Gotowa bibliografia na temat „Adhesive Interactions”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Adhesive Interactions”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Adhesive Interactions"
Mercedes Pastor-Blas, M. M. "Compatibility Improvement between Chlorinated Thermoplastic Rubber and Polychloroprene Adhesive". Rubber Chemistry and Technology 82, nr 1 (1.03.2009): 18–36. http://dx.doi.org/10.5254/1.3548238.
Pełny tekst źródłaFeng, Chen, Fang Wang, Zheng Xu, Huilin Sui, Yong Fang, Xiaozhi Tang i Xinchun Shen. "Characterization of Soybean Protein Adhesives Modified by Xanthan Gum". Coatings 8, nr 10 (26.09.2018): 342. http://dx.doi.org/10.3390/coatings8100342.
Pełny tekst źródłaNarayanan, Amal, Ali Dhinojwala i Abraham Joy. "Design principles for creating synthetic underwater adhesives". Chemical Society Reviews 50, nr 23 (2021): 13321–45. http://dx.doi.org/10.1039/d1cs00316j.
Pełny tekst źródłaTaylor, James T., Rebekka Harting, Samer Shalaby, Charles M. Kenerley, Gerhard H. Braus i Benjamin A. Horwitz. "Adhesion as a Focus in Trichoderma–Root Interactions". Journal of Fungi 8, nr 4 (6.04.2022): 372. http://dx.doi.org/10.3390/jof8040372.
Pełny tekst źródłaKlingelhofer, J., R. B. Troyanovsky, O. Y. Laur i S. Troyanovsky. "Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions". Journal of Cell Science 113, nr 16 (15.08.2000): 2829–36. http://dx.doi.org/10.1242/jcs.113.16.2829.
Pełny tekst źródłaKan, Anton, Ilenne Del Valle, Tim Rudge, Fernán Federici i Jim Haseloff. "Intercellular adhesion promotes clonal mixing in growing bacterial populations". Journal of The Royal Society Interface 15, nr 146 (wrzesień 2018): 20180406. http://dx.doi.org/10.1098/rsif.2018.0406.
Pełny tekst źródłaWilson, James G. "Adhesive Interactions in Hemopoiesis". Acta Haematologica 97, nr 1-2 (1997): 6–12. http://dx.doi.org/10.1159/000203654.
Pełny tekst źródłaRosenfeld, Stephen J., i Harvey R. Gralnick. "Adhesive Interactions in Hemostasis". Acta Haematologica 97, nr 1-2 (1997): 118–25. http://dx.doi.org/10.1159/000203667.
Pełny tekst źródłaPradyawong, Sarocha, Guangyan Qi, Meng Zhang, Xiuzhi S. Sun i Donghai Wang. "Effect of pH and pH-Shifting on Adhesion Performance and Properties of Lignin-Protein Adhesives". Transactions of the ASABE 64, nr 4 (2021): 1141–52. http://dx.doi.org/10.13031/trans.14465.
Pełny tekst źródłaLipke, Peter N., Jason M. Rauceo i Albertus Viljoen. "Cell–Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy". International Journal of Molecular Sciences 23, nr 3 (20.01.2022): 1110. http://dx.doi.org/10.3390/ijms23031110.
Pełny tekst źródłaRozprawy doktorskie na temat "Adhesive Interactions"
Ren, Dakai. "Moisture-Cure Polyurethane Wood Adhesives: Wood/Adhesive Interactions and Weather Durability". Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/29866.
Pełny tekst źródłaPh. D.
Cavenagh, James Durrell. "Adhesive interactions of leukaemic cells with endothelium". Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244210.
Pełny tekst źródłaDi, Fino Alessio. "Comparative approach to barnacle adhesive-surface interactions". Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2838.
Pełny tekst źródłaLiu, Haijing. "Wet adhesion properties of oilseed proteins stimulated by chemical and physical interactions and bonding". Diss., Kansas State University, 2017. http://hdl.handle.net/2097/35774.
Pełny tekst źródłaDepartment of Grain Science and Industry
X. Susan Sun
The ecological and public health liabilities related with consuming petroleum resources have inspired the development of sustainable and environmental friendly materials. Plant protein, as a byproduct of oil extraction, has been identified as an economical biomaterial source and has previously demonstrated excellent potential for commercial use. Due to the intrinsic structure, protein-based materials are vulnerable to water and present relatively low wet mechanical properties. The purpose of this study focuses on increasing protein surface hydrophobicity through chemical modifications in order to improve wet mechanical strength. However, most of the water sensitive groups (WSG), such as amine, carboxyl, and hydroxyl groups, are also attributed to adhesion. Therefore, the goal of this research is to reduce water sensitive groups to an optimum level that the modified soy protein presents good wet adhesion and wet mechanical strength. In this research, we proposed two major approaches to reduce WSG: 1). By grafting hydrophobic chemicals onto the WSGs on protein surface; 2). By interacting hydrophobic chemicals with the WSGs. For grafting, undecylenic acid (UA), a castor oil derivative with 11-carbon chain with a carboxyl group at one end and naturally hydrophobic, was used. Carboxyl groups from UA reacted with amine groups from protein and converted amines into ester with hydrophobic chains grafting on protein surface. The successful grafting of UA onto soy protein isolate (SPI) was proved by both Infrared spectroscopy (IR) and ninhydrin test. Wood adhesive made from UA modified soy protein had reached the highest wet strength of 3.30 ± 0.24 MPa with fiber pulled out, which was 65% improvement than control soy protein. Grafting fatty acid chain was verified to improve soy protein water resistance. For interaction approach, soy oil with three fatty acid chains was used to modify soy protein. Soy oil was first modified into waterborne polyurethanes (WPU) to improve its compatibility and reactivity with aqueous protein. The main forces between WPU and protein were hydrogen bonding, hydrophobic interactions, and physical entanglement. Our results showed that WPU not only increased protein surface hydrophobicity with its fatty acid chains but also enhanced the three-dimensional network structure in WPU-SPI adhesives. WPU modification had increased wet adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa of SPI. Based on IR and thermal behavior changes observed by DSC, it was inferred that a new crosslinking network formed between WPU and SPI. To exam if the UA and WPU technologies developed using soy protein are suitable for other plant proteins, we selected camelina protein because camelina oil has superior functional properties for jet fuels and polymers. Like soy protein, camelina protein is also highly water sensitive. However, simply applied UA and WPU to camelina protein following the same methods used for soy proteins, we did not obtain the same good adhesion results compared to what we achieved with soy protein. After protein structure analysis, we realized that camelina protein is more compact in structure compared to soy protein that made it weak in both dry and wet adhesion strength. Therefore, for camelina protein, we unfolded its compact structure with Polymericamine epichlorohydrine (PAE) first to improve flexible chains with more adhesion groups for future reaction with UA or WPU. PAE with charged groups interacted camelina protein through electrostatic interaction and promoted protein unfolding to increase reactivity within protein subunits and between protein and wood cells. Therefore, the wet adhesion strength of camelina protein was improved from zero to 1.30 ± 0.23 MPa, which met the industrial standard for plywood adhesives in terms of adhesion strength. Then the wet adhesion strength of camelina protein was further improved after applying UA and WPU into the PAE modified camelina protein. In addition, we also found PAE unfolding significantly improved the dry adhesion strength of camelina protein from 2.39 ± 0.52 to 5.39 ± 0.50 MPa with 100% wood failure on two-layer wood test. Camelina meal which is even more economical than camelina protein was studied as wood adhesive. Through a combination of PAE and laccase modification method, the wet adhesion strength of camelina meal was improved as high as 1.04 ± 0.19MPa, which also met industrial standards for plywood adhesives. The results of this study had proven successful modification of oilseed protein to increase water resistance and wet mechanical strength. We have gained in-depth understanding of the relationship between protein structure and wet adhesion strength. The successful modification of plant proteins meeting the industrial needs for bio-adhesives will promote the development of eco-friendly and sustainable materials.
Zhao, Boxin Pelton Robert H. "The interactions of pressure sensitive adhesive with paper surfaces". *McMaster only, 2004.
Znajdź pełny tekst źródłaTaubenberger, Anna Verena. "Quantifying adhesive interactions between cells and extracellular matrix by single-cell force spectroscopy". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24758.
Pełny tekst źródłaInteraktionen zwischen Zellen und ihrer Umgebung sind maßgeblich an der Regulierung zellulärer Funktionen beteiligt und daher notwendig für die Organisation von Zellen in Geweben und komplexen Organismen. Zellinteraktionen mit der extrazellulären Matrix (EZM) werden hauptsächlich durch Integrine vermittelt. Situationen, in denen Integrin- EZM Interaktionen verändert sind, können Krankheiten verursachen und spielen zudem eine wichtige Rolle bei der Invasion von Krebszellen. Daher besteht ein großes Interesse darin, die molekularen Mechanismen, die Integrin-EZM Interaktionen regulieren, besser zu verstehen. Wie können Zell-EZM Interaktionen untersucht werden? Obwohl es mehrere Methoden gibt, mit denen Zelladhäsion untersucht werden kann, sind die wenigsten dazu geeignet, Zelladhäsionskräfte zu quantifizieren. Einzelzellspektroskopie erfasst die Adhäsionskräfte einzelner Zellen quantitativ und ermöglicht dadurch eine differenzierte Betrachtung der Adhäsion individueller Zellen. Eine Variante der Einzelzellspektroskopie basiert auf der Rasterkraftmikroskopie (AFM); diese Technik wurde in der vorliegenden Arbeit verwendet. Ein Vorteil von AFM- Einzelzellspektroskopie besteht darin, dass Zellen mit hoher zeitlicher und räumlicher Präzision manipuliert werden können. Zelladhäsionskräfte können zudem über einen großen Kraftbereich hinweg untersucht werden. Dabei ermöglicht es die hohe Kraftauflösung, einzelne Integrin-Ligandenbindungen in lebenden Zellen zu untersuchen. Die vorliegende Arbeit gliedert sich in sechs Kapitel. Kapitel eins gibt Hintergrundinformationen über Zell-EZM Wechselwirkungen. In Kapitel zwei werden verschiedene Adhäsionsassays einander gegenüber gestellt. Das theoretische Bell-Evans Modell, mit dessen Hilfe die gewonnenen Daten interpretiert wurden, wird in Kapitel drei diskutiert. Im Anschluss werden drei Projekte, welche das Herzstück dieser Doktorarbeit bilden, in Kapiteln vier bis sechs näher ausgeführt. Im ersten Projekt (Kapitel vier) wurde die Adhäsion von α2β1-Integrin exprimierenden CHO Zellen zu Kollagen I, dem häufigsten strukturellen Protein in Wirbeltieren, quantitativ untersucht. Zunächst wurden α2β1-Kollagen-Interaktionen auf Einzelmolekülebene analysiert. Mithilfe der dynamischen Kraftspektroskopie wurden für diese Bindung Dissoziationsrate koff (1.3 ± 1.3 sec-1) und Potentialbarrierenbreite xu (2.3 ± 0.3 Å) bestimmt. Daraufhin wurde die α2β1-vermittelte Adhäsion über einen Zeitraum von zehn Minuten untersucht. Dadurch konnten Einblicke in die Kinetik von α2β1-integrin vermittelter Zelladhäsion sowie in die zugrunde liegenden Regulationsmechanismen gewonnen werden. Im zweiten Projekt (Kapitel fünf) wurde die Rolle von kryptischen Integrin-Bindungsstellen in Kollagen I untersucht. Die zuvor verwendeten Kollagenoberflächen wurden thermisch denaturiert, wodurch versteckte RGD (Arg-Gly-Asp)-Sequenzen freigelegt wurden. Die partielle Denaturierung hatte- verglichen mit nativem Kollagen I- eine erhöhte Adhäsion von Präosteoblasten (MC3T3-E1) zur Folge, was auf das Binden zusätzlicher Integrine zurückgeführt wurde. Im Unterschied zu nativem Kollagen wurde die Zelladhäsion zu denaturiertem Kollagen I u.a. durch αv- and α5β1-Integrine vermittelt. Präosteoblasten zeigten verstärktes Zellspreiten sowie höhere Motilität auf denaturiertem Kollagen I; zudem wurde ein erhöhtes Differenzierungpotential der Präosteoblasten festgestellt. Die in diesem Projekt erhaltenen Einblicke bilden eine hilfreiche Basis für die Entwicklung optimierter Oberflächen für diverse Zell- und Gewebekulturanwendungen. Im dritten Projekt (Kapitel sechs) wurde der Einfluss des Fusionproteins BCR/ABL, charakteristisch für chronische myeloische Leukämie, auf die Adhäsion von myeloischen Vorläuferzellen untersucht. Dazu wurde die Adhäsion von BCR/ABL transformierten Vorläuferzellen (32D Zellen) bzw. Kontrollzellen zu Stromazellen (M2-10B4) sowie verschiedenen EZM Proteinen untersucht. BCR/ABL erhöhte die Zelladhäsion der myeloischen Vorläuferzellen signifikant. Dieser Effekt wurde durch die Zugabe von Imatinib, welches die Tyrosinkinaseaktivität von BCR/ABL inhibiert, aufgehoben. Die BCR/ABL-verstärkte Zelladhäsion korrelierte mit erhöhten β1-Integrin-konzentrationen. Da die Adhäsion von Leukämiezellen im Knockenmark bekanntermaßen kritisch für die Entwicklung von Resistenzen gegenüber verschiedenen Wirkstoffen ist, könnten die Ergebnisse dieser Studie eine Grundlage für die Entwicklung optimierter Target-Therapien sein. In den drei beschriebenen Projekten wurde AFM Einzelzellspektroskopie verwendet, um Integrin- vermittelte Adhäsion auf molekularer Ebene zu untersuchen. Die Ergebnisse zeigen, dass AFM-Einzelzellspektroskopie ein vielseitiges Werkzeug darstellt, das überaus geeignet dazu ist, Zelladhäsion- ausgehend von Einzelmolekülinteraktionen bis hin zur Entstehung komplexerer Adhäsionsstellen- auf der Kraftebene zu verfolgen
Choudhury, Devapriya. "Functional implications of macromolecular recognition : assembly of adhesive pili and enzyme substrate interactions /". Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2001. http://epsilon.slu.se/avh/2001/91-576-5820-X.pdf.
Pełny tekst źródłaTucker, David. "Assessing the cellular and adhesive interactions in in vitro models of mantle cell lymphoma". Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/10235.
Pełny tekst źródłaMasek, Lisa Christina. "The study of adhesive interactions between haemopoietic progenitor cells and bone marrow sinusoidal endothelial cells". Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242854.
Pełny tekst źródłaKryworuchko, Marko Andrii. "Regulation of CD44 and its adhesive interactions with the extracellular matrix component, hyaluronan, by cytokines in normal and transformed human B lymphocytes". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0015/NQ46528.pdf.
Pełny tekst źródłaKsiążki na temat "Adhesive Interactions"
Yu, Jing. Adhesive Interactions of Mussel Foot Proteins. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06031-6.
Pełny tekst źródłaRovensky, Yury A. Adhesive Interactions in Normal and Transformed Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2.
Pełny tekst źródłaservice), SpringerLink (Online, red. Adhesive Interactions in Normal and Transformed Cells. Totowa, NJ: Springer Science+Business Media, LLC, 2011.
Znajdź pełny tekst źródłaEdward, Bittar E., Garrod D. R, North Alison J i Chidgey Martin A. J, red. The adhesive interaction of cells. Stamford, Conn: JAI Press Inc., 1999.
Znajdź pełny tekst źródłaL, Gordon J., red. Vascular endothelium: Interactions with circulating cells. Amsterdam: Elsevier, 1991.
Znajdź pełny tekst źródłaJ, Nelson W., red. Membrane protein-cytoskeleton interactions. San Diego: Academic Press, 1996.
Znajdź pełny tekst źródłaRussell, Stevenson Bruce, Gallin Warren J i Paul David Louis, red. Cell-cell interactions: A practical approach. Oxford: IRL Press at Oxford University Press, 1992.
Znajdź pełny tekst źródłaWhittard, John Edward. Heterocyclic interactions between families of cell-adhesion molecules. Manchester: University of Manchester, 1996.
Znajdź pełny tekst źródłaBjerketorp, Joakim. Novel adhesive proteins of pathogenic Staphylococci and their interaction with host proteins. Uppsala: Swedish University of Agricultural Sciences, 2004.
Znajdź pełny tekst źródłaP, Fleming Tom, red. Cell-cell interactions: A practical approach. Wyd. 2. Oxford: Oxford University Press, 2002.
Znajdź pełny tekst źródłaCzęści książek na temat "Adhesive Interactions"
Rovensky, Yury A. "Intercellular Adhesive Interactions". W Adhesive Interactions in Normal and Transformed Cells, 185–211. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_9.
Pełny tekst źródłaDejana, Elisabetta, Lindsey Needham i John Gordon. "Endothelial Cell Adhesive Interactions". W Endothelial Cell Dysfunctions, 153–68. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-0721-9_9.
Pełny tekst źródłaFrojmovic, M. M. "Platelet Biorheology: Adhesive Interactions in Flow". W Handbook of Platelet Physiology and Pharmacology, 315–41. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5049-5_14.
Pełny tekst źródłaSmith, C. W., O. Abbassi, S. B. Shappell, D. C. Anderson, L. V. McIntire i T. K. Kishimoto. "Adhesive Interactions of Neutrophils with Endothelial Cells". W Host Defense Dysfunction in Trauma, Shock and Sepsis, 431–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77405-8_50.
Pełny tekst źródłaGordon, M. Y., D. Clarke, C. R. Dowding i M. Siczkowski. "Adhesive Interactions in the Regulation of Haemopoiesis". W Modern Trends in Human Leukemia IX, 93–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76829-3_17.
Pełny tekst źródłaRovensky, Yury A. "Introduction". W Adhesive Interactions in Normal and Transformed Cells, 1–5. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_1.
Pełny tekst źródłaRovensky, Yury A. "Conclusions". W Adhesive Interactions in Normal and Transformed Cells, 213–15. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_10.
Pełny tekst źródłaRovensky, Yury A. "The Extracellular Matrix". W Adhesive Interactions in Normal and Transformed Cells, 7–12. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_2.
Pełny tekst źródłaRovensky, Yury A. "Cytoskeleton". W Adhesive Interactions in Normal and Transformed Cells, 13–35. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_3.
Pełny tekst źródłaRovensky, Yury A. "Pseudopodia and Adhesion Structures". W Adhesive Interactions in Normal and Transformed Cells, 37–56. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_4.
Pełny tekst źródłaStreszczenia konferencji na temat "Adhesive Interactions"
King, Michael R. "Cell-Surface Adhesive Interactions in Microchannels and Microvessels". W ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1011.
Pełny tekst źródłaImai, Yohsuke, Hitoshi Kondo, Young Ho Kang, Takuji Ishikawa, Chwee Teck Lim i Takami Yamaguchi. "A Numerical Model of Adhesion Property of Malaria Infected Red Blood Cells in Micro Scale Blood Flows". W ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206456.
Pełny tekst źródłaSchoeller, Harry, Aaron Knobloch, Hua Xia, David Shaddock, Chris Kapusta, Kevin Durocher i Jungyun Cho. "Adhesive Tiecoat/Polyimide Interactions in High Temperature Flex Packaging". W ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33419.
Pełny tekst źródłaKHAMMASSI10.12783/asc36/35835, SABRINE, i MOSTAPHA TARFAOUI. "ENHANCED FRACTURE TOUGHNESS OF ADHESIVE JOINTS WITH DOPING EPOXY BY GRAPHENE NANOPLATELETS". W Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35835.
Pełny tekst źródłaBastida, E., i L. Almirall. "EFFECTS OF 13-H0DE AND HETEs ON TUMOR CELL/ENDOTHELIAL CELL INTERACTIONS". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643947.
Pełny tekst źródłaNachman, R. L., R. L. Silverstein i A. S. Asch. "THROMBOSPONDIN: CELL BIOLOGY OF AN ADHESIVE GLYCOPROTEIN". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644653.
Pełny tekst źródłaSarvestani, Alireza. "A Theoretical Analysis for the Effect of Substrate Elasticity on Cellular Adhesion". W ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13311.
Pełny tekst źródłaSarvestani, Alireza. "Kinetics of Membrane Spreading on Compliant Bio-Adhesive Substrates". W ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13321.
Pełny tekst źródłaWernik, Jacob M., i Shaker A. Meguid. "Multiscale Modeling of Nano-Reinforced Structural Adhesive Bonds". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64978.
Pełny tekst źródłaLarson, Lyndon, Yin Tang, Adriana Zambova, Cassandra Hale, Sushumna Iruvanti, Taryn Davis, Hai Longworth i Richard Langlois. "Fundamental investigation of lid interactions with TIM1 and adhesive materials for advanced flip chip packaging". W 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015. http://dx.doi.org/10.1109/ectc.2015.7159873.
Pełny tekst źródłaRaporty organizacyjne na temat "Adhesive Interactions"
Frihart, Charles R. Adhesive interactions with wood. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2004. http://dx.doi.org/10.2737/fpl-gtr-149.
Pełny tekst źródłaLillard. Jr, James W. CXCL13-CXCR5 Interaction and Prostate Cancer Cell Firm Adhesion and Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2007. http://dx.doi.org/10.21236/ada484348.
Pełny tekst źródłaMorrison, Mark, Joshuah Miron, Edward A. Bayer i Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, marzec 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Pełny tekst źródła