Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Aerodynamic pressure.

Rozprawy doktorskie na temat „Aerodynamic pressure”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Aerodynamic pressure”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.

1

Bamberger, Konrad [Verfasser]. "Aerodynamic Optimization of Low-Pressure Axial Fans / Konrad Bamberger". a : Shaker, 2015. http://d-nb.info/1080762191/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Rossetti, Alessandro <1977&gt. "Design and development of new pressure sensors for aerodynamic applications". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2008. http://amsdottorato.unibo.it/787/.

Pełny tekst źródła
Streszczenie:
This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.
Style APA, Harvard, Vancouver, ISO itp.
3

Grodek, Kristen Ashley. "The Effect of Sound Pressure Level Variation on Aerodynamic Measures". Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1239321162.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Holmberg, Eva. "Aerodynamic measurements of normal voice". Doctoral thesis, Stockholms universitet, Institutionen för lingvistik, 1993. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-40215.

Pełny tekst źródła
Streszczenie:
Vocal fold vibration results from an alternating balance between subglottal air pressure that drives the vocal folds apart and muscular, elastic, and restoring forces that draw them together. The aim of the present thesis is to present quantitative data of normal vocal function using a noninvasive method. Measurements are made on the inverse filtered airflow waveform, of estimated average trans glottal pressure and glottal airflow, and of sound pressure for productions of syllable sequences. Statistical results are used to infer mechanisms that underlie differences across ( 1 ) normal, loud, and soft voice, (2) normal, high, and low pitch, and (3) between female and male voices. Interspeaker variation in group data and intra speaker variation across repeated recordings is also investigated. The results showed no significant female-male differences in pressure, suggesting that differences in other measures were not primarily due to differences in the respiratory systems . Most glottal waveforms showed a DC flow offset, suggesting an air leakage through a posterior glottal opening. Results suggested (indirectly) that the males in comparison with the females had significantly higher vocal fold closing velocities (maximum flow declination rate), larger vocal fold oscillations (AC flow), and relatively longer closed portions of the cycle (open quotient) in normal and loud voice. In soft voice, female and male waveforms were more alike. In comparison with normal voice, both females and males produced loud voice with significantly higher values of pressure, vocal fold closing velocity, and AC flow. Soft voice was produced with significantly lower values of these measures and increased DC flow. Correlation analyses indicated that several of the airflow measures were more directly related to vocal intensity than to pitch. Interspeaker variation was large, emphasizing the importance of large subject groups to capture normal variation. Intraspeaker variation across recording sessions was less than 2 standard deviations of the group means. The results should contribute to the understanding of normal voice function, and should be useful as norms in studies of voices disorders as well.
Härtill 5 uppsatser.För att köpa boken skicka en beställning till exp@ling.su.se/ To order the book send an e-mail to exp@ling.su.se
Style APA, Harvard, Vancouver, ISO itp.
5

Garrison, Courtney Rollins. "Repeatability of Aerodynamic Measurements of Voice". Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1239309229.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Yoon, Sungho. "Advanced aerodynamic design of the intermediate pressure turbine for aero-engines". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608551.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Wang, Yifei. "Experimental Study of Wheel-Vehicle Aerodynamic Interactions". Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2019. http://www.theses.fr/2019ESMA0002/document.

Pełny tekst źródła
Streszczenie:
Sur une maquette à l’échelle 2/5ième équipée d’un diffuseur et de pneus Michelin. La géométrie du véhicule, basée sur le modèle ASMO, a été modifiée précédemment à ce travail afin d’obtenir un angle d’attaque de l’écoulement sur les roues avant et un équilibre du sillage réaliste en présence de quatre roues tournantes. Cette configuration a servi de référence dans le cadre de cette étude.Il a été mis en évidence que la configuration de base avec un sillage équilibré peut facilement être modifiée d’un point de vue aérodynamique en changeant l’état des roues (en rotation ou pas) et le type de pneumatique, en particulier sur l’essieu arrière. Cela provient d’un effet global et d’une sensibilité importante de l’équilibre du sillage aux changements de débit au soubassement. A contrario, lorsque le sillage du véhicule se trouve déséquilibré, il devient plus robuste par rapport à des perturbations de soubassement comme un changement d’état des roues ou une modification des pneumatiques. Si l’on supprime les quatre roues ou uniquement les deux roues avant, le débit de quantité de mouvement au soubassement est grandement augmenté. Par contre, si l’on supprime le diffuseur (changement important de la géométrie du véhicule), celui-ci s’en trouve nettement réduit. Dans ces deux configurations, le sillage est très fortement déséquilibré vers le sol et devient indépendant aux modifications apportées sur les roues.Il a également été mis en évidence un effet plus local du sillage des roues sur la portance et la traînée du véhicule.En effet, la zone de dépression dans le sillage des roues avant a un effet sur la portance alors que le sillage des roues arrière pilote en partie la pression au culot et donc la traînée. Il a ainsi été observé une augmentation importante de la traînée du véhicule lorsque le sillage des roues arrière, non fermé, venait en interaction directe avec le sillage du véhicule
The thesis aims to provide a better understanding of the wheel-vehicle interaction, via experimental investigations on a 2/5-th scale vehicle with an underbody diffuser and 2/5-th scale wheels equipped with Michelin tires. The vehicle geometry, based on ASMO model, was modified prior to the PhD work, in order to achieve a reasonable front wheel yaw angle, and a realistic wake balance with four rotating wheels. It is the baseline configuration in the scope of this work.The findings demonstrate that the well-balanced wake of the baseline configuration can be easily modified by different wheel states or tire modifications, especially at the rear axle. This results from a global effect of the underbody momentum modifications, i.e. a high wake sensitivity to the underbody flow. On the contrary, when the vehicle mean wake develops into a non-balanced topology, it is more robust towards underbody perturbations such as different wheel states or tire modifications. By eliminating four wheels or front wheels, the underbody momentum flux is vastly increased; by eliminating the underbody diffuser, which is a vehicle geometry modification, the underbody momentum flux is significantly reduced. In these two circumstances, one can observea robust downwash from the roof, independent of the wheel states or tire modifications. Besides, there is a more local effect of the wheels near wakes on the aerodynamic lift and drag of the vehicle. Low pressure regions in the underbody downstream the front wheels have an effect on vehicle lift. The rear wheels impose pressure conditions on the vehicle base, influencing the vehicle drag. Particularly, the merging of nonclosed mean wakes of the rear wheels with the vehicle wake can give rise to strong penalty in vehicle drag
Style APA, Harvard, Vancouver, ISO itp.
8

Oram, C. E. "Aerodynamic surface pressure measurement in atmosphere and wind tunnel on a vertical axis wind turbine blade using pressure transducers". Thesis, Cranfield University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375937.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Jöcker, Markus. "Numerical Investigation of the Aerodynamic Vibration Excitation of High-Pressure Turbine Rotors". Doctoral thesis, KTH, Energy Technology, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3416.

Pełny tekst źródła
Streszczenie:

The design parameters axial gap and stator count of highpressure turbine stages are evaluated numerically towards theirinfluence on the unsteady aerodynamic excitation of rotorblades. Of particular interest is if and how unsteadyaerodynamic considerations in the design could reduce the riskofhigh cycle fatigue (HCF) failures of the turbine rotor.

A well-documented 2D/Q3D non-linear unsteady code (UNSFLO)is chosen to perform the stage flow analyses. The evaluatedresults are interpreted as aerodynamic excitation mechanisms onstream sheets neglecting 3D effects. Mesh studies andvalidations against measurements and 3D computations provideconfidence in the unsteady results. Three test cases areanalysed. First, a typical aero-engine high pressure turbinestage is studied at subsonic and transonic flow conditions,with four axial gaps (37% - 52% of cax,rotor) and two statorconfigurations (43 and 70 NGV). Operating conditions areaccording to the resonant conditions of the blades used inaccompanied experiments. Second, a subsonic high pressureturbine intended to drive the turbopump of a rocket engine isinvestigated. Four axial gap variations (10% - 29% ofcax,rotor) and three stator geometry variations are analysed toextend and generalise the findings made on the first study.Third, a transonic low pressure turbine rotor, known as theInternational Standard Configuration 11, has been modelled tocompute the unsteady flow due to blade vibration and comparedto available experimental data.

Excitation mechanisms due to shock, potential waves andwakes are described and related to the work found in the openliterature. The strength of shock excitation leads to increasedpressure excitation levels by a factor 2 to 3 compared tosubsonic cases. Potential excitations are of a typical wavetype in all cases, differences in the propagation direction ofthe waves and the wave reflection pattern in the rotor passagelead to modifications in the time and space resolved unsteadypressures on the blade surface. The significant influence ofoperating conditions, axial gap and stator size on the wavepropagation is discussed on chosen cases. The wake influence onthe rotorblade unsteady pressure is small in the presentevaluations, which is explicitly demonstrated on the turbopumpturbine by a parametric study of wake and potentialexcitations. A reduction in stator size (towards R≈1)reduces the potential excitation part so that wake andpotential excitation approach in their magnitude.

Potentials to reduce the risk of HCF excitation in transonicflow are the decrease of stator exit Mach number and themodification of temporal relations between shock and potentialexcitation events. A similar temporal tuning of wake excitationto shock excitation appears not efficient because of the smallwake excitation contribution. The increase of axial gap doesnot necessarily decrease the shock excitation strength neitherdoes the decrease of vane size because the shock excitation mayremain strong even behind a smaller stator. The evaluation ofthe aerodynamic excitation towards a HCF risk reduction shouldonly be done with regard to the excited mode shape, asdemonstrated with parametric studies of the mode shapeinfluence on excitability.

Keywords:Aeroelasticity, Aerodynamics, Stator-RotorInteraction, Excitation Mechanism, Unsteady Flow Computation,Forced Response, High Cycle Fatigue, Turbomachinery,Gas-Turbine, High-Pressure Turbine, Turbopump, CFD, Design

Style APA, Harvard, Vancouver, ISO itp.
10

Sharifian, Seyed Ahmad. "Fibre optic pressure transducers for disturbance measurements in transient aerodynamic research facilities". University of Southern Queensland, Faculty of Engineering and Surveying, 2003. http://eprints.usq.edu.au/archive/00001509/.

Pełny tekst źródła
Streszczenie:
Experiments in the study of transient aerodynamics typically require pressure measurements with a high spatial and temporal resolution. Existing commercial pressure transducers are expensive and they provide a spatial resolution only on the order of millimetres. The full bandwidth of commercial devices (which extends to around 200 kHz) can only be utilised by exposing the transducer to the flow environment with very little thermal or mechanical protection. If insufficient protection is provided, the expensive commercial devices are likely to be damaged. Inexpensive pressure sensors based on extrinsic Fabry-Perot fibre optic interferometry are capable of measurement with a high spatial and temporal resolution. Thermal protection or isolation for these sensors is still required, but they can be exposed directly to the flow if the sensors are disposable (low cost). Excessive thermal or mechanical protection is not required for these sensors because the damaging heat transfer and particle impacts that may occur in transient aerodynamic facilities generally occur after the useful test flow. In this dissertation, a variety of construction techniques for diaphragm-based Fabry-Perot fibre optic pressure sensors were investigated and the advantages and disadvantages of all techniques are compared. The results indicate that using a zirconia ferrule as the substrate, a liquid adhesive as the bonding layer, and a polished copper foil as the diaphragm provide the best results. It is demonstrated that a spatial resolution on the order of 0.1 mm and a bandwidth to more than 100 kHz can be achieved with such constructions. A variety of problems such as hysteresis, response irregularity, low visibility and sensor non-repeatability were observed. By using a thinner bonding layer, a larger bonding area, longer cavity length, increased calibration period, and applying load cycling to the diaphragm, the hysteresis was minimized. Sensor response irregularity was also minimized using a polished diaphragm. Visibility increased to about 90% using active control of the cavity length during the construction process. Non-repeatability was found to be a consequence of adhesive viscoelasticity and this effect was minimized using a thin layer of adhesive to bond the diaphragm to the substrate. Due to the effects of adhesive viscoelasticity, the pressure sensors indicate an error of up to 10% of mean value for the reflected shock pressure. This error could not be further reduced in the current sensors configuration. Some new configurations are proposed to decrease the effect of sensor non-repeatability. The effect of pretensioning the diaphragm was investigated analytically but the results do not indicate any considerable advantage for the levels of pretension likely to be achieved in practice. However, the results do indicate that pretension effects caused by an environmental temperature change can damage the sensor during storage. The effect of the initial diaphragm deflection on the sensor performance and temperature sensitivity was modelled and the results show that an initial diaphragm deflection can improve the sensor performance. The effect of the thermal isolation layer on the sensor performance was also investigated and the results show that for a shock tube diaphragm bursting pressure ratio up to 5.7, heat transfer does not contribute to sensor errors for the first millisecond after shock reflection. However, it was found that the use of a thin layer of low viscosity grease can protect the sensor for about 20 ms while only decreasing its natural frequency by typically 17%. The grease layer was also found to decrease the settling time of a low damping ratio sensor by 40%. The sensor was successfully employed to identify an acoustic disturbance in a shock tube.
Style APA, Harvard, Vancouver, ISO itp.
11

Nemec, Marian. "Aerodynamic computations using the convective upstream split pressure scheme with local preconditioning". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0013/MQ34104.pdf.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Faltýnek, Michal. "Aerodynamický výpočet spalinového traktu parního kotle". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417845.

Pełny tekst źródła
Streszczenie:
The aim of this thesis is to introduce the reader into theory, which is needed to make an aerodynamic calculation of flue gas part of steam boiler. On the back of the knowledge, project documentation and other entry parameters calculate sectional losses for each component and design a ventilator, that is suitable for our requirements.
Style APA, Harvard, Vancouver, ISO itp.
13

Dinsenmeyer, Alice. "Probabilistic approach for the separation of the acoustic and aerodynamic wall pressure fluctuations". Thesis, Lyon, 2020. http://theses.insa-lyon.fr/publication/2020LYSEI087/these.pdf.

Pełny tekst źródła
Streszczenie:
Avec l'apparition des MEMS et la diminution globale du coût des capteurs, les acquisitions multivoies se généralisent, notamment dans le domaine de l'identification de sources acoustiques. La qualité de la localisation et de la quantification des sources peut être dégradée par la présence de bruit de mesure ambiant ou induit par le système d'acquisition. En particulier, dans le cas de mesures en présence d'un écoulement, la couche limite turbulente qui se développe sur le système de mesure peut induire des fluctuations de pression de niveau bien supérieur à celles des sources acoustiques. Il devient alors nécessaire de traiter les acquisitions pour extraire chaque composante du champ mesuré. Pour cela, on propose de décomposer la matrice spectrale mesurée en la somme d'une matrice associée à la contribution acoustique et d'une matrice pour le bruit aérodynamique. Cette décomposition exploite les propriétés statistiques de chaque champ de pression. En supposant que la contribution acoustique est fortement corrélée sur les capteurs, le rang de la matrice interspectrale associée se limite au nombre de sources décorrélées équivalentes. Concernant la matrice du bruit aérodynamique, deux modèles statistiques sont proposés. Un premier modèle fait l'hypothèse d'un champ totalement décorrélé sur les capteurs, et un second repose sur un modèle physique préexistant. Ce problème de séparation est résolu par une approche d'optimisation bayésienne, qui permet de prendre en compte les incertitudes sur chaque composante du modèle.Les performances de cette méthode sont d'abord évaluées sur des mesures en soufflerie puis sur des données industrielles particulièrement bruitées, provenant de mesures microphoniques effectuées sur le fuselage d'un avion de ligne en vol
With the emergence of MEMS and the overall decrease in the cost of sensors, the acquisitions multichannel are becoming more widespread, particularly in the field of acoustic source identification. The quality of source localization and quantification can be degraded by the presence of ambient or electronic noise. In particular, in the case of in flow measurements, the turbulent boundary layer that develops over the measuring system can induce pressure fluctuations that are much greater than those of acoustic sources. It then becomes necessary to process the acquisitions to extract each component of the measured field. For this purpose, it is proposed in this thesis to decompose the measured spectral matrix into the sum of a matrix associated with the acoustic contribution and a matrix for aerodynamic noise. This decomposition exploits the statistical properties of each pressure field. Assuming that the acoustic contribution is highly correlated on the sensors, the rank of the corresponding cross-spectral matrix is limited to the number of equivalent uncorrelated sources. Concerning the aerodynamic noise matrix, two statistical models are proposed. A first model assumes a totally uncorrelated field on the sensors, and a second is based on a pre-existing physical model. This separation problem is solved by a Bayesian optimization approach, which takes into account the uncertainties on each component of the model. The performance of this method is first evaluated on wind tunnel measurements and then on particularly noisy industrial measurement, coming from microphones flushmounted on the fuselage of an inflight large aircraft
Style APA, Harvard, Vancouver, ISO itp.
14

Thrift, Alan Albright. "Aerodynamic Force and Pressure Loss Measurements on Low Aspect Ratio Pin Fin Arrays". Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/31189.

Pełny tekst źródła
Streszczenie:
The desire to achieve higher heat transfer augmentation for turbine blades is fueled by the increased power output and efficiency that is achievable with high turbine inlet temperatures. The use of internal cooling channels fitted with pin fin arrays serves as one method of accomplishing this goal. Consequently, the addition of pin fin arrays comes at the expense of increased pressure drop. Therefore the pin fin geometry must be judiciously chosen to achieve the required heat transfer rate while minimizing the associated pressure drop.

This project culminates in the measurement of both pin fin force and array pressure drop as they related to changes in the array geometry. Specifically, the effects of Reynolds number, spanwise pin spacing, streamwise pin spacing, pin aspect ratio, and flow incidence angle. Direct two-component force measurement is achieved with a cantilever beam force sensor that uses highly sensitive piezoresistive strain gauges, relating the strain at the base of the beam to the applied force. With proper characterization, forces as small as one-tenth the weight of a paper clip are successfully measured. Additionally, array pressure drop measurements are achieved using static pressure taps.

Experiments were conducted over a range of Reynolds numbers between 7,500 and 35,000. Changes in the spanwise pin spacing were shown to substantially alter the pin fin drag and array pressure drop, while changes in the streamwise pin spacing were less influential. The experimental results also showed a dramatic reduction in the pin fin drag and array pressure drop for an inline flow incidence angle. Finally, changes in the pin aspect ratio were shown to have little effect on the array pressure drop.
Master of Science

Style APA, Harvard, Vancouver, ISO itp.
15

Harris, John N. "Referenced pressure and temperature sensitive coatings using solid state phosphors /". Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/8577.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Pulliam, Wade Joseph. "Development of Fiber Optic Aerodynamic Sensors for High Reynolds Number Supersonic Flows". Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26325.

Pełny tekst źródła
Streszczenie:
The purpose of the project was to examine fiber optic sensors for the measurement of pressure, skin friction, temperature, and heat flux in high Reynolds number, supersonic flow. Using a standard fiber optic signal conditioning unit (specifically a broadband interferometric system using spectra), the work centered around determining under what conditions these sensors will work effectively and quantifying the total system limitations. An interferometric-based, fiber optic skin friction sensor was developed for the measurement of wall shear stress in complex, supersonic flows. This sensor type was tested successfully in laminar, incompressible flow, and supersonic flow up to Mach 1.92, Mach 2.4 and 3.0 flow, in which the sensor operated with varying success. A micromachined, fiber optic pressure sensor was also tested in these supersonic conditions, also with varying success. The accurate operation of these sensors was found to be tied to the flow conditions and the fiber optic, signal processing system. A correlation was found to exist between the energy of the flow, either through its dynamic pressure or through external disturbances such as shocks or separation, and the noise in the signals, expressed by the variance of the gap estimate, for the pressure and skin friction sensors in these flows. The energy of the flow couples with the mechanical properties of the sensor reducing the fringe contrast of the signal used by the optical signal processing system to determine a gap estimate. As the energy of the flow is increased and the sensor is excited, the fringe contrast is reduced. A practical limit of a normalized fringe contrast of 0.10 was found for producing accurate gap estimates in real flows. A consequence is that there is a limit to the dynamic pressure of the flow for the sensors to operate accurately, which is demonstrated by the varying success of the supersonic wind tunnel tests. This correlation is sensor specific, meaning that sensors can be designed to operate successfully in any flow. Also, the signal processing system, which forms the other end of the total system, could be improved to allow accurate measurements with the current sensors.
Ph. D.
Style APA, Harvard, Vancouver, ISO itp.
17

Lyu, Zhipeng. "Aerodynamic Wind Tunnel in Passenger Car Application". Thesis, KTH, Mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-203971.

Pełny tekst źródła
Streszczenie:
The thesis aims to provide an evaluation on the Volvo 1/5th scaled wind tunnel regarding its potentials and capabilities in aerodynamic study. The flow quality in the test section was evaluated. The experiments were performed included measurements of airspeed stability, tunnel-wall boundary layer profile and horizontal buoyancy. A numerical model was developed to predict the boundary layer thickness on the test floor. Repeatability tests were also conducted to establish the appropriate operating regime.A correlation study between the 1/5th scaled wind tunnel (MWT) and full scale wind tunnel (PVT) was performed using steady force and unsteady pressure measurements. The Volvo Aero 2020 concept car was selected to be the test model.The Reynolds effect and the tunnel-wall boundary layer interference were identified in the steady force measurements. Unsteady near-wake phenomena such as wake pumping and wake flapping were discussed in the unsteady base pressure measurements.
Style APA, Harvard, Vancouver, ISO itp.
18

Ismael, Khalid Abdul-Hamed. "Pressure variation and aerodynamic noise generation in two-phase flow through pipe line orifices". Thesis, University of Leeds, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440212.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Montis, Marco [Verfasser]. "Aerodynamic Effects of Coolant Ejection in a High-Pressure Gas Turbine Airfoil / Marco Montis". München : Verlag Dr. Hut, 2018. http://d-nb.info/1168535212/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Hoggan, Megan Caroline. "Aerodynamic Measurement Stability During Rabbit Versus Pig Benchtop Phonation". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8412.

Pełny tekst źródła
Streszczenie:
Combination corticosteroid inhalers are the primary treatment option for long-term pulmonary disorders including asthma, persistent bronchitis, and chronic obstructive pulmonary disease. Common side effects of these medications are xerostomia in the mouth and throat, hoarseness, and soreness in the oropharynx. Research indicates that a large percentage of the inhaler particles are deposited onto laryngeal tissue, leaving an alteration of laryngeal mucosal properties. As the first stage in a long-term project, this thesis addresses the need for baseline phonatory data that will lay groundwork for quantifying inhaler-induced phonatory changes. Excised larynx research is a powerful tool for assessing aerodynamic alterations that accompany laryngeal pathology. Porcine (pig) larynges are a traditional species employed in voice disorder research, though leporine (rabbit) larynges are an emerging species that lends itself to histologic vocal fold studies as they have the most similar vocal fold cover structure to humans compared to any other animal to date. The purpose of this study was to examine the measurement stability of six aerodynamic parameters in a traditional excised larynx benchtop model. Specifically, the current author assessed measurement stability of leporine larynges compared to porcine larynges with the following aerodynamic metrics: phonation onset pressure (PTP; cmH2O), phonation onset flow (PTF; L/m), sustained pressure (cmH2O), sustained flow (L/m), onset laryngeal resistance (cmH2O/L/m), and sustained laryngeal resistance (cmH2O/L/m). A total of 30 larynges—15 leporine and 15 porcine—were mounted on a benchtop setup; phonation was sampled over 15 trials for each larynx. Measurement stability for the above six tokens was examined using coefficient of variation (%) analyses. Leporine larynges demonstrated significantly less variation across all six aerodynamic parameters when compared to porcine larynges. The leporine PTP values were most stable as compared to leporine and porcine pressure and airflow values. Leporine airflow values were also more stable than porcine PTP and PTF values. These results indicate that leporine larynges might be a preferred excised larynx specimen for certain benchtop phonation studies. These findings are important for establishing expected measurement variability in porcine and leporine larynges, particularly when translating benchtop research to laryngeal pathology.
Style APA, Harvard, Vancouver, ISO itp.
21

Tárnok, Gábor. "Aerodynamická interakce dvou vozidel". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229895.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Tárnok, Gábor. "Aerodynamická interakce dvou vozidel". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-374732.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Sheard, A. G. "Aerodynamic and mechanical performance of a high-pressure turbine stage in a transient wind tunnel". Thesis, University of Oxford, 1989. http://ora.ox.ac.uk/objects/uuid:73ecb15e-efde-474d-ae30-3f8f7e1d6f4e.

Pełny tekst źródła
Streszczenie:
Unsteady three-dimensional flow phenomena have major effects on the aerodynamic performance of, and heat transfer to, gas-turbine blading. Investigation of the mechanisms associated with these phenomena requires an experimental facility that is capable of simulating a gas turbine, but at lower levels of temperature and pressure to allow conventional measurement techniques. This thesis reports on the design, development and commissioning of a new experimental facility that models these unsteady three-dimensional flow phenomena. The new facility, which consists of a 62%-size, high-pressure gas-turbine stage mounted in a transient wind tunnel, simulates the turbine design point of a full-stage turbine. The thesis describes the aerodynamic and mechanical design of the new facility, a rigorous stress analysis of the facility’s rotating system and the three-stage commissioning of the facility. The thesis concludes with an assessment of the turbine stage performance.
Style APA, Harvard, Vancouver, ISO itp.
24

Woods, Amy. "Effect of Continuous Positive Airway Pressure (CPAP) on Aerodynamic and Acoustic Aspects of Velopharyngeal Function". The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523190308305561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Bake, Miriam Angela Cannon. "Variability of the Aerodynamic Measures of Leporine Larynges Exposed to Inhaled Corticosteroids". BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/9124.

Pełny tekst źródła
Streszczenie:
This thesis examined the effects of combination inhaled corticosteroids (ICs) on the stability of six aerodynamic measures of phonation utilizing a traditional benchtop model with leporine larynges. The motivation for this study was based on the increase of voice disorders associated with IC use in recent years. The aerodynamic measures examined were phonation threshold pressure (PTP), phonation threshold flow (PTF), onset resistance, sustained pressure, sustained flow, and sustained resistance. Leporine larynges were selected as the model for this study due to histological similarities between leporine and human vocal folds that make them ideal for translational research. Rabbits were either exposed to saline solution or ICs for 8 weeks before being sacrificed. After being sacrificed, larynges were excised and dissected. After dissection, the larynges were mounted on a benchtop, the aerodynamic data were gathered, and stability over multiple phonation trials was calculated. The results indicate that the variation between individual rabbits across the measures did not differ significantly. However, after controlling for trial, the average variation of the groups across all trials did differ significantly. PTP and sustained pressure were more variable for the inhaler group, while PTF, sustained flow, onset resistance, and sustained resistance were more variable for the control group. These results suggest that some level of variability in aerodynamic measures both within and between subjects is to be expected when using the leporine benchtop model. Furthermore, while IC exposure does not seem to impact within-subject variability, it does influence between-subjects variability.
Style APA, Harvard, Vancouver, ISO itp.
26

Brumbaugh, Scott J. "Development of a Methodology to Measure Aerodynamic Forces on Pin Fins in Channel Flow". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/30871.

Pełny tekst źródła
Streszczenie:
The desire for smaller, faster, and more efficient products places a strain on thermal management in components ranging from gas turbine blades to computers. Heat exchangers that utilize internal cooling flows have shown promise in both of these industries. Although pin fins are often placed in the cooling channels to augment heat transfer, their addition comes at the expense of increased pressure drop. Consequently, the pin fin geometry must be judiciously chosen to achieve the desired heat transfer rate while minimizing the pressure drop and accompanying pumping requirements. This project culminates in the construction of a new test facility and the development of a unique force measurement methodology. Direct force measurement is achieved with a cantilever beam force sensor that uses sensitive piezoresistive strain gauges to simultaneously measure aerodynamic lift and drag forces on a pin fin. After eliminating the detrimental environmental influences, forces as small as one-tenth the weight of a paper clip are successfully measured. Although the drag of an infinitely long cylinder in uniform cross flow is well documented, the literature does not discuss the aerodynamic forces on a cylinder with an aspect ratio of unity in channel flow. Measured results indicate that the drag coefficient of a cylindrical pin in a single row array is greater than the drag coefficient of an infinite cylinder in cross flow. This phenomenon is believed to be caused by an augmentation of viscous drag on the pin fin induced by the increased viscous effects inherent in channel flow.
Master of Science
Style APA, Harvard, Vancouver, ISO itp.
27

Jazzar, Jacques. "Methods of post-treatment of aerodynamic tests of engine boosters". Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260474.

Pełny tekst źródła
Streszczenie:
Aerodynamics studies in a booster such as analysis of the flow through the whole component or study of local turbulent phenomenon constitute a crucial part of its development in order to get better overall performances, like efficiency of the compressor and compression ratio. In order to put in perspective the computational predictions, it is critical to obtain sets of data from tests to caliber numerical analyses and to assure the booster respects design specifications. Aerodynamics testing is then an important part of the development of a compressor. However, it is complicated to obtain such values for many reasons: time constraints, problems regarding support, important costs etc. Thus, it is important to get as much information as possible from these tests data in a limited period in order to spend more time in results interpretation and less in treating raw data. Thus, an optimized tool of treatment to first deduce results from test data; and then to compare different engines or different sets of tests data, to get a wider state of the art and to avoid time-consuming analyses was needed. In order to do so, the first part of the development consists in investigating the existing methods to extract and analyze data from tests already used, and then deducing a general methodology to obtain from raw measures the performances of the studied booster compared to other available data. Once the methods have been set up and validated, the tool in itself was implemented in a practical way. Then, it was important to validate it on real tests values and to observe if it was adjustable for all kind of aerodynamics tests.
Aerodynamikstudier i en booster som analys av flödet genom hela komponenten eller studie av lokal turbulens fenomen utgör en avgörande del av dess utveckling för att få bättre generella prestanda, som kompressorns verkningsgrad och kompressionsförhållandet. För att sätta beräkningsresultat i perspektiv är det kritisk att få datauppsättningar från tester för att kalibrera de numeriska analyser och för att säkerställa att booster uppfyller konstruktionsspecifikationer. Aerodynamisk provning är då en viktig del av utvecklingen av en kompressor. Det är dock komplicerat att få sådana värden av många skäl: tidsbegränsningar, problem angående support, viktiga kostnader osv. Därför är det viktigt att få så mycket information som möjligt från provdata under en begränsad period för att tillbringa mer tid i resultat tolkning och mindre tid på att behandla rådata. Således ett optimerat behandlingsverktyg för att först dra resultat från provdata; och sedan att jämföra olika motorer eller olika uppsättningar av provdata, för att få en bredare databank och att undvika tidskrävande analyser behövdes. För att göra det består den första delen av utvecklingen i att undersöka de befintliga metoderna för att extrahera och analysera data från tester som redan använts, och sedan dra ut en allmän metod för att från råa mått erhålla prestandan hos den studerade boosteren jämfört med andra tillgängliga data. När metoderna har installerats och validerats implementerades verktyget i sig på ett praktiskt sätt. Då var det viktigt att validera det på verkliga testvärden och att se om det var justerbart för alla typer av aerodynamiska test.
Style APA, Harvard, Vancouver, ISO itp.
28

Leung, Pak Wing. "Aerodynamic Loss Co-Relations and Flow- Field Investigations of a Transonic Film- Cooled Nozzle Guide Vane". Thesis, KTH, Kraft- och värmeteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-162130.

Pełny tekst źródła
Streszczenie:
Over the last two decades, most developed countries have reached a consensus that greener energy production is necessary for the world, due to the climate changes and limited fossil fuel resources. More efficient turbine is desirable and can be archived by higher turbine-inlet temperature (TIT). However, it is difficult for nozzle guide vane (NGV), which is the first stage after combustion chamber, to withstand a very high temperature. Thus, cooling methods such as film cooling have to be implemented. Film-cooled NGV of an annular sector cascade (ASC) is studied in this thesis, for getting comprehensive calculation of vorticity, and analyzing applicability of existing loss models, namely Hartsel model and Young & Wilcock model. The flow-field calculation methods from previously published studies are reviewed. Literatures focusing on Hartsel model and Young & Wilcock model are studied. Measurement data from previously published studies are analyzed and compared with the loss models. In order to get experience of how measurements take place, participation of a test run experiment is involved. Calculation of flow vector has been evaluated and modified. Actual flow angle is introduced when calculating velocity components. Thus, more exact results are obtained from the new method. Calculation of vorticity has been evaluated and made more comprehensive. Vorticity components as well as magnitude of total streamwise vorticity are calculated and visualized. Vorticity is higher and more extensive for fully cooled case than uncooled case. Highest vorticity is found at regions near the hub, tip and TE. Axial and circumferential vorticities show similar patterns, while the radial vorticity is relatively simpler. Compressibility is introduced as a new method when calculating circumferential and radial vorticities, resulting more extensive and higher vorticities than results from incompressible solutions. Hartsel model and Young & Wilcock model have been evaluated and compared to the ASC to see the applicability of the models. In general, Hartsel model cannot agree with the ASC to a satisfactory level and thus cannot be applied. Coolant velocity is found to be the dominant factor of Hartsel model. Young & Wilcock model may match SS1 and SS2 cases, or even PS and SH4 cases, but cannot match TE case. The applicability of Young & Wilcock model is much dependent on the location of cooling rows.
Style APA, Harvard, Vancouver, ISO itp.
29

Green, Brian Richard. "Time-Averaged and Time-Accurate Aerodynamic Effects of Rotor Purge Flow for a Modern, Rotating, High-Pressure Turbine Stage and Low-Pressure Turbine Vane". The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322535026.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Stucki, Chad Lamar. "Aerodynamic Design Optimization of a Locomotive Nose Fairing for Reducing Drag". BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7478.

Pełny tekst źródła
Streszczenie:
Rising fuel cost has motivated increased fuel efficiency for freight trains. At cruising speed,the largest contributing factor to the fuel consumption is aerodynamic drag. As a result of stagnationand flow separation on and around lead and trailing cars, the first and last railcars experiencegreater drag than intermediate cars. Accordingly, this work focused on reducing drag on lead locomotivesby designing and optimizing an add-on nose fairing that is feasible for industrial operation.The fairing shape design was performed via computational fluid dynamic (CFD) software.The simulations consisted of two in-line freight locomotives, a stretch of rails on a raised subgrade,a computational domain, and a unique fairing geometry that was attached to the lead locomotive ineach non-baseline case. Relative motion was simulated by fixing the train and translating the rails,subgrade, and ground at a constant velocity. An equivalent uniform inlet velocity was applied atzero degree yaw to simulate relative motion between the air and the train.Five fairing families-Fairing Families A-E (FFA-FFE)-are presented in this thesis.Multidimensional regressions are created for each family to approximate drag as a function ofthe design variables. Thus, railroad companies may choose an alternative fairing if the recommendedfairing does not meet their needs and still have a performance estimate. The regression forFFE is used as a surrogate model in a surrogate based optimization. Results from a wind tunneltest and from CFD are reported on an FFE geometry to validate the CFD model. The wind tunneltest predicts a nominal drag reduction of 16%, and the CFD model predicts a reduction of 17%.A qualitative analysis is performed on the simulations containing the baseline locomotive, the optimalfairings from FFA-FFC, and the hybrid child and parent geometries from FFA & FFC. Theanalysis reveals that optimal performance is achieved for a narrow geometry from FFC becausesuction behind the fairing is greatly reduced. Similarly, the analysis reveals that concave geometriesboost the flow over the top leading edge of the locomotive, thus eliminating a vortex upstreamof the windshields. As a result, concave geometries yield greater reductions in drag.The design variable definitions for each family were strategically selected to improve manufacturability,operational safety, and aerodynamic performance relative to the previous families.As a result, the optimal geometry from FFE is believed to most completely satisfy the constraintsof the design problem and should be given the most consideration for application in the railroadindustry. The CFD solution for this particular geometry suggests a nominal drag reduction of 17%on the lead locomotive in an industrial freight train.
Style APA, Harvard, Vancouver, ISO itp.
31

Saha, Ranjan. "Aerodynamic Investigation of Leading Edge Contouring and External Cooling on a Transonic Turbine Vane". Doctoral thesis, KTH, Kraft- och värmeteknologi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150458.

Pełny tekst źródła
Streszczenie:
Efficiency improvement in turbomachines is an important aspect in reducing the use of fossil-based fuel and thereby reducing carbon dioxide emissions in order to achieve a sustainable future. Gas turbines are mainly fossil-based turbomachines powering aviation and land-based power plants. In line with the present situation and the vision for the future, gas turbine engines will retain their central importance in coming decades. Though the world has made significant advancements in gas turbine technology development over past few decades, there are yet many design features remaining unexplored or worth further improvement. These features might have a great potential to increase efficiency. The high pressure turbine (HPT) stage is one of the most important elements of the engine where the increased efficiency has a significant influence on the overall efficiency as downstream losses are substantially affected by the prehistory. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage.   Hence, this study has been incorporated into a research project that investigates leading edge contouring near endwall by fillet and external cooling on a nozzle guide vane with a common goal to contribute to the development of the HPT stage. In the search for HPT stage efficiency gains, leading edge contouring near the endwall is one of the methods found in the published literature that showed a potential to increase the efficiency by decreasing the amount of secondary losses. However, more attention is necessary regarding the realistic use of the leading edge fillet. On the other hand, external cooling has a significant influence on the HPT stage efficiency and more attention is needed regarding the aerodynamic implication of the external cooling. Therefore, the aerodynamic influence of a leading edge fillet and external cooling, here film cooling at profile and endwall as well as TE cooling, on losses and flow field have been investigated in the present work. The keystone of this research project has been an experimental investigation of a modern nozzle guide vane using a transonic annular sector cascade. Detailed investigations of the annular sector cascade have been presented using a geometric replica of a three dimensional gas turbine nozzle guide vane. Results from this investigation have led to a number of new important findings and also confirmed some conclusions established in previous investigations to enhance the understanding of complex turbine flows and associated losses.   The experimental investigations of the leading edge contouring by fillet indicate a unique outcome which is that the leading edge fillet has no significant effect on the flow and secondary losses of the investigated nozzle guide vane. The reason why the leading edge fillet does not affect the losses is due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. The investigation of the external cooling indicates that a coolant discharge leads to an increase of profile losses compared to the uncooled case. Discharges on the profile suction side and through the trailing edge slot are most prone to the increase in profile losses. Results also reveal that individual film cooling rows have a weak mutual effect. A superposition principle of these influences is followed in the midspan region. An important finding is that the discharge through the trailing edge leads to an increase in the exit flow angle in line with an increase of losses and a mixture mass flow. Results also indicate that secondary losses can be reduced by the influence of the coolant discharge. In general, the exit flow angle increases considerably in the secondary flow zone compared to the midspan zone in all cases. Regarding the cooling influence, the distinct change in exit flow angle in the area of secondary flows is not noticeable at any cooling configuration compared to the uncooled case. This interesting zone requires an additional, accurate study. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the suction surfaces and does not reach the pressure side of the hub surface, leaving it less protected from the hot gas. This indicates a strong interaction of the secondary flow and cooling showing that the influence of the secondary flow cannot be easily influenced.   The overall outcome enhances the understanding of complex turbine flows, loss behaviour of cooled blade, secondary flow and interaction of cooling and secondary flow and provides recommendations to the turbine designers regarding the leading edge contouring and external cooling. Additionally, this study has provided to a number of new significant results and a vast amount of data, especially on profile and secondary losses and exit flow angles, which are believed to be helpful for the gas turbine community and for the validation of analytical and numerical calculations.
Ökad verkningsgrad i turbomaskiner är en viktig del i strävan att minska användningen av fossila bränslen och därmed minska växthuseffekten för att uppnå en hållbar framtid. Gasturbinen är huvudsakligen fossilbränslebaserad, och driver luftfart samt landbaserad kraftproduktion. Enligt rådande läge och framtidsutsikter bibehåller gasturbinen denna centrala roll under kommande decennier. Trots betydande framsteg inom gasturbinteknik under de senaste årtionden finns fortfarande många designaspekter kvar att utforska och vidareutveckla. Dessa designaspekter kan ha stor potential till ökad verkningsgrad. Högtrycksturbinsteget är en av de viktigaste delarna av gasturbinen, där verkningsgraden har betydande inverkan på den totala verkningsgraden eftersom förluster kraftigt påverkas av tidigare förlopp. Huvudsyftet med denna studie är att bidra till verkningsgradsförbättringar i högtrycksturbinsteget.   Studien är del i ett forskningsprojekt som undersöker ledskenans framkantskontur vid ändväggarna samt extern kylning, i jakten på dessa förbättringar. Den aerodynamiska inverkan av en förändrad geometri vid ledskenans ändväggar har i tidigare studier visat potential för ökad verkningsgrad genom minskade sekundärförluster. Ytterligare fokus krävs dock, med användning av en rimlig hålkälsradie. Samtidigt har extern kylning i form av filmkylning stor inverkan på verkningsgraden hos högtrycksturbinsteget och forskning behövs med fokus på den aerodynamiska inverkan. Av denna anledning studeras här inverkan både av ändrad hålkälsradie vid ledskenans framkant samt extern kylning i form av filmkylning av skovel, ändvägg och bakkant på aerodynamiska förluster och strömningsfält. Huvudpelaren i detta forskningsprojekt har varit en experimentell undersökning av en geometrisk replika av en modern tredimensionell gasturbinstator i en transonisk annulärkaskad. Detaljerade undersökningar i annulärkaskaden har gett betydande resultat, och bekräftat vissa tidigare studier. Detta har lett till ökad förståelsen för de komplexa flöden och förluster som karakteriserar gasturbiner.   De experimentella undersökningarna av förändrad framkantsgeometri leder till den unika slutsatsen att den modifierade hålkälsradien inte har någon betydande inverkan på strömningsfältet eller sekundärförluster av den undersökta ledskenan. Anledningen till att förändringen inte påverkar förlusterna är i detta fall den tredimensionella karaktären hos ledskenan med en redan existerande typisk framkantsgeometri. Undersökningarna visar också att de komplexa sekundärströmningarna är kraftigt beroende av det inkommande gränsskiktet. Undersökning av extern kylning visar att kylflödet leder till en ökad profilförlust. Kylflöde på sugsidan samt bakkanten har störst inverkan på profilförlusten. Resultaten visar också att individuella filmkylningsrader har liten påverkan sinsemellan och kan behandlas genom en superpositionsprincip längs mittsnittet. En viktig slutsats är att kylflöde vid bakkanten leder till ökad utloppsvinkel tillsammans med ökade förluster och massflöde. Resultat tuder på att sekundärströmning kan minskas genom ökad kylning. Generellt ökar utloppsvinkeln markant i den sekundära flödeszonen jämfört med mittsnittet för alla undersökta fall. Den kraftiga förändringen i utloppsvinkel är dock inte märkbar i den sekundära flödeszonen i något av kylfallen jämfört med de okylda referensfallet. Denna zon fordrar ytterligare studier. Spårgasundersökning av ledskenan med koldioxid (CO2) visar att plattformskylning uppströms ledskenan koncentreras till skovelns sugsida, och når inte trycksidan som därmed lämnas mer utsatt för het gas. Detta påvisar den kraftiga interaktionen mellan sekundärströmning och kylflöden, och att inverkan från sekundärströmningen ej enkelt kan påverkas. De generella resultaten från undersökningen ökar förståelsen av komplexa turbinflöden, förlustbeteenden för kylda ledskenor, interaktionen mellan sekundärströmning och kylflöden, och ger rekommendationer för turbinkonstruktörer kring förändrad framkantsgeometri i kombination med extern kylning. Dessutom har studien gett betydande resultat och en stor mängd data, särskilt rörande profil- och sekundärförluster och utloppsvinkel, vilket tros kunna vara till stor hjälp för gasturbinssamfundet vid validering av analytiska och numeriska beräkningar.

QC 20140909


Turbopower, Sector rig
Style APA, Harvard, Vancouver, ISO itp.
32

Guerrera, Michael H. "Laser anemometry and pressure measurements in the endwall region of an annular turbine cascade utilizing a pressurized aerodynamic window". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA320864.

Pełny tekst źródła
Streszczenie:
Thesis (M.S. in Aeronautical Engineering) Naval Postgraduate School, September 1996.
"September 1996." Thesis advisor(s): Garth V. Hobson. Includes bibliographical references (p. 89). Also Available online.
Style APA, Harvard, Vancouver, ISO itp.
33

Lee, Jaehyung. "Study on aerodynamic interference and unsteady pressure field around B/D=4 rectangular cylinder based on proper orthogonal decomposition". 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/136143.

Pełny tekst źródła
Streszczenie:
Kyoto University (京都大学)
0048
新制・課程博士
博士(工学)
甲第12587号
工博第2700号
新制||工||1388(附属図書館)
UT51-2006-S595
京都大学大学院工学研究科社会基盤工学専攻
(主査)教授 松本 勝, 教授 河井 宏允, 助教授 白土 博通, 教授 田村 武
学位規則第4条第1項該当
Style APA, Harvard, Vancouver, ISO itp.
34

Kudela, Libor. "Aerodynamický výpocet vzduchové části parního kotle". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-319279.

Pełny tekst źródła
Streszczenie:
The aim of this thesis is to realize analysis of problematics of aerodynamic calculations of steam boilers on the part of combustion air. On the basis of project documentation realize evaluations of sectional dissipation factors of each component of inlet tract. Realize calculation of summary pressure (draft) loss. Specify components with highest loss and propose options of their optimization.
Style APA, Harvard, Vancouver, ISO itp.
35

Saha, Ranjan. "Aerodynamic Investigations of a High Pressure Turbine Vane with Leading Edge Contouring at Endwall in a Transonic Annular Sector Cascade". Licentiate thesis, KTH, Kraft- och värmeteknologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-92204.

Pełny tekst źródła
Streszczenie:
Efficiency improvement is an important aspect to reduce the use of fossil-based fuel in order to achieve a sustainable future. Gas turbines are mainly fossil-fuel based turbomachines, and, therefore, efficiency improvement is still the subject of many on-going research activities in the gas turbine community. This study is incorporated into a research project that investigates design possibilities of efficiency improvement at the high pressure turbine (HPT) stage. In the search for HPT-stage efficiency gains, leading edge (LE) contouring near the endwall is one of the methods found in the published literature that has shown a potential to increase the efficiency by decreasing the amount of secondary losses. The overall objective of the thesis is to contribute to the development of gas turbine efficiency improvements in relation to the HPT stage. Particularly, the influence of the LE fillet on losses and flow structure is investigated concentrating on the secondary flow. The core investigation is of an experimental nature. Detailed investigations of the flow field in an annular sector cascade (ASC) are presented with and without the LE fillet, using a geometric replica of a modern gas turbine nozzle guide vane (NGV) with a contoured tip endwall. Furthermore, a separate investigation is performed on a hub-cooled NGV, which focuses on endwalls, specifically the interaction between the hub film cooling and the mainstream (MS). The experimental investigations indicate that the LE fillet has no significant effect on the flow and energy losses of the investigated NGV. The reason why the LE fillet does not affect the losses might be due to the use of a three-dimensional vane with an existing typical fillet over the full hub and tip profile. Findings also reveal that the complex secondary flow depends heavily on the incoming boundary layer. Oil flow visualisation for the baseline case displays a clear saddle point, with a separation line where the horseshoe (HS) vortex separates into the suction side (SS) and the pressure side (PS), whereas for the filleted case, the saddle point is not noticeable. The investigation of a cooled vane, using a tracer gas carbon dioxide (CO2), reveals that the upstream platform film coolant is concentrated along the SS surfaces and does not reach the PS of the hub surface, leaving it less protected from the hot gas.
För att åstadkomma en uthållig kraftproduktion i framtiden och en minskning i användandet av fossila bränslen är effektivitetsförbättringar av central betydelse. Gasturbiner är i grund och botten fossilbaserade turbomaskiner och därför bedrivs forsknings- och utvecklingsarbete kring verkningsgradsförbättringar. Den här studien ingår i ett forskningsprojekt som undersöker designmodifieringar med målet att höja verkningsgraden för ett högtrycksturbinsteg. Förändringar av bladets eller ledskenans framkantsgeometri nära ändväggarna har i den öppna litteraturen funnits vara en lovande metod för att minska ändväggsförlusterna. Det övergripande målet med denna studie är att bidra till utvecklingen av effektiva högtrycksturbinsteg för gasturbiner. Kärnan i undersökningen är experimentell. Särskilt påverkan från förändring av framkanten på förluster och flödesstruktur undersöks, med fokus på det sekundära flödet. Detaljerade strömningsundersökningar i ett bågformat statorgitter bestående av en geometrisk replika av en stator från en modern gasturbin presenteras, med och utan geometrisk förändring av framkanten. Vidare så genomförs en separat undersökning av en filmkyld ledskena utan framkantsförändring med fokus på interaktionen mellan filmkylningen vid inre ändväggen och huvudflödet. De experimentella undersökningarna visar att den undersökta geometriska förändringen av framkanten inte är av signifikant betydelse för strömningsförlusterna med den studerade ledskenan. Anledningen till att designförändringen inte påverkar förlusterna kan bero på användandet av en tredimensionell ledskena med en existerande typisk kärlradie mellan ledskenan och ändväggarna. Observationerna visar också att den komplexa ändväggsströmningen är starkt beroende av det inkommande gränsskiktets egenskaper. Oljevisualisering för referensledskenan visar en tydlig stagnationspunkt på ändväggen där gränsskiktet delas upp likt en hästskoformation i virvlar på sug- respektive trycksidan av ledskenan. För den modifierade framkanten har ingen tydlig stagnationspunkt på ändväggen observerats. Spårgasundersökningar med den filmkylda ledskenan visar att filmkylningen på den inre plattformen är koncentrerad längs sugsidan och når inte trycksidan på plattformen som därmed är mindre skyddad mot den varma gasströmningen.
QC 20120330
Style APA, Harvard, Vancouver, ISO itp.
36

Casey, Timothy. "The aerodynamic losses with the addition of film cooling in a high-speed annular cascade". Honors in the Major Thesis, University of Central Florida, 2010. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1375.

Pełny tekst źródła
Streszczenie:
This item is only available in print in the UCF Libraries. If this is your Honors Thesis, you can help us make it available online for use by researchers around the world by following the instructions on the distribution consent form at http://library.ucf.edu/Systems/DigitalInitiatives/DigitalCollections/InternetDistributionConsentAgreementForm.pdf You may also contact the project coordinator, Kerri Bottorff, at kerri.bottorff@ucf.edu for more information.
Bachelors
Engineering and Computer Science
Mechanical Engineering
Style APA, Harvard, Vancouver, ISO itp.
37

Sayles, Claire Lindsey. "The Effects of Vocal Function Exercises on Aerodynamic Parameters for Children Receiving Voice Lessons". Miami University / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=miami1050517336.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Permata, Robby. "Flutter Stabilization of Long Span Suspension Bridges with Slender Deck -Study on the Improvement of Aerodynamic Properties from Unsteady Pressure Characteristics Point of View-". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/189676.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Vogt, Damian. "Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter". Doctoral thesis, KTH, Energy Technology, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205.

Pełny tekst źródła
Streszczenie:

The continuous trend in gas turbine design towards lighter, more powerful and more reliable engines on one side and use of alternative fuels on the other side renders flutter problems as one of the paramount challenges in engine design. Flutter denotes a self-excited and self-sustained aeroelastic instability phenomenon that can lead to material fatigue and eventually damage of structure in a short period of time unless properly damped. The design for flutter safety involves the prediction of unsteady aerodynamics as well as structural dynamics that is mostly based on in-house developed numerical tools. While high confidence has been gained on the structural side unanticipated flutter occurrences during engine design, testing and operation evidence a need for enhanced validation of aerodynamic models despite the degree of sophistication attained. The continuous development of these models can only be based on the deepened understanding of underlying physical mechanisms from test data.

As a matter of fact most flutter test cases treat the turbomachine flow in two-dimensional manner indicating that the problem is solved as plane representation at a certain radius rather than representing the complex annular geometry of a real engine. Such considerations do consequently not capture effects that are due to variations in the third dimension, i.e. in radial direction. In this light the present thesis has been formulated to study three-dimensional effects during flutter in the annular environment of a low-pressure turbine blade row and to describe the importance on prediction of flutter stability. The work has been conceived as compound experimental and computational work employing a new annular sector cascade test facility. The aeroelastic response phenomenon is studied in the influence coefficient domain having one blade oscillating in various three-dimensional rigid-body modes and measuring the unsteady response on several blades and at various radial positions. On the computational side a state-of-the-art industrial numerical prediction tool has been used that allowed for two-dimensional and three-dimensional linearized unsteady Euler analyses.

The results suggest that considerable three-dimensional effects are present, which are harming prediction accuracy for flutter stability when employing a two-dimensional plane model. These effects are mainly apparent as radial gradient in unsteady response magnitude from tip to hub indicating that the sections closer to the hub experience higher aeroelastic response than their equivalent plane representatives. Other effects are due to turbomachinery-typical three-dimensional flow features such as hub endwall and tip leakage vortices, which considerably affect aeroelastic prediction accuracy. Both effects are of the same order of magnitude as effects of design parameters such as reduced frequency, flow velocity level and incidence. Although the overall behavior is captured fairly well when using two-dimensional simulations notable improvement has been demonstrated when modeling fully three-dimensional and including tip clearance.

Style APA, Harvard, Vancouver, ISO itp.
40

Jaitlee, Rajneesh, i jaitlee@gmail com. "Mean and Fluctuating Pressures on an Automotive External Rear View Mirror". RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070112.125531.

Pełny tekst źródła
Streszczenie:
The primary function of an automobile rear View Mirror is to provide the driver with a clear vision interpretation of all objects to the rear and side of the vehicle. The rear View Mirror is a bluff body and there are several problems associated with the rear View Mirror. These include buffeting, image distortion (due to aerodynamically induced and structural vibration), aerodynamically induced noise (due to cavities and gaps) and water and dirt accumulation on Mirror glass Surface. Due to excessive glass vibration, the rear View Mirror may not provide a clear image. Thus, vibrations of Mirror can severely impair the driver's vision and safety of the vehicle and its occupants. The rear View Mirrors are generally located close to the A-pillar region on the side window. A conical vortex forms on the side window close to A-pillar due to A-pillar geometry and the presence of side rear View Mirror and flow separation from it makes the airflow even more complex. The primary objective of this work is to study the aerodynamic pressures on Mirror Surface at Various speeds to determine the effects of aerodynamics on to Mirror vibration. Additionally, the Mirror was modified by Shrouding around the external periphery to determine the possibility of minimisation of aerodynamic pressure fluctuations and thereby vibration. The Shrouding length used for the analysis was of 24mm, 34mm and 44mm length. The mean and fluctuating pressures were measured using a production rear side View Mirror fitted to a ¼ quarter production passenger car in RMIT Industrial Wind Tunnel. The tests were also conducted in semi-isolation condition to understand influence of the A-pillar geometry. The mean and fluctuating pressures were converted into non-dimensional pressure coefficients (Cp and Cprms) and the frequency content of the fluctuating pressure was analysed. The results show that the fluctuating aerodynamic pressures are not uniformly distributed over an automobile Mirror Surface. The highest magnitude of fluctuating pressure for the standard Mirror was found at the central bottom part of the Mirror Surface. The highest magnitude of fluctuating pressure for the modified Mirror was found at the central top part of the Mirror Surface. As expected, the modification has significant effect on the magnitude of fluctuating pressure. The results show that an increase of Shrouding length reduces the magnitude of the fluctuating pressure. The frequency-based analysis was done to understand the energy characteristics of the flow, particularly to its phase, since it is the out of phase components that usually cause Mirror rotational vibration. The spectral analysis showed that the magnitude of the energy distribution reduces with increase of shrouding length throughout the frequency range. Flow visualisation was also used to supplement the pressure data. The effects of yaw angles were not included in this study, however, are thought to be worthy of further investigation. On road testing and the variation of mirror locations might have some effects on the fluctuating pressures. These need to be investigated in the future work. The quarter model used in this study was a car specific. However, for more generic results, a simplified model with variable geometry can be used in future study.
Style APA, Harvard, Vancouver, ISO itp.
41

O'Dowd, Devin Owen. "Aero-thermal performance of transonic high-pressure turbine blade tips". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:e7b8e7d0-4973-4757-b4df-415723e7562f.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Clark, Adam. "Predicting the Crosswind Performance of High Bypass Ratio Turbofan Engine Inlets". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1476265135449178.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Pang, Christina Lynn. "Effects of Inhaled Combination Corticosteroid Drugs on Aerodynamic Measures of Phonation and Visual-Perceptual Measures of Vocal Fold and Arytenoid Tissue in Excised Rabbit Larynges". BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8934.

Pełny tekst źródła
Streszczenie:
The purpose of this thesis is to examine the effects of inhaled corticosteroid drugs (ICs) on the voice due to their frequent use in treating an increasing prevalence of asthma disorders. As part of a larger five-year study, the focus of this thesis is specifically on whether 8 weeks of in vivo exposure to ICs will cause changes in the sustained subglottal pressure, sustained airflow, and visual-perceptual ratings of edema and erythema in excised rabbit larynges. Researchers administered either ICs or a control nebulized isotonic saline solution to 22 rabbits in vivo, sacrificed them, and harvested their larynges for benchtop research. While ensuring proper tissue preservation, researchers then finely dissected the larynges to expose the true vocal folds and run phonation trials. Dependent variables included continuous acoustic signals (Hz), subglottal pressure (cm H2O), and airflow (L/min) data for 15 phonation trials per rabbit larynx. Researchers also collected still image photographs at this time and subsequently normalized them for use in the visual-perceptual portion of this thesis. For visual-perceptual ratings, raters used a 0-3 equal appearing interval scale to rate aspects of edema and erythema on left and right vocal fold and arytenoid tissues. Results indicate that, when compared to control larynges exposed to nebulized isotonic saline, experimental larynges treated with ICs require significantly higher subglottal pressure to maintain phonation, p < .05. Mean sustained phonation for experimental larynges is 11.24 cm H2O compared to 8.92 cm H2O for that of control larynges. Phonation trials for experimental larynges have significantly higher sustained airflow with a mean of 0.09 L/min compared to 0.07 L/min for that of control larynges, p < .05. Surprisingly, experimental larynges have higher average fundamental frequencies with less variability (mean: 519 Hz, standard deviation: 66 Hz) than that of control larynges (mean: 446 Hz, standard deviation: 130 Hz). On visual-perceptual ratings, experimental larynges have significantly higher severity ratings on all eight items rated, p < .0001 - p = .0305. Based on these results, it is concluded that ICs cause significant damage to rabbit vocal folds, as evidenced by higher sustained pressure, higher airflow, and higher severity ratings for experimental versus control larynges. The dependent variables in this thesis are novel in benchtop model research and demonstrate a unique perspective on this research question. Thus, this thesis informs future phonation, benchtop, and visual-perceptual research.
Style APA, Harvard, Vancouver, ISO itp.
44

Dunkley, Michael John. "The aerodynamics of intermediate pressure turbines". Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/272045.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Flage, Alexander Paul. "Computational Investigation of Low-Pressure Turbine Aerodynamics". Thesis, North Dakota State University, 2015. https://hdl.handle.net/10365/27915.

Pełny tekst źródła
Streszczenie:
The design of today?s gas turbine engines is heavily reliant on accurate computational fluid flow models. Creating prototype designs is far more expensive than modeling the design on a computer; however, current turbulence and transitional flow models are not always accurate. Several turbulence and transition models were validated at North Dakota State University by analyzing the flow through a low pressure turbine of a gas turbine engine. Experimental data for these low pressure turbines was provided by the University of North Dakota. Two separate airfoil geometries are analyzed in this study. The first geometry is a first stage flow vane, and the second geometry is an incidence angle tolerant turbine blade. Pressure and heat transfer data were compared between computations and experiments on the turbine blade surfaces. Simulations were conducted with varying Reynolds numbers, Mach numbers, and free stream turbulence intensities and were then compared with experiments.
Style APA, Harvard, Vancouver, ISO itp.
46

Crowell, Andrew R. "Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed Flows". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366204830.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Ding, Bowen. "Aerodynamics of low pressure steam turbine exhaust systems". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/290137.

Pełny tekst źródła
Streszczenie:
The low pressure (LP) exhaust system presents a promising avenue for improving the performance of large steam turbines. For this reason, LP exhaust systems have attracted the attention of the research community for decades. Nevertheless, we still lack understanding of the flow physics and loss mechanisms in the exhaust system, especially at part-load conditions. It is also unclear how the exhaust system should be designed when its required operating range widens. This thesis provides solutions to these aerodynamic issues through experimental and numerical investigations, and provides tools that could contribute to better designs of LP exhaust systems. Firstly, the Computational Fluid Dynamics (CFD) solver ANSYS CFX was validated against experiments performed on a scaled test rig under representative part-load flow conditions. This validation exposed the weakness of Reynolds-averaged Navier-Stokes (RANS) CFD when there is a highly swirling flow and large separation regions in the exhaust diffuser. To facilitate the numerical studies, a series of tools were also developed. A design suite, ExhaustGen, was used to automate the pre- and post-processing of CFD calculations. The exhaust diffuser was parametrised using "Minimum Energy Curves", which reduce the dimension of parameter space. Further, a suitable stage-hood interface treatment (Multiple Mixing Planes) was chosen to predict the circumferentially non-uniform flow in the exhaust hood at low computational cost. Numerical investigation of the baseline geometry provided insights into the key flow features and loss mechanisms in the exhaust system, over a wide range of operating conditions. In particular, the bearing cone separation was identified as a key source of loss at part-load conditions. The effect of stage-hood interaction on the performance and design of the exhaust system was studied by varying the rotor blade design, which can positively influence system performance. Finally, a global sensitivity study was performed to identify the most influential design parameters of the exhaust hood. These findings allow, for the first time, LP exhaust hood performance maps to be constructed, so that the benefits of choosing a suitable hood geometry and blade design can be revealed. The thesis also offers contribution towards formulating LP exhaust system design guidance for a wide operating range.
Style APA, Harvard, Vancouver, ISO itp.
48

Chilla, Martin. "High-pressure turbine rim seal aerodynamics and design". Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648552.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Sharpe, Jacob Andrew. "3D CFD Investigation of Low Pressure Turbine Aerodynamics". Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1495872867696744.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Lal, Mihir Kumar. "Unsteady pressure and inflow velocity on a pitching rotor blade in hover". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/12053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii