Artykuły w czasopismach na temat „Active structures”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Active structures.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Active structures”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Soong, T. T., i G. D. Manolis. "Active Structures". Journal of Structural Engineering 113, nr 11 (listopad 1987): 2290–302. http://dx.doi.org/10.1061/(asce)0733-9445(1987)113:11(2290).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Pantelides, C. P., i S. R. Tzan. "Active structures with uncertainties". International Journal of Computer Applications in Technology 13, nr 1/2 (2000): 59. http://dx.doi.org/10.1504/ijcat.2000.000224.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

D'Isep, F., i L. Sertorio. "Irreversibility for active structures". Il Nuovo Cimento B 94, nr 2 (sierpień 1986): 168–74. http://dx.doi.org/10.1007/bf02759755.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Soong, T. T., i B. F. Spencer. "Active, semi-active and hybrid control of structures". Bulletin of the New Zealand Society for Earthquake Engineering 33, nr 3 (30.09.2000): 387–402. http://dx.doi.org/10.5459/bnzsee.33.3.387-402.

Pełny tekst źródła
Streszczenie:
In recent years, considerable attention has been paid to research and development of passive and active structural control devices, with particular emphasis on alleviation of wind and seismic response of buildings and bridges. In both areas, serious efforts have been undertaken to develop the structural control concept into a workable technology, and today we have many such devices installed in a wide variety of structures. The focus of this state-of-the-art paper is on active, semi-active and hybrid structural control with seismic applications. These systems employ controllable force devices integrated with sensors, controllers and real-time information processing. This paper includes a brief historical outline of their development and an assessment of the state-of-the-art and state-of-the-practice of this exciting, and still evolving, technology. Also included in the discussion are their advantages and limitations in the context of seismic design and retrofit of civil engineering structures.
Style APA, Harvard, Vancouver, ISO itp.
5

Qureshi, Sohail M., Hajime Tsutsumi, Kiyoshi Uno i Shoichi Kitagawa. "ACTIVE CONTROL OF SLIDING STRUCTURES". PROCEEDINGS OF THE JSCE EARTHQUAKE ENGINEERING SYMPOSIUM 21 (1991): 493–96. http://dx.doi.org/10.2208/proee1957.21.493.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Chang, C. M., B. M. Al-Hashimi i J. N. Ross. "Unified active filter biquad structures". IEE Proceedings - Circuits, Devices and Systems 151, nr 4 (2004): 273. http://dx.doi.org/10.1049/ip-cds:20040132.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pearl, Laurence. "Similarity of active-site structures". Nature 362, nr 6415 (marzec 1993): 24. http://dx.doi.org/10.1038/362024a0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Nathal, Michael V., i George L. Stefko. "Smart Materials and Active Structures". Journal of Aerospace Engineering 26, nr 2 (kwiecień 2013): 491–99. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000319.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Sirlin, S., C. Paliou, R. W. Longman, M. Shinozuka i E. Samaras. "Active Control of Floating Structures". Journal of Engineering Mechanics 112, nr 9 (wrzesień 1986): 947–65. http://dx.doi.org/10.1061/(asce)0733-9399(1986)112:9(947).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Reinhorn, A. M., G. D. Manolis i C. Y. Wen. "Active Control of Inelastic Structures". Journal of Engineering Mechanics 113, nr 3 (marzec 1987): 315–33. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:3(315).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Firczuk, Małgorzata, Artur Mucha i Matthias Bochtler. "Crystal Structures of Active LytM". Journal of Molecular Biology 354, nr 3 (grudzień 2005): 578–90. http://dx.doi.org/10.1016/j.jmb.2005.09.082.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Barsoum, Roshdy George S. "Active materials and adaptive structures". Smart Materials and Structures 6, nr 1 (1.02.1997): 117–22. http://dx.doi.org/10.1088/0964-1726/6/1/014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Baz, A. "Active Control of Periodic Structures". Journal of Vibration and Acoustics 123, nr 4 (1.06.2001): 472–79. http://dx.doi.org/10.1115/1.1399052.

Pełny tekst źródła
Streszczenie:
Conventional passive periodic structures exhibit unique dynamic characteristics that make them act as mechanical filters for wave propagation. As a result, waves can propagate along the periodic structures only within specific frequency bands called the “Pass Bands” and wave propagation is completely blocked within other frequency bands called the “Stop Bands.” In this paper, the emphasis is placed on providing the passive structures with active control capabilities in order to tune the spectral width and location of the pass and stop bands in response to the structural vibration. Apart from their unique filtering characteristics, the ability of periodic structures to transmit waves, from one location to another, within the pass bands can be greatly reduced when the ideal periodicity is disrupted resulting in the well-known phenomenon of “Localization.” In the case of passive structures, the aperiodicity (or the disorder) can result from unintentional material, geometric and manufacturing variability. However, in the case of active periodic structures the aperiodicity is intentionally introduced by proper tuning of the controllers of the individual substructure or cell. The theory governing the operation of this class of Active Periodic structures is introduced and numerical examples are presented to illustrate their tunable filtering and localization characteristics. The examples considered include periodic/aperiodic spring-mass systems controlled by piezoelectric actuators. The presented results emphasize the unique potential of the active periodic structures in controlling the wave propagation both in the spectral and spatial domains in an attempt to stop/confine the propagation of undesirable disturbances.
Style APA, Harvard, Vancouver, ISO itp.
14

Fisco, N. R., i H. Adeli. "Smart structures: Part I—Active and semi-active control". Scientia Iranica 18, nr 3 (czerwiec 2011): 275–84. http://dx.doi.org/10.1016/j.scient.2011.05.034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Melville, Stephen, Cecilie Brandt-Olsen i John Harding. "Calibrated modelling of form-active structures". IABSE Symposium Report 108, nr 1 (19.04.2017): 155–56. http://dx.doi.org/10.2749/222137817821232432.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Trudeau, Charles, Martin Bolduc, Patrick Beaupré, Patrice Topart, Christine Alain i Sylvain Cloutier. "Inkjet-Printed Flexible Active Multilayered Structures". MRS Advances 2, nr 18 (2017): 1015–20. http://dx.doi.org/10.1557/adv.2017.237.

Pełny tekst źródła
Streszczenie:
ABSTRACTActive inkjet materials are invoked in the fabrication of optoelectronic devices. These types of multilayer assemblies contain a variety of commercially available ink formulations. It is envisioned that a dielectric SU-8 material can be used in a FET-like structure to form an interlayer between conductive silver and semi-conductive MWCNT-doped PEDOT:PSS ink layers. These printed structures may be fabricated onto a polyimide based flexible substrate, for instance. These structures are a starting point for offering valuable information on layer-on-layer printing interactions and interface problematics within a complete inkjet device fabrication.
Style APA, Harvard, Vancouver, ISO itp.
17

Al Sabouni-Zawadzka, A. "Active Control Of Smart Tensegrity Structures". Archives of Civil Engineering 60, nr 4 (1.12.2014): 517–34. http://dx.doi.org/10.2478/ace-2014-0034.

Pełny tekst źródła
Streszczenie:
AbstractThe topic of smart structures, their active control and implementation, is relatively new. Therefore, different approaches to the problem can be met. The present paper discusses variable aspects of the active control of structures. It explains the idea of smart systems, introduces different terms used in smart technique and defines the structural smartness. The author indicates differences between actively controlled structures and structural health monitoring systems and shows an example of an actively controlled smart footbridge.The analyses presented in the study concern tensegrity structures, which are prone to the structural control through self-stress state adjustment. The paper introduces examples of structural control performed on tensegrity modules and plates. An influence of several self-stress states on displacements is analyzed and a study concerning damage due to member loss is presented.
Style APA, Harvard, Vancouver, ISO itp.
18

Dudovich, N., G. Levy-Yurista, A. Sharon, A. A. Friesem i H. G. Weber. "Active semiconductor-based grating waveguide structures". IEEE Journal of Quantum Electronics 37, nr 8 (2001): 1030–39. http://dx.doi.org/10.1109/3.937392.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Cha, J. Z., J. M. Pitarresi i T. T. Soong. "Optimal Design Procedures for Active Structures". Journal of Structural Engineering 114, nr 12 (grudzień 1988): 2710–23. http://dx.doi.org/10.1061/(asce)0733-9445(1988)114:12(2710).

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

HAN, SANG-JUN, PANOS TSOPELAS i A. BAZ. "ACTIVE/PASSIVE SEISMIC CONTROL OF STRUCTURES". Journal of Earthquake Engineering 10, nr 4 (lipiec 2006): 509–26. http://dx.doi.org/10.1080/13632460609350607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Follador, M., A. T. Conn, B. Mazzolai i J. Rossiter. "Active-elastic bistable minimum energy structures". Applied Physics Letters 105, nr 14 (6.10.2014): 141903. http://dx.doi.org/10.1063/1.4898142.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Jiang, Nina, Xiaolu Zhuo i Jianfang Wang. "Active Plasmonics: Principles, Structures, and Applications". Chemical Reviews 118, nr 6 (29.09.2017): 3054–99. http://dx.doi.org/10.1021/acs.chemrev.7b00252.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Stemberk, J., B. Kostak i V. Vilimek. "3D monitoring of active tectonic structures". Journal of Geodynamics 36, nr 1-2 (sierpień 2003): 103–12. http://dx.doi.org/10.1016/s0264-3707(03)00042-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Pantelides, Chris P. "Active control of wind-excited structures". Journal of Wind Engineering and Industrial Aerodynamics 36 (styczeń 1990): 189–202. http://dx.doi.org/10.1016/0167-6105(90)90304-u.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Porta, Josep M., i Sergi Hernández-Juan. "Path planning for active tensegrity structures". International Journal of Solids and Structures 78-79 (styczeń 2016): 47–56. http://dx.doi.org/10.1016/j.ijsolstr.2015.09.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Keller, Christoph U. "Small-Scale Structures in Active Regions". International Astronomical Union Colloquium 141 (1993): 3–10. http://dx.doi.org/10.1017/s0252921100028670.

Pełny tekst źródła
Streszczenie:
AbstractWithin the last few years significant progress has been made in our understanding of the small-scale structures in active regions. Here I present some of the newest findings obtained by using speckle interferometric techniques. There exist continuum bright points with a contrast of about 30% that are cospatial with strong magnetic fields. The observations are consistent with the assumption that some facular and network bright points are the white-light signature of magnetic fluxtubes with a diameter of about 200 km. Magnetic elements larger than about 300 km are mainly darker than the average quiet sun. Their properties are similar to what has been called magnetic knots or invisible sunspots. In highly magnetic areas there is no clear relationship between continuum intensity and magnetogram signal at the smallest spatial scales. The magnetic field of pores extends beyond the dark umbra. There radially elongated structures may appear that are similar to penumbral filaments in sunspots.
Style APA, Harvard, Vancouver, ISO itp.
27

Asano, Koichiro, i Hajime Nakagawa. "Active Saturation Control of Hysteretic Structures". Computer-Aided Civil and Infrastructure Engineering 13, nr 6 (listopad 1998): 425–32. http://dx.doi.org/10.1111/0885-9507.00120.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Inman, Danieal J. "Active modal control for smart structures". Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 359, nr 1778 (15.01.2001): 205–19. http://dx.doi.org/10.1098/rsta.2000.0721.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Araújo, A. L., H. M. R. Lopes, M. A. P. Vaz, C. M. Mota Soares, J. Herskovits i P. Pedersen. "Parameter estimation in active plate structures". Computers & Structures 84, nr 22-23 (wrzesień 2006): 1471–79. http://dx.doi.org/10.1016/j.compstruc.2006.01.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Gluck, J., Y. Ribakov i A. N. Dancygier. "Predictive active control of MDOF structures". Earthquake Engineering & Structural Dynamics 29, nr 1 (styczeń 2000): 109–25. http://dx.doi.org/10.1002/(sici)1096-9845(200001)29:1<109::aid-eqe898>3.0.co;2-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

WATANABE, Shuya, i Jun SHINTAKE. "Active tensegrity structures using electrostatic actuators". Proceedings of the Dynamics & Design Conference 2022 (2022): 501. http://dx.doi.org/10.1299/jsmedmc.2022.501.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

SINGH, M. P., E. E. MATHEU i L. E. SUAREZ. "ACTIVE AND SEMI-ACTIVE CONTROL OF STRUCTURES UNDER SEISMIC EXCITATION". Earthquake Engineering & Structural Dynamics 26, nr 2 (luty 1997): 193–213. http://dx.doi.org/10.1002/(sici)1096-9845(199702)26:2<193::aid-eqe634>3.0.co;2-#.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Takezawa, Akihiro, Kanjuro Makihara, Nozomu Kogiso i Mitsuru Kitamura. "CO-JP-1 Ground structure approach for PZT layout optimization in semi-active vibration control systems of space structures". Proceedings of Mechanical Engineering Congress, Japan 2012 (2012): _CO—JP—1–1—_CO—JP—1–1. http://dx.doi.org/10.1299/jsmemecj.2012._co-jp-1-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Itoh, T., T. Shimomura i H. Okubo. "2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control". Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Mohan, P. V. A. "Generation of OTA-C filter structures from active RC filter structures". IEEE Transactions on Circuits and Systems 37, nr 5 (maj 1990): 656–60. http://dx.doi.org/10.1109/31.55014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Kwak, Moon K., Dong-Ho Yang i Ji-Hwan Shin. "Active vibration control of structures using a semi-active dynamic absorber". Noise Control Engineering Journal 63, nr 3 (1.05.2015): 287–99. http://dx.doi.org/10.3397/1/376326.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Wang, Yafeng, Xian Xu i Yaozhi Luo. "Minimal mass design of active tensegrity structures". Engineering Structures 234 (maj 2021): 111965. http://dx.doi.org/10.1016/j.engstruct.2021.111965.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Lee, Hamilton, i Jacqueline Williams. "In Defense of All-Active Manager Structures". Journal of Investing 25, nr 4 (30.11.2016): 7–19. http://dx.doi.org/10.3905/joi.2016.25.4.007.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

BABA, Shunsuke, Kohki NINOMIYA i Tateo KAJITA. "Digital active optimal control of steel structures." Doboku Gakkai Ronbunshu, nr 380 (1987): 375–81. http://dx.doi.org/10.2208/jscej.1987.380_375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Rai, Gopal L. "Advanced Active Prestressed CFRP in RCC Structures". Advanced Materials Research 1129 (listopad 2015): 290–97. http://dx.doi.org/10.4028/www.scientific.net/amr.1129.290.

Pełny tekst źródła
Streszczenie:
. The need for rehabilitation of reinforced concrete structures is rapidly increasing. Fibre reinforced polymer (FRP) composite materials for concrete structures have high strength-to-weight ratios that can provide high prestressing forces while adding minimal additional weight to a structure. They also have good fatigue properties and exhibit low relaxation losses, both of which can increase the service lives and the load carrying capacities of reinforced concrete structures. Carbon fiber reinforced polymer (CFRP) composite system is integrated system based on carbon fibres and epoxy resins. By prestressing the CFRP laminates, the material is used more efficiently as a part of its tensile capacity is utilised and it contributes to the load bearing capacity under both service and ultimate load condition. This is an ideal technique as it combines the advantage of using noncorrosive and lightweight advanced composite material in the form of FRP laminates with high efficiency offered by external prestressing. An innovative mechanical anchorage system was developed to prestress the FRP laminates directly by jacking and reacting against the RCC structure.This paper describes the use of Prestressed CFRP laminates for strengthening of RCC structures including practical applications on slabs and bridges. Also it elucidates the post strengthening testing carried out for the validation of this technique.
Style APA, Harvard, Vancouver, ISO itp.
41

Barnes, S., L. Kirssin, E. Needham, E. Baharlou, D. E. Carr i J. Ma. "3D printing of ecologically active soil structures". Additive Manufacturing 52 (kwiecień 2022): 102670. http://dx.doi.org/10.1016/j.addma.2022.102670.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Sakamotu, Mitsuo. "Applications to Building Structures on Active Control". IEEJ Transactions on Industry Applications 119, nr 7 (1999): 926–31. http://dx.doi.org/10.1541/ieejias.119.926.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Suzuki, Tetsuo, Mitsuru Kageyama i Arihide Nobata. "Active Vibration Control System for Tall Structures". Journal of Robotics and Mechatronics 6, nr 4 (20.08.1994): 327–31. http://dx.doi.org/10.20965/jrm.1994.p0327.

Pełny tekst źródła
Streszczenie:
The authors, concerned with the enhancement of living comfort in tall structures during strong winds or medium to small-scale earthquakes, have developed an active vibration control system which is capable of controlling a multiple number of vibration modes at the same time, and have already demonstrated the usefulness of this system by conducting verification experiments using a small device1) and an actual-size device2). And this time, an active vibration control system based on the research results obtained up to now has been applied to an actual structure for the first time in the world. This report describes an outline of this system.
Style APA, Harvard, Vancouver, ISO itp.
44

Preumont, A., i Y. Achkire. "Active Damping of Structures with Guy Cables". Journal of Guidance, Control, and Dynamics 20, nr 2 (marzec 1997): 320–26. http://dx.doi.org/10.2514/2.4040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Malhis, M., L. Gaudiller i J. Der Hagopian. "Fuzzy Modal Active Control of Flexible Structures". Journal of Vibration and Control 11, nr 1 (styczeń 2005): 67–88. http://dx.doi.org/10.1177/10775463045046028.

Pełny tekst źródła
Streszczenie:
In this paper we propose a new active control strategy to control the dynamic behavior of flexible structures: fuzzy modal control (FMC). This strategy, based on the modal state feedback of the structure, uses independent fuzzy controllers for each mode to be controlled. This method is applied to a flexible beam controlled by a transverse plane of action using piezoelectric actuators. First of all, a model of a piezoelectric actuator is proposed, followed by the formulation of a finite-element model of the mechanical structure/actuator. The model is then fitted using an identification of the characteristics. After modal reduction, the FMC is carried out in two steps: the control of the beam in only one transverse direction by a piezoelectric pusher, then in two transverse directions by two orthogonal piezoelectric pushers located on the same plane. A digital controller was built in the Matlab®-Simulink® environment, and implemented on specialized cards in order to perform the corresponding experiment. The method is validated by comparing the results between the simulation and the experiment.
Style APA, Harvard, Vancouver, ISO itp.
46

Zhu, Yiwen, Audrey Sulkanen, Gang-Yu Liu i Gang Sun. "Daylight-Active Cellulose Nanocrystals Containing Anthraquinone Structures". Materials 13, nr 16 (11.08.2020): 3547. http://dx.doi.org/10.3390/ma13163547.

Pełny tekst źródła
Streszczenie:
Antimicrobial and antiviral materials have attracted significant interest in recent years due to increasing occurrences of nosocomial infections and pathogenic microbial contamination. One method to address this is the combination of photoactive compounds that can produce reactive oxygen species (ROS), such as hydrogen peroxide and hydroxyl radicals to disinfect microbes, with carrier materials that meet the application requirements. Using anthraquinone (AQ) and cellulose nanocrystals (CNCs) as the photoactive and carrier components, respectively, this work demonstrated the first covalent incorporation of AQ onto CNCs. The morphology and the photoactive properties were investigated, revealing the structural integrity of the CNCs and the high degree of photoactivity of the AQ-CNC materials upon UVA exposure. The AQ-CNCs also exhibited an unexpected persistent generation of ROS under darkness, which adds advantages for antimicrobial applications.
Style APA, Harvard, Vancouver, ISO itp.
47

Sommerfeldt, Scott D. "Active control of radiation from vibrating structures." Journal of the Acoustical Society of America 91, nr 4 (kwiecień 1992): 2348. http://dx.doi.org/10.1121/1.403444.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Alexandropoulos, Dimitris, Hercules Simos, Michael J. Adams i Dimitris Syvridis. "Optical Bistability in Active Semiconductor Microring Structures". IEEE Journal of Selected Topics in Quantum Electronics 14, nr 3 (2008): 918–26. http://dx.doi.org/10.1109/jstqe.2008.921424.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Hladky‐Hennion, A. ‐C, J. ‐N Decarpigny i B. Hamonic. "Finite element modeling of active periodic structures." Journal of the Acoustical Society of America 90, nr 4 (październik 1991): 2316. http://dx.doi.org/10.1121/1.401034.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Gaunaurd, G. C., H. C. Strifors, P. W. B. Moore i H. Huang. "Techniques for active classification of underwater structures". Journal of the Acoustical Society of America 101, nr 5 (maj 1997): 3151–52. http://dx.doi.org/10.1121/1.419073.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii