Artykuły w czasopismach na temat „Additif E171”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Additif E171”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Verleysen, Eveline, Nadia Waegeneers, Frédéric Brassinne, et al. "Physicochemical Characterization of the Pristine E171 Food Additive by Standardized and Validated Methods." Nanomaterials 10, no. 3 (2020): 592. http://dx.doi.org/10.3390/nano10030592.
Pełny tekst źródłaHwang, Ji-Soo, Jin Yu, Hyoung-Mi Kim, Jae-Min Oh, and Soo-Jin Choi. "Food Additive Titanium Dioxide and Its Fate in Commercial Foods." Nanomaterials 9, no. 8 (2019): 1175. http://dx.doi.org/10.3390/nano9081175.
Pełny tekst źródłaFerrante, Margherita, Alfina Grasso, Rossella Salemi, et al. "DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO2-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2." International Journal of Environmental Research and Public Health 20, no. 3 (2023): 2002. http://dx.doi.org/10.3390/ijerph20032002.
Pełny tekst źródłaBischoff, Nicolaj S., Héloïse Proquin, Marlon J. Jetten, et al. "The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer." Nanomaterials 12, no. 8 (2022): 1256. http://dx.doi.org/10.3390/nano12081256.
Pełny tekst źródłaTsareva, Anastasiya A., Olga V. Egorova, Yuliya V. Demidova, and Nataliya A. Ilyushina. "Studying the ability of the food additive E171 (titanium dioxide) to induce gene mutations in bacteria." Hygiene and sanitation 102, no. 12 (2023): 1361–66. http://dx.doi.org/10.47470/0016-9900-2023-102-12-1361-1366.
Pełny tekst źródłaBrassinne, F., S. De Vos, E. Verleysen, P. J. De Temmerman, M. Ledecq, and J. Mast. "Characterization of the TiO2 E171 food additive." Toxicology Letters 295 (October 2018): S208. http://dx.doi.org/10.1016/j.toxlet.2018.06.909.
Pełny tekst źródłaDorier, Marie, David Béal, Céline Tisseyre, et al. "The food additive E171 and titanium dioxide nanoparticles indirectly alter the homeostasis of human intestinal epithelial cells in vitro." Environmental Science: Nano 6, no. 5 (2019): 1549–61. http://dx.doi.org/10.1039/c8en01188e.
Pełny tekst źródłaRudometkina, T. F. "PHOTOMETRIC DETERMINATION OF E171 ADDITIVE IN FOOD PRODUCTS." EurasianUnionScientists 5, no. 63 (2019): 56–59. http://dx.doi.org/10.31618/esu.2413-9335.2019.5.63.177.
Pełny tekst źródłaSong, In-Gyu, Kanghee Kim, Hakwon Yoon, and June Woo Park. "Toxicity assessment of food additive (E171) in aquatic environments." Environmental Biology Research 41, no. 1 (2023): 41–53. http://dx.doi.org/10.11626/kjeb.2023.41.1.041.
Pełny tekst źródłaPannek, Carolin, Karina R. Tarantik, Laura Engel, Thomas Vetter, and Jürgen Wöllenstein. "Gasochromic Detection of NO2 on the Example of the Food Additive E141 (ii)." Proceedings 2, no. 13 (2018): 721. http://dx.doi.org/10.3390/proceedings2130721.
Pełny tekst źródłaBaranowska-Wójcik, Ewa, Klaudia Gustaw, Dominik Szwajgier, et al. "Four Types of TiO2 Reduced the Growth of Selected Lactic Acid Bacteria Strains." Foods 10, no. 5 (2021): 939. http://dx.doi.org/10.3390/foods10050939.
Pełny tekst źródłaGrasso, Alfina, Margherita Ferrante, Pietro Zuccarello, et al. "Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure." International Journal of Environmental Research and Public Health 17, no. 24 (2020): 9547. http://dx.doi.org/10.3390/ijerph17249547.
Pełny tekst źródłaWaegeneers, Nadia, Sandra De Vos, Eveline Verleysen, Ann Ruttens, and Jan Mast. "Estimation of the Uncertainties Related to the Measurement of the Size and Quantities of Individual Silver Nanoparticles in Confectionery." Materials 12, no. 17 (2019): 2677. http://dx.doi.org/10.3390/ma12172677.
Pełny tekst źródłaKrivobok, V. S., A. V. Kolobov, S. E. Dimitrieva, et al. "Raman Markers of Toxic Nanofraction in Anatase TiO2 Micropowder Used as E171 Food Additive." Journal of Russian Laser Research 42, no. 4 (2021): 388–98. http://dx.doi.org/10.1007/s10946-021-09974-1.
Pełny tekst źródłaProquin, Héloïse, Marlon J. Jetten, Marloes C. M. Jonkhout, et al. "Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171)." Food and Chemical Toxicology 111 (January 2018): 153–65. http://dx.doi.org/10.1016/j.fct.2017.11.011.
Pełny tekst źródłaProquin, Héloïse, Carolina Rodríguez-Ibarra, Carolyn G. J. Moonen, et al. "Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions." Mutagenesis 32, no. 1 (2016): 139–49. http://dx.doi.org/10.1093/mutage/gew051.
Pełny tekst źródłaProquin, Héloïse, Carolina Rodríguez-Ibarra, Carolyn Moonen, et al. "Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions." Mutagenesis 33, no. 3 (2018): 267–68. http://dx.doi.org/10.1093/mutage/gey011.
Pełny tekst źródłaDe Vos, Sandra, Nadia Waegeneers, Eveline Verleysen, Karen Smeets, and Jan Mast. "Physico-chemical characterisation of the fraction of silver (nano)particles in pristine food additive E174 and in E174-containing confectionery." Food Additives & Contaminants: Part A 37, no. 11 (2020): 1831–46. http://dx.doi.org/10.1080/19440049.2020.1809719.
Pełny tekst źródłaBlaznik, Urška, Sanja Krušič, Maša Hribar, Anita Kušar, Katja Žmitek, and Igor Pravst. "Use of Food Additive Titanium Dioxide (E171) before the Introduction of Regulatory Restrictions Due to Concern for Genotoxicity." Foods 10, no. 8 (2021): 1910. http://dx.doi.org/10.3390/foods10081910.
Pełny tekst źródłaBellani, Lorenza, Simonetta Muccifora, Francesco Barbieri, Eliana Tassi, Monica Ruffini Castiglione, and Lucia Giorgetti. "Genotoxicity of the food additive E171, titanium dioxide, in the plants Lens culinaris L. and Allium cepa L." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 849 (January 2020): 503142. http://dx.doi.org/10.1016/j.mrgentox.2020.503142.
Pełny tekst źródłaBischoff, Nicolaj S., Theo M. de Kok, Dick T. H. M. Sijm, et al. "Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System." International Journal of Molecular Sciences 22, no. 1 (2020): 207. http://dx.doi.org/10.3390/ijms22010207.
Pełny tekst źródłaBrugiroux, Sandrine, Thomas Sauvaitre, Gwenaelle Roche, et al. "Su1976 – Impacts of Additive Food E171 (Titanium Dioxide) on the Gut Microbiota and Colorectal Carcinogenesis in ApcMIN/+ Murine Model." Gastroenterology 156, no. 6 (2019): S—679. http://dx.doi.org/10.1016/s0016-5085(19)38610-x.
Pełny tekst źródłaZucchetti, Andrés E., Ismael R. Barosso, Andrea Boaglio та ін. "Prevention of estradiol 17β-d-glucuronide–induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes". Molecular Biology of the Cell 22, № 20 (2011): 3902–15. http://dx.doi.org/10.1091/mbc.e11-01-0047.
Pełny tekst źródłaGmoshinski, I. V., O. V. Bagryantseva, and S. A. Khotimchenko. "Toxicological and hygienic assessment of titanium dioxide nanoparticles as a component of E171 food additive (review of the literature and metahanalysis)." Health Risk Analysis, no. 2 (June 2019): 145–63. http://dx.doi.org/10.21668/health.risk/2019.2.17.
Pełny tekst źródłaGmoshinski, I. V., O. V. Bagryantseva, and S. A. Khotimchenko. "Toxicological and hygienic assessment of titanium dioxide nanoparticles as a component of E171 food additive (review of the literature and metahanalysis)." Health Risk Analysis, no. 2 (June 2019): 145–63. http://dx.doi.org/10.21668/health.risk/2019.2.17.eng.
Pełny tekst źródłaTalamini, Laura, Sara Gimondi, Martina B. Violatto, et al. "Repeated administration of the food additive E171 to mice results in accumulation in intestine and liver and promotes an inflammatory status." Nanotoxicology 13, no. 8 (2019): 1087–101. http://dx.doi.org/10.1080/17435390.2019.1640910.
Pełny tekst źródłaWarheit, D. "P24-38: EFSA Made a Manifest Error on the Safety of Titanium Dioxide (E171) Particles as a Food Additive for Humans." Toxicology Letters 384 (September 2023): S279. http://dx.doi.org/10.1016/s0378-4274(23)00920-7.
Pełny tekst źródłaWilliams, Sally R., Tareq A. Juratli, Brandyn A. Castro, et al. "Genomic Analysis of Posterior Fossa Meningioma Demonstrates Frequent AKT1 E17K Mutations in Foramen Magnum Meningiomas." Journal of Neurological Surgery Part B: Skull Base 80, no. 06 (2019): 562–67. http://dx.doi.org/10.1055/s-0038-1676821.
Pełny tekst źródłaFang, Luo. "The Effectiveness and Safety of 42°C Pulsed Radiofrequency Combined with 60°C Continuous Radiofrequency for Refractory Infraorbital Neuralgia: A Prospective Study." Pain Physician 3, no. 22;3 (2019): E171—E179. http://dx.doi.org/10.36076/ppj/2019.22.e171.
Pełny tekst źródłaDorier, Marie, Céline Tisseyre, Fanny Dussert, et al. "Toxicological impact of acute exposure to E171 food additive and TiO2 nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 845 (September 2019): 402980. http://dx.doi.org/10.1016/j.mrgentox.2018.11.004.
Pełny tekst źródłaZhang, Zeli, Qinyong Gu, Ananda Ayyappan Jaguva Vasudevan, et al. "Vif Proteins from Diverse Human Immunodeficiency Virus/Simian Immunodeficiency Virus Lineages Have Distinct Binding Sites in A3C." Journal of Virology 90, no. 22 (2016): 10193–208. http://dx.doi.org/10.1128/jvi.01497-16.
Pełny tekst źródłaTassinari, Roberta, Alessia Tammaro, Andrea Martinelli, Mauro Valeri, and Francesca Maranghi. "Sex-Specific Effects of Short-Term Oral Administration of Food-Grade Titanium Dioxide Nanoparticles in the Liver and Kidneys of Adult Rats." Toxics 11, no. 9 (2023): 776. http://dx.doi.org/10.3390/toxics11090776.
Pełny tekst źródłaBucher, Guillaume, Hind El Hadri, Océane Asensio, François Auger, Josefa Barrero, and Jean-Philippe Rosec. "Large-scale screening of E171 food additive (TiO2) on the French market from 2018 to 2022: Occurrence and particle size distribution in various food categories." Food Control 155 (January 2024): 110102. http://dx.doi.org/10.1016/j.foodcont.2023.110102.
Pełny tekst źródłaBaranowska-Wójcik, Ewa, Dominik Szwajgier, Izabela Jośko, Bożena Pawlikowska-Pawlęga, and Klaudia Gustaw. "Smoothies Reduce the “Bioaccessibility” of TiO2 (E 171) in the Model of the In Vitro Gastrointestinal Tract." Nutrients 14, no. 17 (2022): 3503. http://dx.doi.org/10.3390/nu14173503.
Pełny tekst źródłaLaisney, Jérôme, Mireille Chevallet, Caroline Fauquant, et al. "Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium." Biomolecules 12, no. 10 (2022): 1516. http://dx.doi.org/10.3390/biom12101516.
Pełny tekst źródłaWang, Yidan, Allan Sauvat, Celine Lacrouts, et al. "TiO2 Nanomaterials Non-Controlled Contamination Could Be Hazardous for Normal Cells Located in the Field of Radiotherapy." International Journal of Molecular Sciences 21, no. 3 (2020): 940. http://dx.doi.org/10.3390/ijms21030940.
Pełny tekst źródłaIdris, ElSorra E., Domingo J. Iglesias, Manuel Talon, and Rainer Borriss. "Tryptophan-Dependent Production of Indole-3-Acetic Acid (IAA) Affects Level of Plant Growth Promotion by Bacillus amyloliquefaciens FZB42." Molecular Plant-Microbe Interactions® 20, no. 6 (2007): 619–26. http://dx.doi.org/10.1094/mpmi-20-6-0619.
Pełny tekst źródłaEspada-Bernabé, Elena, Gustavo Moreno-Martín, Beatriz Gómez-Gómez, and Yolanda Madrid. "Assesing the behaviour of particulate/nanoparticulate form of E171 (TiO2) food additive in colored chocolate candies before and after in vitro oral ingestion by spICP-MS, TEM and cellular in vitro models." Food Chemistry 432 (January 2024): 137201. http://dx.doi.org/10.1016/j.foodchem.2023.137201.
Pełny tekst źródłaSharp, T. A., G. W. Reed, M. Sun, N. N. Abumrad, and J. O. Hill. "Relationship between aerobic fitness level and daily energy expenditure in weight-stable humans." American Journal of Physiology-Endocrinology and Metabolism 263, no. 1 (1992): E121—E128. http://dx.doi.org/10.1152/ajpendo.1992.263.1.e121.
Pełny tekst źródłaWatanabe, Richard M., Garry M. Steil, and Richard N. Bergman. "Critical evaluation of the combined model approach for estimation of prehepatic insulin secretion." American Journal of Physiology-Endocrinology and Metabolism 274, no. 1 (1998): E172—E183. http://dx.doi.org/10.1152/ajpendo.1998.274.1.e172.
Pełny tekst źródłaBranco, Marcelo, Miriam Ribeiro, Nubio Negrão, and Antonio C. Bianco. "3,5,3′-Triiodothyronine actively stimulates UCP in brown fat under minimal sympathetic activity." American Journal of Physiology-Endocrinology and Metabolism 276, no. 1 (1999): E179—E187. http://dx.doi.org/10.1152/ajpendo.1999.276.1.e179.
Pełny tekst źródłaZhou, Lin, Lu Wang, Jialing Zhang, et al. "Didymin improves UV irradiation resistance in C. elegans." PeerJ 6 (January 9, 2019): e6218. http://dx.doi.org/10.7717/peerj.6218.
Pełny tekst źródłaABDULLAHI, Xhabir, Gafur XHABIRI, Erhan SULEJMANI, and Faton SELIMI. "The effect of some additives on the rheology of dough and quality of bread." Acta agriculturae Slovenica 118, no. 2 (2022): 1. http://dx.doi.org/10.14720/aas.2022.118.2.2601.
Pełny tekst źródłaSalhanick, A. I., and J. M. Amatruda. "Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus." American Journal of Physiology-Endocrinology and Metabolism 255, no. 2 (1988): E173—E179. http://dx.doi.org/10.1152/ajpendo.1988.255.2.e173.
Pełny tekst źródłaMurray, F. T., R. D. Johnson, M. Sciadini, M. J. Katovich, J. Rountree, and H. Jewett. "Erectile and copulatory dysfunction in chronically diabetic BB/WOR rats." American Journal of Physiology-Endocrinology and Metabolism 263, no. 1 (1992): E151—E157. http://dx.doi.org/10.1152/ajpendo.1992.263.1.e151.
Pełny tekst źródłaKarinch, A. M., S. R. Kimball, T. C. Vary, and L. S. Jefferson. "Regulation of eukaryotic initiation factor-2B activity in muscle of diabetic rats." American Journal of Physiology-Endocrinology and Metabolism 264, no. 1 (1993): E101—E108. http://dx.doi.org/10.1152/ajpendo.1993.264.1.e101.
Pełny tekst źródłaLewis, Gary F., Mladen Vranic, and Adria Giacca. "Role of free fatty acids and glucagon in the peripheral effect of insulin on glucose production in humans." American Journal of Physiology-Endocrinology and Metabolism 275, no. 1 (1998): E177—E186. http://dx.doi.org/10.1152/ajpendo.1998.275.1.e177.
Pełny tekst źródłaPagliassotti, Michael J., Jione Kang, Jeffrey S. Thresher, Chin K. Sung, and Michael E. Bizeau. "Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance." American Journal of Physiology-Endocrinology and Metabolism 282, no. 1 (2002): E170—E176. http://dx.doi.org/10.1152/ajpendo.2002.282.1.e170.
Pełny tekst źródłaBischoff, Nicolaj, Héloïse Proquin, Marlon Jetten, et al. "Correction: Bischoff et al. The Effects of the Food Additive Titanium Dioxide (E171) on Tumor Formation and Gene Expression in the Colon of a Transgenic Mouse Model for Colorectal Cancer. Nanomaterials 2022, 12, 1256." Nanomaterials 13, no. 21 (2023): 2888. http://dx.doi.org/10.3390/nano13212888.
Pełny tekst źródłaRivero, Matías, Constanza Torres-Paris, Rodrigo Muñoz, Ricardo Cabrera, Claudio A. Navarro, and Carlos A. Jerez. "Inorganic Polyphosphate, Exopolyphosphatase, andPho84-Like Transporters May Be Involved in Copper Resistance inMetallosphaera sedulaDSM 5348T." Archaea 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/5251061.
Pełny tekst źródła