Gotowa bibliografia na temat „Aerodynamic loads”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Aerodynamic loads”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Aerodynamic loads"
Tomasz Lusiak, Andrej Novak, Martin Bugaj i Radovan Madlenak. "Assessment of Impact of Aerodynamic Loads on the Stability and Control of the Gyrocopter Model". Communications - Scientific letters of the University of Zilina 22, nr 4 (1.10.2020): 63–69. http://dx.doi.org/10.26552/com.c.2020.4.63-69.
Pełny tekst źródłaEnciu, K., i A. Rosen. "Aerodynamic modelling of fin stabilised underslung loads". Aeronautical Journal 119, nr 1219 (wrzesień 2015): 1073–103. http://dx.doi.org/10.1017/s0001924000011143.
Pełny tekst źródłaPerez-Becker, Sebastian, Francesco Papi, Joseph Saverin, David Marten, Alessandro Bianchini i Christian Oliver Paschereit. "Is the Blade Element Momentum theory overestimating wind turbine loads? – An aeroelastic comparison between OpenFAST's AeroDyn and QBlade's Lifting-Line Free Vortex Wake method". Wind Energy Science 5, nr 2 (15.06.2020): 721–43. http://dx.doi.org/10.5194/wes-5-721-2020.
Pełny tekst źródłaZhang, Xuyao, Congxin Yang i Shoutu Li. "Influence of the Heights of Low-Level Jets on Power and Aerodynamic Loads of a Horizontal Axis Wind Turbine Rotor". Atmosphere 10, nr 3 (11.03.2019): 132. http://dx.doi.org/10.3390/atmos10030132.
Pełny tekst źródłaXiang, Xiao Jun, i Yu Qian. "Numerical Simulation of Unsteady Aerodynamic Loads over an Aircraft". Advanced Materials Research 908 (marzec 2014): 264–68. http://dx.doi.org/10.4028/www.scientific.net/amr.908.264.
Pełny tekst źródłaAnil, Mary, i Deepa Varkey. "Recent Progress in Aerodynamics for Aeroelastic Analysis". International Journal for Research in Applied Science and Engineering Technology 10, nr 6 (30.06.2022): 2890–93. http://dx.doi.org/10.22214/ijraset.2022.44475.
Pełny tekst źródłaLi, Yun Feng. "Loads Calculation of Pitch Bearing of Wind Turbine". Advanced Materials Research 148-149 (październik 2010): 479–84. http://dx.doi.org/10.4028/www.scientific.net/amr.148-149.479.
Pełny tekst źródłaHe, Pan, i Jian Xia. "Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method". Energies 15, nr 8 (7.04.2022): 2709. http://dx.doi.org/10.3390/en15082709.
Pełny tekst źródłaLiu, Jun, Zhengqi Gu, Taiming Huang, Shuya Li, Ledian Zheng i Kai Sun. "Coupled analysis of the unsteady aerodynamics and multi-body dynamics of a small car overtaking a coach". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233, nr 14 (22.02.2019): 3684–99. http://dx.doi.org/10.1177/0954407019831559.
Pełny tekst źródłaZeng, Xiaohui, Han Wu, Jiang Lai i Hongzhi Sheng. "Hunting stability of high-speed railway vehicles on a curved track considering the effects of steady aerodynamic loads". Journal of Vibration and Control 22, nr 20 (9.08.2016): 4159–75. http://dx.doi.org/10.1177/1077546315571986.
Pełny tekst źródłaRozprawy doktorskie na temat "Aerodynamic loads"
Heathcote, Daniel. "Aerodynamic loads control using mini-tabs". Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760920.
Pełny tekst źródłaMackman, Thomas James. "Surrogate model construction for steady aerodynamic loads". Thesis, University of Bristol, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.633231.
Pełny tekst źródłaSpagnolo, Stefano. "Unsteady aerodynamic loads on aircraft landing gear". Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/397089/.
Pełny tekst źródłaKirchmayr, Sara. "Comparison of Aerodynamic Methods for the Computation of Control Surface Loads". Thesis, KTH, Flygdynamik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-185022.
Pełny tekst źródłaSpjutare, Christian. "Aerodynamic Loads on External Stores - Saab 39 Gripen : Evaluation of CFD methods for estimating loads on external stores". Thesis, Linköping University, Applied Thermodynamics and Fluid Mechanics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54127.
Pełny tekst źródłaExternal stores mounted on aircraft generate loads which need to be estimated before first takeoff. These loads can be measured in a wind tunnel but since the possible store configurations are basically endless, testing them all is neither economically feasible nor time efficient. Thus, scaling based on geometrical similarity is used. This can, however, be a crude method. Stores with similar geometrical properties can still behave in different ways due to aerodynamic interference caused by adjacent surfaces.
To improve the scaling performance, this work focuses on investigating two CFD codes, ADAPDT and Edge. The CFD simulations are used to derive the difference in aerodynamic coefficients, or the Δ-effect, between a reference store and the new untested store. The Δ-effect is then applied to an existing wind tunnel measurement of the reference store, yielding an estimation of the aerodynamic properties for the new store.
The results show that ADAPDT, using a coarse geometry representation, has large difficulties predicting the new store properties, even for a very simple store configuration on the aircraft. Therefore it is not suited to use as a scaling tool in its present condition. Edge on the other hand uses a more precise geometry representation and proves to deliver good estimations of the new store load behavior. Results are well balanced and mainly conservative. Some further work is needed to verify the performance but Edge is the recommended tool for scaling.
McColl, Chance C. "A matched-harmonic confluence approach to rotor loads prediction with comprehensive application to flight test". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45837.
Pełny tekst źródłaMansor, Shuhaimi. "Estimation of bluff body transient aerodynamic loads using an oscillating model rig". Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/13208.
Pełny tekst źródłaFischer, Tim [Verfasser]. "Mitigation of Aerodynamic and Hydrodynamic Induced Loads of Offshore Wind Turbines / Tim Fischer". Aachen : Shaker, 2012. http://d-nb.info/1052408753/34.
Pełny tekst źródłaBerdon, Randall. "Flow structures and aerodynamic loads of a rolling wing in a free stream". Thesis, University of Iowa, 2019. https://ir.uiowa.edu/etd/6705.
Pełny tekst źródłaMarpu, Ritu Priyanka. "Physics based prediction of aeromechanical loads for the UH-60A rotor". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47661.
Pełny tekst źródłaKsiążki na temat "Aerodynamic loads"
Development, North Atlantic Treaty Organization Advisory Group for Aerospace Research and. Aircraft dynamic loads due to flow separation. Neuilly sur Seine, France: AGARD, 1990.
Znajdź pełny tekst źródłaNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Aircraft dynamic loads due to flow separation. Neuilly-sur-Seine: AGARD, 1990.
Znajdź pełny tekst źródłaDillenius, Marnix F. E. Improvements to the missile aerodynamic prediction code DEMON3. Hampton, Va: Langley Research Center, 1992.
Znajdź pełny tekst źródłaWinebarger, Roger M. Loads and motions of an F-106B flying through thunderstorms. Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaL, Peterson Randall, i Ames Research Center, red. Full-scale hingeless rotor performance and loads. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Znajdź pełny tekst źródłaL, Peterson Randall, i Ames Research Center, red. Full-scale hingeless rotor performance and loads. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Znajdź pełny tekst źródłaL, Peterson Randall, i Ames Research Center, red. Full-scale hingeless rotor performance and loads. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1995.
Znajdź pełny tekst źródłaBaumann, Peter Helmut. Messung von aerodynamisch bedingten Modellverformungen im Windkanal mittels Moire-Interferometrie. Koln, Germany: DLR, 1994.
Znajdź pełny tekst źródłaNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Aircraft loads due to turbulence and their impact on design and certification. Neuilly sur Seine, France: AGARD, 1994.
Znajdź pełny tekst źródłaNorth Atlantic Treaty Organization. Advisory Group for Aerospace Research and Development. Aircraft loads due to turbulence and their impact on design and certification. Neuilly sur Seine, France: AGARD, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Aerodynamic loads"
Karimirad, Madjid. "Aerodynamic and Hydrodynamic Loads". W Offshore Energy Structures, 187–221. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12175-8_9.
Pełny tekst źródłaRutschmann, Sabrina, Klaus Ehrenfried i Andreas Dillmann. "Aerodynamic Loads Induced by Passing Trains on Track Side Objects". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 343–51. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03158-3_35.
Pełny tekst źródłaGinevsky, A. S., i A. I. Zhelannikov. "Aerodynamic Loads on Aircraft Encountering Vortex Wakes of Other Aircraft". W Foundations of Engineering Mechanics, 129–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01760-5_8.
Pełny tekst źródłaZhang, Hui. "Aerodynamic Loads Analysis for a Maneuvering Aircraft in Transonic Flow". W Lecture Notes in Electrical Engineering, 176–200. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_15.
Pełny tekst źródłaGan, Edward Chern Jinn, i Salim Mohamed Salim. "Numerical Simulation of the Aerodynamic Loads on Trees During Storms". W Transactions on Engineering Technologies, 187–99. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9804-4_13.
Pełny tekst źródłaMaceri, Franco, i Giuseppe Vairo. "Modelling and Simulation of Long-Span Bridges under Aerodynamic Loads". W Novel Approaches in Civil Engineering, 359–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-45287-4_32.
Pełny tekst źródłaPiana, G., A. Manuello, R. Malvano i A. Carpinteri. "Natural Frequencies of Long-Span Suspension Bridges Subjected to Aerodynamic Loads". W Dynamics of Civil Structures, Volume 4, 419–31. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04546-7_45.
Pełny tekst źródłaSchulz, Volker, Roland Stoffel i Heinz Zorn. "Structural Optimization of 3D Wings Under Aerodynamic Loads: Topology and Shell". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 223–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72020-3_14.
Pełny tekst źródłaPoryvaev, Ilya, Aleksandr Semenov i Marat Safiullin. "Aerodynamic Research of Wind and Snow Loads on the Cylinder Tank Roofs". W Design, Fabrication and Economy of Metal Structures, 537–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-36691-8_81.
Pełny tekst źródłaSarı, Sarih, Ali Dogrul i Seyfettin Bayraktar. "The Aerodynamic Wind Loads of a Naval Surface Combatant in Model Scale". W Lecture Notes in Networks and Systems, 68–76. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05230-9_7.
Pełny tekst źródłaStreszczenia konferencji na temat "Aerodynamic loads"
Da Ronch, Andrea, Kenneth J. Badcock, Alex Khrabrov, M. Ghoreyshi i R. Cummings. "Modeling of Unsteady Aerodynamic Loads". W AIAA Atmospheric Flight Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-6524.
Pełny tekst źródłaAly, Aly Mousaad, i Girma Bitsuamlak. "Aerodynamic Loads on Solar Panels". W Structures Congress 2013. Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784412848.137.
Pełny tekst źródłaDuda, Benjamin M., Andreas Deurig, Francisco Flores Alvarenga i Gregory M. Laskowski. "Landing Gear Retraction Under Aerodynamic Loads". W AIAA AVIATION 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-3527.
Pełny tekst źródłaKarkehabadi, Reza, i Ray Rhew. "Investigating and Analyzing Applied Loads Higher than Limit Loads". W 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2197.
Pełny tekst źródłaBEHR, VANCE. "Measurements of individual parachute loads in a clustered parachute system". W 10th Aerodynamic Decelerator Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-923.
Pełny tekst źródłaLAWRENCE, J., J. OLER i D. ADAMSON. "An experimental investigation of the aerodynamic loads on cambered plates". W 10th Aerodynamic Decelerator Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-935.
Pełny tekst źródłaRay, Eric. "Reconstruction of Orion EDU Parachute Inflation Loads". W AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-1260.
Pełny tekst źródłaIwanski, Kenneth, i Robert Nelson. "Forebody Aerodynamic Loads Due to Rotary Motion". W 20th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3261.
Pełny tekst źródłaLiu, Tianshu, D. Barrows, A. Burner i R. Rhew. "Aerodynamic loads based on optical deformation measurements". W 39th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-560.
Pełny tekst źródłaSHINODA, PATRICK, i CHARLES SMITH. "SEPARATION OF ROTOR AND TEST STAND LOADS IN ROTORCRAFT WIND-TUNNEL TESTING". W 14th Aerodynamic Testing Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/6.1986-737.
Pełny tekst źródłaRaporty organizacyjne na temat "Aerodynamic loads"
Homicz, G. F. Numerical simulation of VAWT stochastic aerodynamic loads produced by atmospheric turbauence: VAWT-SAL code. Office of Scientific and Technical Information (OSTI), wrzesień 1991. http://dx.doi.org/10.2172/5177561.
Pełny tekst źródłaLuttges, Marvin W., Mark S. Miller, Michael C. Robinson, Derek E. Shipley i David A. Simms. Evidence That Aerodynamic Effects, Including Dynamic Stall, Dictate HAWT Structure Loads and Power Generation in Highly Transient Time Frames. Office of Scientific and Technical Information (OSTI), sierpień 1994. http://dx.doi.org/10.2172/10177826.
Pełny tekst źródłaCicolani, Luigi S., Jeffery Lusardi, Lloyd D. Greaves, Dwight Robinson, Aviv Rosen i Rueben Raz. Flight Test Results for the Motions and Aerodynamics of a Cargo Container and a Cylindrical Slung Load. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2010. http://dx.doi.org/10.21236/ada517702.
Pełny tekst źródła