoustical Society of America 101, nr 5 (maj 1997): 3035. http://dx.doi.org/10.1121/1.418650.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

De Simone, Mario Emanuele, Francesco Ciampa, Salvatore Boccardi i Michele Meo. "Impact source localisation in aerospace composite structures". Smart Materials and Structures 26, nr 12 (13.11.2017): 125026. http://dx.doi.org/10.1088/1361-665x/aa973e.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Seltzer, S. M., i J. R. Mitchell. "Dynamics and Control of Flexible Aerospace Structures". IFAC Proceedings Volumes 25, nr 22 (wrzesień 1992): 57–66. http://dx.doi.org/10.1016/s1474-6670(17)49635-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Wang, K., D. Kelly i S. Dutton. "Multi-objective optimisation of composite aerospace structures". Composite Structures 57, nr 1-4 (lipiec 2002): 141–48. http://dx.doi.org/10.1016/s0263-8223(02)00078-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Renton, W. James. "Aerospace and structures: where are we headed?" International Journal of Solids and Structures 38, nr 19 (maj 2001): 3309–19. http://dx.doi.org/10.1016/s0020-7683(00)00259-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Fasel, Urban, Dominic Keidel, Leo Baumann, Giovanni Cavolina, Martin Eichenhofer i Paolo Ermanni. "Composite additive manufacturing of morphing aerospace structures". Manufacturing Letters 23 (styczeń 2020): 85–88. http://dx.doi.org/10.1016/j.mfglet.2019.12.004.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Stoyanov, P., N. Rodriguez, T. Dickinson, D. Huy Nguyen, E. Park, J. Foyos, V. Hernandez, J. Ogren, M. Berg i O. S. Es-Said. "Evaluation of Advanced Adhesives for Aerospace Structures". Journal of Materials Engineering and Performance 17, nr 4 (sierpień 2008): 460–64. http://dx.doi.org/10.1007/s11665-007-9158-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Kim, H. A., D. Kennedy i Z. Gürdal. "Special issue on optimization of aerospace structures". Structural and Multidisciplinary Optimization 36, nr 1 (2.04.2008): 1–2. http://dx.doi.org/10.1007/s00158-008-0256-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

John, H. Brighton Isaac, i T. Christopher. "Evaluation of Structural Integrity of Aerospace Structures". Procedia Engineering 38 (2012): 555–60. http://dx.doi.org/10.1016/j.proeng.2012.06.069.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

McKeown, Colm, i Phil Webb. "A reactive reconfigurable tool for aerospace structures". Assembly Automation 31, nr 4 (27.09.2011): 334–43. http://dx.doi.org/10.1108/01445151111172916.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Davies, G. A. O., i J. Ankersen. "Virtual testing of realistic aerospace composite structures". Journal of Materials Science 43, nr 20 (październik 2008): 6586–92. http://dx.doi.org/10.1007/s10853-008-2695-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Gupta, V. K., J. F. Newell i W. H. Roberts. "Band Lanczos vibration analysis of aerospace structures". Computing Systems in Engineering 2, nr 2-3 (styczeń 1991): 231–41. http://dx.doi.org/10.1016/0956-0521(91)90023-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Noor, A. K., i M. F. Card. "Computational technology for high-temperature aerospace structures". Computing Systems in Engineering 3, nr 1-4 (styczeń 1992): 97–114. http://dx.doi.org/10.1016/0956-0521(92)90098-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Liu, Zhen, Teng Yong Ng i Zishun Liu. "Preface: Advances in computational aerospace materials science and engineering". International Journal of Computational Materials Science and Engineering 07, nr 01n02 (czerwiec 2018): 1802001. http://dx.doi.org/10.1142/s2047684118020013.

Pełny tekst źródła
Streszczenie:
In the last two decades, with the rapid development of Chinese Aerospace Engineering, many emerging new technologies and methodologies have been proposed and developed in the aerospace engineering discipline. This special topic issue will offer our valued readers insights into the current development of aerospace engineering related computational aerospace materials science and engineering research now being undertaken in China. These 11 research papers include the latest research into the vibration and strength of aerospace structures, aerodynamics of aerospace shuttles and satellite structures, and aeroacoustic noise of aerospace structures. We trust this series papers will provide an overview of aerospace engineering activities in China, focussing in the most advanced computational techniques and powerful numerical methodologies being developed and employed to advance this field.
Style APA, Harvard, Vancouver, ISO itp.
36

Jadhav, Prakash. "Effect of Ply Drop in Aerospace Composite Structures". Key Engineering Materials 847 (czerwiec 2020): 46–51. http://dx.doi.org/10.4028/www.scientific.net/kem.847.46.

Pełny tekst źródła
Streszczenie:
In most of the aerospace laminated composite structures, thickness variation is achieved by introducing the ply drops at the appropriate locations. Ply drop means the resin rich regions created due to abrupt ending of individual plies within the set of plies. This research is focused on understanding and quantifying the effect of these ply drop regions on the mechanical performance of the aerospace composite structures. This is achieved here by designing the appropriate coupons (with and without ply drops) and analyzing them using finite element analysis. Some typical designs of coupons were manufactured using aerospace grade carbon composite materials, and then tested under four-point bend, cantilever and short beam shear tests to check and validate the effect that was seen in the analysis. It is concluded here that allowable failure strains are different for with and without ply drop cases by a significant amount.
Style APA, Harvard, Vancouver, ISO itp.
37

LEE, ln, Jin-Ho ROH, Eun-Jung YOO, Jae-Hung HAN i Seung-Man YANG. "Configuration control of aerospace structures with smart materials". Journal of Advanced Science 18, nr 1/2 (2006): 1–5. http://dx.doi.org/10.2978/jsas.18.1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Samipour, S. A., i V. V. Batrakov. "Manufacture of Aerospace Lattice Structures by Radial Braiding". Russian Engineering Research 42, nr 8 (sierpień 2022): 818–22. http://dx.doi.org/10.3103/s1068798x22080214.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Slyvyns'kyy, V. I., V. S. Zevako, G. V. Tkachenko i O. A. Karpikova. "Hoheycomb cores for honeycomb structures of aerospace assignment". Kosmìčna nauka ì tehnologìâ 14, nr 3 (30.05.2008): 101–7. http://dx.doi.org/10.15407/knit2008.03.101.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Demay, Agathe, Johnathan Hernandez, Perla Latorre, Remelisa Esteves i Seetha Raghavan. "Functional Coatings for Damage Detection in Aerospace Structures". Technology & Innovation 22, nr 1 (28.06.2021): 95–103. http://dx.doi.org/10.21300/21.4.2021.10.

Pełny tekst źródła
Streszczenie:
The future of aerospace structures is highly dependent on the advancement of reliable and high-performance materials, such as composite materials and metals. Innovation in high resolution non-invasive evaluation of these materials is needed for their qualification and monitoring for structural integrity. Aluminum oxide (or α-alumina) nanoparticles present photoluminescent properties that allow stress and damage sensing via photoluminescence piezospectroscopy. This work describes how these nanoparticles are added into a polymer matrix to create functional coatings that monitor the damage of the underlying composite or metallic substrates. Different volume fractions of α-alumina nanoparticles in the piezospectroscopic coatings were studied for determining the sensitivity of the coatings and successful damage detection was demonstrated for an open-hole tension composite substrate as well as 2024 aluminum tensile substrates with a subsurface notch.
Style APA, Harvard, Vancouver, ISO itp.
41

Sorrentino, Assunta, Fulvio Romano i Angelo De Fenza. "Advanced debonding detection technique for aerospace composite structures". Aircraft Engineering and Aerospace Technology 93, nr 6 (19.07.2021): 1011–17. http://dx.doi.org/10.1108/aeat-10-2020-0222.

Pełny tekst źródła
Streszczenie:
Purpose The purpose of this paper is to introduce a methodology aimed to detect debonding induced by low impacts energies in typical aeronautical structures. The methodology is based on high frequency sensors/actuators system simulation and the application of elliptical triangulation (ET) and probability ellipse (PE) methods as damage detector. Numerical and experimental results on small-scale stiffened panels made of carbon fiber-reinforced plastic material are discussed. Design/methodology/approach The damage detection methodology is based on high frequency sensors/actuators piezoceramics system enabling the ET and the PE methods. The approach is based on ultrasonic guided waves propagation measurement and simulation within the structure and perturbations induced by debonding or impact damage that affect the signal characteristics. Findings The work is focused on debonding detection via test and simulations and calculation of damage indexes (DIs). The ET and PE methodologies have demonstrated the link between the DIs and debonding enabling the identification of position and growth of the damage. Originality/value The debonding between two structural elements caused in manufacturing or in-service is very difficult to detect, especially when the components are in low accessibility areas. This criticality, together with the uncertainty of long-term adhesive performance and the inability to continuously assess the debonding condition, induces the aircrafts’ manufacturers to pursuit ultraconservative design approach, with in turn an increment in final weight of these parts. The aim of this research’s activity is to demonstrate the effectiveness of the proposed methodology and the robustness of the structural health monitoring system to detect debonding in a typical aeronautical structural joint.
Style APA, Harvard, Vancouver, ISO itp.
42

Azarov, A. "The problem of designing aerospace mesh composite structures". Известия Российской академии наук. Механика твердого тела, nr 4 (sierpień 2018): 85–93. http://dx.doi.org/10.31857/s057232990000700-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Azarov, A. V. "The Problem of Designing Aerospace Mesh Composite Structures". Mechanics of Solids 53, nr 4 (lipiec 2018): 427–34. http://dx.doi.org/10.3103/s0025654418040088.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Brischetto, Salvatore. "Analysis of natural fibre composites for aerospace structures". Aircraft Engineering and Aerospace Technology 90, nr 9 (14.11.2018): 1372–84. http://dx.doi.org/10.1108/aeat-06-2017-0152.

Pełny tekst źródła
Streszczenie:
Purpose The main idea is the comparison between composites including natural fibres (such as the linoleum fibres) and typical composites including carbon fibres or glass fibres. The comparison is proposed for different structures (plates, cylinders, cylindrical and spherical shells), lamination sequences (cross-ply laminates and sandwiches with composite skins) and thickness ratios. The purpose of this paper is to understand if linoleum fibres could be useful for some specific aerospace applications. Design/methodology/approach A general exact three-dimensional shell model is used for the static analysis of the proposed structures to obtain displacements and stresses through the thickness. The shell model is based on a layer-wise approach and the differential equations of equilibrium are solved by means of the exponential matrix method. Findings In qualitative terms, composites including linoleum fibres have a mechanical behaviour similar to composites including glass or carbon fibres. In terms of stress and displacement values, composites including linoleum fibres can be used in aerospace applications with limited loads. They are comparable with composites including glass fibres. In general, they are not competitive with respect to composites including carbon fibres. Such conclusions have been verified for different structure geometries, lamination sequences and thickness ratios. Originality/value The proposed general exact 3D shell model allows the analysis of different geometries (plates and shells), materials and laminations in a unified manner using the differential equilibrium equations written in general orthogonal curvilinear coordinates. These equations written for spherical shells degenerate in those for cylinders, cylindrical shell panels and plates by means of opportune considerations about the radii of curvature. The proposed shell model allows an exhaustive comparison between different laminated and sandwich composite structures considering the typical zigzag form of displacements and the correct imposition of compatibility conditions for displacements and equilibrium conditions for transverse stresses.
Style APA, Harvard, Vancouver, ISO itp.
45

Dell'Anno, Giuseppe, Ivana Partridge, Denis Cartié, Alexandre Hamlyn, Edmon Chehura, Stephen James i Ralph Tatam. "Automated manufacture of 3D reinforced aerospace composite structures". International Journal of Structural Integrity 3, nr 1 (2.03.2012): 22–40. http://dx.doi.org/10.1108/17579861211209975.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Griffith, D. Todd, i John A. Main. "Structural Modeling of Inflated Foam-Rigidized Aerospace Structures". Journal of Aerospace Engineering 13, nr 2 (kwiecień 2000): 37–46. http://dx.doi.org/10.1061/(asce)0893-1321(2000)13:2(37).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Naboulsi, S. "Investigation of Geometric Imperfection in Inflatable Aerospace Structures". Journal of Aerospace Engineering 17, nr 3 (lipiec 2004): 98–105. http://dx.doi.org/10.1061/(asce)0893-1321(2004)17:3(98).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Goldberg, Robert K., i Wieslaw K. Binienda. "Ballistic Impact and Crashworthiness Response of Aerospace Structures". Journal of Aerospace Engineering 22, nr 3 (lipiec 2009): 199–200. http://dx.doi.org/10.1061/(asce)0893-1321(2009)22:3(199).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Komarov, Valery A., Eugene I. Kurkin i Ramaz V. Charkviani. "Increasing Aerospace Structures Strength Using Short Fiber Reinforcing". Procedia Engineering 185 (2017): 119–25. http://dx.doi.org/10.1016/j.proeng.2017.03.328.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Seibert, Hermann F. "Applications for PMI foams in aerospace sandwich structures". Reinforced Plastics 50, nr 1 (styczeń 2006): 44–48. http://dx.doi.org/10.1016/s0034-3617(06)70873-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii