Gotowa bibliografia na temat „Aerospace Engineering - Propulsion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aerospace Engineering - Propulsion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Aerospace Engineering - Propulsion"
Isikveren, A. T., A. Seitz, J. Bijewitz, A. Mirzoyan, A. Isyanov, R. Grenon, O. Atinault, J. L. Godard i S. Stückl. "Distributed propulsion and ultra-high by-pass rotor study at aircraft level". Aeronautical Journal 119, nr 1221 (listopad 2015): 1327–76. http://dx.doi.org/10.1017/s0001924000011295.
Pełny tekst źródłaPerry, Aaron T., Phillip J. Ansell i Michael F. Kerho. "Aero-Propulsive and Propulsor Cross-Coupling Effects on a Distributed Propulsion System". Journal of Aircraft 55, nr 6 (listopad 2018): 2414–26. http://dx.doi.org/10.2514/1.c034861.
Pełny tekst źródłaGray, Justin S., i Joaquim R. R. A. Martins. "Coupled aeropropulsive design optimisation of a boundary-layer ingestion propulsor". Aeronautical Journal 123, nr 1259 (31.10.2018): 121–37. http://dx.doi.org/10.1017/aer.2018.120.
Pełny tekst źródłaBore, C. L. "Some contributions to propulsion theory — Fuel consumption formulae and general range equation". Aeronautical Journal 97, nr 963 (marzec 1993): 118–20. http://dx.doi.org/10.1017/s0001924000025203.
Pełny tekst źródłaSeitz, A., D. Schmitt i S. Donnerhack. "Emission comparison of turbofan and open rotor engines under special consideration of aircraft and mission design aspects". Aeronautical Journal 115, nr 1168 (czerwiec 2011): 351–60. http://dx.doi.org/10.1017/s000192400000587x.
Pełny tekst źródłaCusati, Vincenzo, Salvatore Corcione, Fabrizio Nicolosi i Qinyin Zhang. "Improvement of Take-Off Performance for an Electric Commuter Aircraft Due to Distributed Electric Propulsion". Aerospace 10, nr 3 (11.03.2023): 276. http://dx.doi.org/10.3390/aerospace10030276.
Pełny tekst źródłaIbrahim, K., S. Sampath i D. Nalianda. "Voltage synchronisation for hybrid-electric aircraft propulsion systems". Aeronautical Journal 125, nr 1291 (22.07.2021): 1611–30. http://dx.doi.org/10.1017/aer.2021.56.
Pełny tekst źródłaJames, Anthony. "The Aviation Conference of the Year!" Aerospace Testing International 2018, nr 3 (wrzesień 2018): 86–89. http://dx.doi.org/10.12968/s1478-2774(23)50121-6.
Pełny tekst źródłaBae, Yoon-Yeong, i George Emanuel. "Performance of an aerospace plane propulsion nozzle". Journal of Aircraft 28, nr 2 (luty 1991): 113–22. http://dx.doi.org/10.2514/3.45999.
Pełny tekst źródłaFalzarano, Jeffrey. "Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power". AIAA Journal 56, nr 10 (październik 2018): 4218. http://dx.doi.org/10.2514/1.j057653.
Pełny tekst źródłaRozprawy doktorskie na temat "Aerospace Engineering - Propulsion"
Zhu, Dawei. "Supercirculation Aerodynamic-Propulsion Test Rig Instrumentation Development". Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1142542776.
Pełny tekst źródłaGilpin, Matthew R. "High temperature latent heat thermal energy storage to augment solar thermal propulsion for microsatellites". Thesis, University of Southern California, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10160163.
Pełny tekst źródłaSolar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total ΔV capability than chemical propulsion systems without the order of magnitude increase in total mission duration associated with electric propulsion. Despite an over 50 year development history, no STP spacecraft has flown to-date as both perceived and actual complexity have overshadowed the potential performance benefit in relation to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to overcome this complexity barrier in an effort finally mount an in-flight test.
A review of micro-propulsion technologies recently conducted by the Air Force Research Laboratory (AFRL) has identified solar thermal propulsion as a promising configuration for microsatellite missions requiring a substantial Δ V and recommended further study. A STP system provides performance which cannot be matched by conventional propulsion technologies in the context of the proposed microsatellite ''inspector" requiring rapid delivery of greater than 1500 m/s ΔV. With this mission profile as the target, the development of an effective STP architecture goes beyond incremental improvements and enables a new class of microsatellite missions.
Here, it is proposed that a bi-modal solar thermal propulsion system on a microsatellite platform can provide a greater than 50% increase in Δ V vs. chemical systems while maintaining delivery times measured in days. The realization of a microsatellite scale bi-modal STP system requires the integration of multiple new technologies, and with the exception of high performance thermal energy storage, the long history of STP development has provided "ready" solutions.
For the target bi-modal STP microsatellite, sensible heat thermal energy storage is insufficient and the development of high temperature latent heat thermal energy storage is an enabling technology for the platform. The use of silicon and boron as high temperature latent heat thermal energy storage materials has been in the background of solar thermal research for decades without a substantial investigation. This is despite a broad agreement in the literature about the performance benefits obtainable from a latent heat mechanisms which provides a high energy storage density and quasi-isothermal heat release at high temperature.
In this work, an experimental approach was taken to uncover the practical concerns associated specifically with applying silicon as an energy storage material. A new solar furnace was built and characterized enabling the creation of molten silicon in the laboratory. These tests have demonstrated the basic feasibility of a molten silicon based thermal energy storage system and have highlighted asymmetric heat transfer as well as silicon expansion damage to be the primary engineering concerns for the technology. For cylindrical geometries, it has been shown that reduced fill factors can prevent damage to graphite walled silicon containers at the expense of decreased energy storage density.
Concurrent with experimental testing, a cooling model was written using the "enthalpy method" to calculate the phase change process and predict test section performance. Despite a simplistic phase change model, and experimentally demonstrated complexities of the freezing process, results coincided with experimental data. It is thus possible to capture essential system behaviors of a latent heat thermal energy storage system even with low fidelity freezing kinetics modeling allowing the use of standard tools to obtain reasonable results.
Finally, a technological road map is provided listing extant technological concerns and potential solutions. Improvements in container design and an increased understanding of convective coupling efficiency will ultimately enable both high temperature latent heat thermal energy storage and a new class of high performance bi-modal solar thermal spacecraft.
Eilers, Shannon Dean. "Development of the Multiple Use Plug Hybrid for Nanosats (Muphyn) Miniature Thruster". DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1726.
Pełny tekst źródłaCollie, Wallis Vernon. "Design and Analysis of an Unmanned Aerial Vehicle Propulsion System with Fluidic Flow Control Inside a Highly Compact Serpentine Inlet Duct". NCSU, 2003. http://www.lib.ncsu.edu/theses/available/etd-11282003-145453/.
Pełny tekst źródłaArmstrong, Isaac W. "Development and Testing of Additively Manufactured Aerospike Nozzles for Small Satellite Propulsion". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7428.
Pełny tekst źródłaMarklund, Hanna. "Supersonic Retro Propulsion Flight Vehicle Engineering of a Human Mission to Mars". Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75820.
Pełny tekst źródłaConnolly, Joseph. "Aero-Propulso-Elastic Analysis of a Supersonic Transport". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543337967878799.
Pełny tekst źródłaChamberlain, Britany L. "Additively-Manufactured Hybrid Rocket Consumable Structure for CubeSat Propulsion". DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7285.
Pełny tekst źródłaBertuzzi, Alberto. "Microcontroller based flow control for spacecraft electric propulsion". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Znajdź pełny tekst źródłaCheney, Liam Jon. "Development of Safety Standards for CubeSat Propulsion Systems". DigitalCommons@CalPoly, 2014. https://digitalcommons.calpoly.edu/theses/1180.
Pełny tekst źródłaKsiążki na temat "Aerospace Engineering - Propulsion"
Theory of aerospace propulsion. Waltham, MA: Academic Press, 2012.
Znajdź pełny tekst źródłaGreatrix, David R. Powered Flight: The Engineering of Aerospace Propulsion. London: Springer London, 2012.
Znajdź pełny tekst źródłaChamis, C. C. Computational simulation for concurrent engineering of aerospace propulsion systems. [Washington, DC: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaN, Singhal Surendra, i United States. National Aeronautics and Space Administration., red. Computational simulation for concurrent engineering of aerospace propulsion systems. [Washington, DC: National Aeronautics and Space Administration, 1992.
Znajdź pełny tekst źródłaAngelino, G. Modern Research Topics in Aerospace Propulsion: In Honor of Corrado Casci. New York, NY: Springer New York, 1991.
Znajdź pełny tekst źródłaBose, Tarit. Airbreathing Propulsion: An Introduction. New York, NY: Springer New York, 2012.
Znajdź pełny tekst źródłaJoint Propulsion Conferences: 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [Place of publication not identified]: [publisher not identified], 2012.
Znajdź pełny tekst źródłaJoint Propulsion Conferences: 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. [Place of publication not identified]: [publisher not identified], 2010.
Znajdź pełny tekst źródłaXian jin hang tian tui jin ji shu. Beijing: Guo fang gong ye chu ban she, 2012.
Znajdź pełny tekst źródłaSpace, Technology &. Applications International Forum (2004 Albuquerque N. M. ). Space Technology and Applications International Forum--STAIF 2004: Held in Albuquerque, NM, 8-11 February 2004. Melville, N.Y: American Institute of Physics, 2004.
Znajdź pełny tekst źródłaCzęści książek na temat "Aerospace Engineering - Propulsion"
"Rocket Propulsion". W Aerospace Engineering Pocket Reference, 309–24. CRC Press, 2015. http://dx.doi.org/10.1201/b18185-27.
Pełny tekst źródła"Air- Breathing Propulsion". W Aerospace Engineering Pocket Reference, 299–308. CRC Press, 2015. http://dx.doi.org/10.1201/b18185-26.
Pełny tekst źródłaIlyes, Ghedjatti, Yuan Shiwei i Wang Haixing. "Perspective Chapter: Effect of Laser Key Parameters on the Ignition of Boron Potassium Nitrate with a Changing Working Distance". W Hypersonic and Supersonic Flight - Advances in Aerodynamics, Materials, and Vehicle Design [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107915.
Pełny tekst źródłaStreszczenia konferencji na temat "Aerospace Engineering - Propulsion"
CHAMIS, C., i S. SINGHAL. "Computational simulation of concurrent engineering for aerospace propulsion systems". W Aerospace Design Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-1144.
Pełny tekst źródłaFigueroa, Fernando, i Carolyn R. Mercer. "Advancing Sensor Technology for Aerospace Propulsion". W ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33180.
Pełny tekst źródłaFAROKHI, SAEED. "System design aspects of propulsion education in aerospace engineering curricula". W 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2256.
Pełny tekst źródłaHabashi, G. W., T. Krepec i T. S. Sankar. "Teaching Aircraft Propulsion Engineering to Meet Industry's Needs in Montreal". W Aerospace Atlantic Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1993. http://dx.doi.org/10.4271/931392.
Pełny tekst źródłaSmith, Jeffrey L. "Concurrent Engineering in the Jet Propulsion Laboratory Project Design Center". W Aerospace Manufacturing Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/981869.
Pełny tekst źródłaPARKMAN, D. "Recovery concepts for propulsion and avionics components". W Aerospace Engineering Conference and Show. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1810.
Pełny tekst źródłaMillar, Richard C. "A Systems Engineering Approach to PHM for Military Aircraft Propulsion Systems". W 2007 IEEE Aerospace Conference. IEEE, 2007. http://dx.doi.org/10.1109/aero.2007.352840.
Pełny tekst źródłaNaoumov, Viatcheslav, Viktor Kriukov i Airat Abdullin. "Chemical Kinetics Software System for the Propulsion and Power Engineering". W 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-854.
Pełny tekst źródłaSCHUTZENHOFER, L., H. MCCONNAUGHEY i P. MCCONNAUGHEY. "Role of CFD in propulsion design - Government perspective". W Aerospace Engineering Conference and Show. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1825.
Pełny tekst źródłaSINGH, RAJENDRA, i DONALD HOUSER. "Engineering science research issues in high power density transmission dynamics for aerospace applications". W 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-2299.
Pełny tekst źródła