Gotowa bibliografia na temat „Aerospace structures”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aerospace structures”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Aerospace structures"
Krebs, Neil E., i Eric W. Rahnenfuehrer. "Aerospace Application of Braided Structures". Journal of the American Helicopter Society 34, nr 3 (1.07.1989): 69–74. http://dx.doi.org/10.4050/jahs.34.69.
Pełny tekst źródłaSpringer, George S. "Aerospace Composites in Civil Structures". IABSE Symposium Report 92, nr 31 (1.01.2006): 13–19. http://dx.doi.org/10.2749/222137806796168859.
Pełny tekst źródłaHanuska, A. R., E. P. Scott i K. Daryabeigi. "Thermal Characterization of Aerospace Structures". Journal of Thermophysics and Heat Transfer 14, nr 3 (lipiec 2000): 322–29. http://dx.doi.org/10.2514/2.6548.
Pełny tekst źródłaDorey, G., C. J. Peel i P. T. Curtis. "Advanced Materials for Aerospace Structures". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 208, nr 1 (styczeń 1994): 1–8. http://dx.doi.org/10.1243/pime_proc_1994_208_247_02.
Pełny tekst źródłaHiraoka, Koichi. "Weight Reduction of Aerospace Structures". Journal of the Society of Mechanical Engineers 96, nr 893 (1993): 285–89. http://dx.doi.org/10.1299/jsmemag.96.893_285.
Pełny tekst źródłaAbrate, Serge. "Soft impacts on aerospace structures". Progress in Aerospace Sciences 81 (luty 2016): 1–17. http://dx.doi.org/10.1016/j.paerosci.2015.11.005.
Pełny tekst źródłaJadhav, Prakash. "Passive Morphing in Aerospace Composite Structures". Key Engineering Materials 889 (16.06.2021): 53–58. http://dx.doi.org/10.4028/www.scientific.net/kem.889.53.
Pełny tekst źródłaSpottswood, S. Michael, Benjamin P. Smarslok, Ricardo A. Perez, Timothy J. Beberniss, Benjamin J. Hagen, Zachary B. Riley, Kirk R. Brouwer i David A. Ehrhardt. "Supersonic Aerothermoelastic Experiments of Aerospace Structures". AIAA Journal 59, nr 12 (grudzień 2021): 5029–48. http://dx.doi.org/10.2514/1.j060403.
Pełny tekst źródłaBaldelli, Dario H., i Ricardo S. Sanchez Pena. "Uncertainty Modeling in Aerospace Flexible Structures". Journal of Guidance, Control, and Dynamics 22, nr 4 (lipiec 1999): 611–14. http://dx.doi.org/10.2514/2.7637.
Pełny tekst źródłaRittweger, A., J. Albus, E. Hornung, H. Öry i P. Mourey. "Passive Damping Devices For Aerospace Structures". Acta Astronautica 50, nr 10 (maj 2002): 597–608. http://dx.doi.org/10.1016/s0094-5765(01)00220-x.
Pełny tekst źródłaRozprawy doktorskie na temat "Aerospace structures"
Jenett, Benjamin (Benjamin Eric). "Digital material aerospace structures". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101837.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 71-76).
This thesis explores the design, fabrication, and performance of digital materials in aerospace structures in three areas: (1) a morphing wing design that adjusts its form to respond to different behavioral requirements; (2) an automated assembly method for truss column structures; and (3) an analysis of the payload and structural performance requirements of space structure elements made from digital materials. Aerospace structures are among the most difficult to design, engineer, and manufacture. Digital materials are discrete building block parts, reversibly joined, with a discrete set of positions and orientations. Aerospace structures built from digital materials have high performance characteristics that can surpass current technology, while also offering potential for analysis simplification and assembly automation. First, this thesis presents a novel approach for the design, analysis, and manufacturing of composite aerostructures through the use of digital materials. This approach can be used to create morphing wing structures with customizable structural properties, and the simplified composite fabrication strategy results in rapid manufacturing time with future potential for automation. The presented approach combines aircraft structure with morphing technology to accomplish tuned global deformation with a single degree of freedom actuator. Guidelines are proposed to design a digital material morphing wing, a prototype is manufactured and assembled, and preliminary experimental wind tunnel testing is conducted. Seconds, automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This thesis presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss column from a feedstock of flat-packed components, by folding the sides of each component up and locking onto the assembled structure. The thesis describes the design and implementation of the robot and shows that an assembled truss compares favorably with prior truss deployment systems. Thirds, space structures are limited by launch shroud mass and volume constraints. Digital material space structures can be reversibly assembled on orbit by autonomous relative robots using discrete, incremental parts. This will enable the on-orbit assembly of larger space structures than currently possible. The engineering of these structures, from macro scale to discrete part scale, is presented. Comparison with traditional structural elements is shown and favorable mechanical performance as well as the ability to efficiently transport the material in a medium to heavy launch vehicle. In summary, this thesis contributes the methodology and evaluation of novel applications of digital materials in aerospace structures.
by Benjamin Jenett.
S.M.
Spendley, Paul R. "Design allowables for composite aerospace structures". Thesis, University of Surrey, 2012. http://epubs.surrey.ac.uk/810072/.
Pełny tekst źródłaHanuska, Alexander Robert Jr. "Thermal Characterization of Complex Aerospace Structures". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36617.
Pełny tekst źródłaMaster of Science
White, Caleb, i caleb white@rmit edu au. "Health Monitoring of Bonded Composite Aerospace Structures". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20090602.142122.
Pełny tekst źródłaZhang, Haochuan. "Nonlinear aeroelastic effects in damaged composite aerospace structures". Thesis, Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12150.
Pełny tekst źródłaNavarro, Zafra Joaquin. "Computational mechanics of fracture on advanced aerospace structures". Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/16883/.
Pełny tekst źródłaLam, Daniel F. "STRAIN CONCENTRATION AND TENSION DOMINATED STIFFENED AEROSPACE STRUCTURES". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1145393262.
Pełny tekst źródłaVishwanathan, Aditya. "Uncertainty Quantification for Topology Optimisation of Aerospace Structures". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23922.
Pełny tekst źródłaPozegic, Thomas R. "Nano-modified carbon-epoxy composite structures for aerospace applications". Thesis, University of Surrey, 2016. http://epubs.surrey.ac.uk/809603/.
Pełny tekst źródłaSebastian, Christopher. "Towards the validation of thermoacoustic modelling in aerospace structures". Thesis, University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/2012079/.
Pełny tekst źródłaKsiążki na temat "Aerospace structures"
J, Loughlan, red. Aerospace structures. London: Elsevier Applied Science, 1990.
Znajdź pełny tekst źródłaCraig, J. I. (James I.), 1942- i SpringerLink (Online service), red. Structural analysis: With applications to aerospace structures. Dordrecht: Springer, 2009.
Znajdź pełny tekst źródłaAmerican Institute of Aeronautics and Astronautics, red. Morphing aerospace vehicles and structures. Chichester, West Sussex: John Wiley & Sons, 2012.
Znajdź pełny tekst źródłaRowe, W. J. Prospects for intelligent aerospace structures. New York: AIAA, 1986.
Znajdź pełny tekst źródłaValasek, John. Morphing aerospace vehicles and structures. Chichester, West Sussex: John Wiley & Sons, 2012.
Znajdź pełny tekst źródłaValasek, John, red. Morphing Aerospace Vehicles and Structures. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119964032.
Pełny tekst źródłaThornton, Earl A. Thermal structures for aerospace applications. Reston, VA: American Institute of Aeronautics and Astronautics, 1996.
Znajdź pełny tekst źródłaAmerican Institute of Aeronautics and Astronautics., red. Standard space systems: Structures, structural components, and structural assemblies. Reston, VA: American Institute of Aeronautics and Astronautics, 2005.
Znajdź pełny tekst źródłaKruckenberg, Teresa M. Resin Transfer Moulding for Aerospace Structures. Dordrecht: Springer Netherlands, 1998.
Znajdź pełny tekst źródłaSoovere, J. Aerospace structures technology damping design guide. Wright-Patterson Air Force Base, Ohio: Air Force Flight Dynamics Laboratory, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Aerospace structures"
Gialanella, Stefano, i Alessio Malandruccolo. "Alloys for Aircraft Structures". W Aerospace Alloys, 41–127. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24440-8_3.
Pełny tekst źródłaSabbagh, Harold A., R. Kim Murphy, Elias H. Sabbagh, John C. Aldrin i Jeremy S. Knopp. "Applications to Aerospace Structures". W Computational Electromagnetics and Model-Based Inversion, 337–51. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-8429-6_17.
Pełny tekst źródłaMillán, Javier San, i Iñaki Armendáriz. "Delamination and Debonding Growth in Composite Structures". W Springer Aerospace Technology, 63–88. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-04004-2_3.
Pełny tekst źródłaHenson, Grant. "Materials for Launch Vehicle Structures". W Aerospace Materials and Applications, 435–504. Reston ,VA: American Institute of Aeronautics and Astronautics, Inc., 2018. http://dx.doi.org/10.2514/5.9781624104893.0435.0504.
Pełny tekst źródłaWanhill, R. J. H. "Fatigue Requirements for Aircraft Structures". W Aerospace Materials and Material Technologies, 331–52. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2143-5_16.
Pełny tekst źródłaDwibedy, Kartikeswar, i Anup Ghosh. "Damage analysis of multi-layered composite structures". W Aerospace and Associated Technology, 202–5. London: Routledge, 2022. http://dx.doi.org/10.1201/9781003324539-36.
Pełny tekst źródłaPeel, C. J. "Advances in Aerospace Materials and Structures". W Materials for Transportation Technology, 183–97. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527606025.ch30.
Pełny tekst źródłaVargas-Rojas, Erik. "Composite Sandwich Structures in Aerospace Applications". W Sandwich Composites, 293–320. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003143031-15.
Pełny tekst źródłaValasek, John. "Introduction". W Morphing Aerospace Vehicles and Structures, 1–10. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119964032.ch1.
Pełny tekst źródłaSchick, Justin R., Darren J. Hartl i Dimitris C. Lagoudas. "Incorporation of Shape Memory Alloy Actuators into Morphing Aerostructures". W Morphing Aerospace Vehicles and Structures, 231–60. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781119964032.ch10.
Pełny tekst źródłaStreszczenia konferencji na temat "Aerospace structures"
Smith, Howard Wesley. "Aerospace Structures Supportability". W General Aviation Aircraft Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/891058.
Pełny tekst źródłaMITCHELL, ALAN, SAMUEL BRYAN i MARK HALL. "Design engineering technologies for aerospace vehicles". W 28th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-715.
Pełny tekst źródłaHADJRIA, RAFIK, i OSCAR D’ALMEIDA. "Structural Health Monitoring for Aerospace Composite Structures". W Structural Health Monitoring 2019. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/shm2019/32280.
Pełny tekst źródłaRavindra, K. "Aerospace Structures Course Revisited". W 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-979.
Pełny tekst źródłaDAYTO, SECTION,. "EVOLUTION OF AIRCRAFT/AEROSPACE STRUCTURES AND MATERIALS SYMPOSIUM". W 26th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-834.
Pełny tekst źródłaSPAIN, CHARLES, THOMAS ZEILER, MICHAEL GIBBONS, DAVID SOISTMANN, PETER POZEFSKY, RAFAEL DEJESUS i CYPRIAN BRANNON. "AEROELASTIC CHARACTER OF A NATIONAL AEROSPACE PLANE DEMOSTRATOR CONCEPT". W 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1314.
Pełny tekst źródłaLEVINE, STANLEY. "Ceramics and ceramic matrix composites - Aerospace potential and status". W 33rd Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-2445.
Pełny tekst źródłaHopkins, Mark, Douglas Dolvin, Donald Paul, Estelle Anselmo i Jeffrey Zweber. "Structures technology for future aerospace systems". W 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1869.
Pełny tekst źródłaGhorbani, K., T. Baum, K. Nicholson i J. Ahamed. "Advances aerospace multifunctional structures with integrated antenna structures". W 2015 Asia-Pacific Microwave Conference (APMC). IEEE, 2015. http://dx.doi.org/10.1109/apmc.2015.7413065.
Pełny tekst źródłaHanuska, A., E. Scott i K. Daryabeigi. "Thermal characterization of aerospace structures". W 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-1053.
Pełny tekst źródłaRaporty organizacyjne na temat "Aerospace structures"
Venkayya, Vipperla B. Aerospace Structures Design on Computers. Fort Belvoir, VA: Defense Technical Information Center, marzec 1989. http://dx.doi.org/10.21236/ada208811.
Pełny tekst źródłaGrandhi, Ramana V., i Geetha Bharatram. Multiobjective Optimization of Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, lipiec 1992. http://dx.doi.org/10.21236/ada260433.
Pełny tekst źródłaAtluri, S. N. AASERT-Structural Integrity of Aging of Aerospace Structures and Repairs. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1996. http://dx.doi.org/10.21236/ada326704.
Pełny tekst źródłaFarhat, Charbel. Multidisciplinary Thermal Analysis of Hot Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, maj 2010. http://dx.doi.org/10.21236/ada564851.
Pełny tekst źródłaGrandt, A. F., Farris Jr., Hillberry T. N. i B. H. Analysis of Widespread Fatigue Damage in Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, luty 1999. http://dx.doi.org/10.21236/ada360820.
Pełny tekst źródłaSelvam, R. P., i Zu-Qing Qu. Adaptive Navier Stokes Flow Solver for Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, maj 2004. http://dx.doi.org/10.21236/ada424479.
Pełny tekst źródłaAtwood, Clinton J., Thomas Eugene Voth, David G. Taggart, David Dennis Gill, Joshua H. Robbins i Peter Dewhurst. Titanium cholla : lightweight, high-strength structures for aerospace applications. Office of Scientific and Technical Information (OSTI), październik 2007. http://dx.doi.org/10.2172/922082.
Pełny tekst źródłaSoovere, J., i M. L. Drake. Aerospace Structures Technology Damping Design Guide. Volume 3. Damping Material Data. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1985. http://dx.doi.org/10.21236/ada178315.
Pełny tekst źródłaOunaies, Zoubeida, Ramanan Krishnamoorti i Richard Vaia. Active Nanocomposites: Energy Harvesting and Stress Generation Media for Future Multifunctional Aerospace Structures. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2010. http://dx.doi.org/10.21236/ada547363.
Pełny tekst źródłaSelvam, R. P., ZU-Qing QU, Qun Zheng i Uday K. Roy. Predicting the Nonlinear Response of Aerospace Structures Using Aeroelastic NS Solutions on Deforming Meshes. Fort Belvoir, VA: Defense Technical Information Center, listopad 2001. http://dx.doi.org/10.21236/ada399278.
Pełny tekst źródła