Gotowa bibliografia na temat „Active semiconductors”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Active semiconductors”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Active semiconductors"
Wang, Xuejiao, Erjin Zhang, Huimin Shi, Yufeng Tao i Xudong Ren. "Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement". Analyst 147, nr 7 (2022): 1257–72. http://dx.doi.org/10.1039/d1an02165f.
Pełny tekst źródłaCui, Can, Junqing Ma, Kai Chen, Xinjie Wang, Tao Sun, Qingpu Wang, Xijian Zhang i Yifei Zhang. "Active and Programmable Metasurfaces with Semiconductor Materials and Devices". Crystals 13, nr 2 (6.02.2023): 279. http://dx.doi.org/10.3390/cryst13020279.
Pełny tekst źródłaDUTA, ANCA, CRISTINA BOGATU, IOANA TISMANAR, DANA PERNIU i MARIA COVEI. "VIS-ACTIVE PHOTOCATALYTIC COMPOSITES FOR ADVANCED WASTEWATER TREATEMENT". Journal of Engineering Sciences and Innovation 5, nr 3 (15.09.2020): 247–52. http://dx.doi.org/10.56958/jesi.2020.5.3.5.
Pełny tekst źródłaNguyen, Thien-Phap, Cédric Renaud i Chun-Hao Huang. "Electrically Active Defects in Organic Semiconductors". Journal of the Korean Physical Society 52, nr 5 (15.05.2008): 1550–53. http://dx.doi.org/10.3938/jkps.52.1550.
Pełny tekst źródłaFriend, R. H. "Conjugated polymers. New materials for optoelectronic devices". Pure and Applied Chemistry 73, nr 3 (1.01.2001): 425–30. http://dx.doi.org/10.1351/pac200173030425.
Pełny tekst źródłaSharma, Shweta, Rakshit Ameta, R. K. Malkani i Suresh Ameta. "Photocatalytic degradation of rose Bengal by semiconducting zinc sulphide used as a photocatalyst". Journal of the Serbian Chemical Society 78, nr 6 (2013): 897–905. http://dx.doi.org/10.2298/jsc120716141s.
Pełny tekst źródłaForrest, S. R. "Active optoelectronics using thin-film organic semiconductors". IEEE Journal of Selected Topics in Quantum Electronics 6, nr 6 (listopad 2000): 1072–83. http://dx.doi.org/10.1109/2944.902156.
Pełny tekst źródłaKamiya, Toshio, i Masashi Kawasaki. "ZnO-Based Semiconductors as Building Blocks for Active Devices". MRS Bulletin 33, nr 11 (listopad 2008): 1061–66. http://dx.doi.org/10.1557/mrs2008.226.
Pełny tekst źródłaFortunato, Elvira, Alexandra Gonçalves, António Marques, Ana Pimentel, Pedro Barquinha, Hugo Águas, Luís Pereira i in. "Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices". Materials Science Forum 514-516 (maj 2006): 3–7. http://dx.doi.org/10.4028/www.scientific.net/msf.514-516.3.
Pełny tekst źródłaBakranova, Dina, Bekbolat Seitov i Nurlan Bakranov. "Preparation and Photocatalytic/Photoelectrochemical Investigation of 2D ZnO/CdS Nanocomposites". ChemEngineering 6, nr 6 (9.11.2022): 87. http://dx.doi.org/10.3390/chemengineering6060087.
Pełny tekst źródłaRozprawy doktorskie na temat "Active semiconductors"
Haasmann, Daniel Erwin. "Active Defects in 4H–SiC MOS Devices". Thesis, Griffith University, 2015. http://hdl.handle.net/10072/367037.
Pełny tekst źródłaThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Engineering
Science, Environment, Engineering and Technology
Full Text
Almrabet, Meftah M. "Electrically active defects in novel Group IV semiconductors". Thesis, Sheffield Hallam University, 2006. http://shura.shu.ac.uk/19253/.
Pełny tekst źródłaDoolittle, William Alan. "Fundamental understanding, characterization, passivation and gettering of electrically active defects in silicon". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/15710.
Pełny tekst źródłaHe, Weiwei. "IGBT series connection based on cascade active voltage control with temporary clamp". Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708196.
Pełny tekst źródłaMaës, Clément. "Plasmonique active pour l’infrarouge sur semi-conducteur fortement dopé". Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS033.
Pełny tekst źródłaThe context of my thesis deals with infrared (IR) multispectral imaging and in particular with plasmonics, a field of electromagnetic optics whose the aim is to study and exploit surface waves existing at the interface between a metal and a dielectric. We seek to miniaturize optical functions thanks to nanotechnologies and more precisely to perform IR spectral filtering at the detection pixel level by integrating a nano-resonator. Usually we use dielectrics and metals, but the integration is complex. I am exploring the potential offered by heavily doped semiconductors to replace metals, which could allow better integration into technological processes for fabricate a photodetector or emitter. I use III-V semiconductors, compatible with the epitaxial growth of type 2 superlattice (T2SL) of long wave infrared photodetectors (LWIR). Furthermore, working with a heavily doped semiconductor offers the possibility of modifying the resonance frequency by adjusting the density of free carriers by the action of a potential difference.I study architectures of "GMR" components (Guided-Mode Resonance), usually formed by a waveguide in dielectric, where occurs the resonance, and a grating in dielectric or metal allowing the coupling between the incident or transmitted wave and the guided mode thanks to the ±1 orders diffracted by the grating in the thin layer. The current trend is to integrate these components directly at the level of the detection pixel but at the cost of numerous fabrication steps. I am studying the possibility of using exclusively semiconductors to simplify the fabrication process and allow monolithic integration of the filter into the detector. The waveguide consists of an intrinsic semiconductor and the grating of heavily doped semiconductor. The spectral range of interest is in the far infrared (8 μm - 14 μm).First, theoretical and experimental demonstrations of an all-semiconductor nano-structured spectral filter for infrared based on guided-mode resonance were carried out. I dimensioned and then fabricated a sample where the first step consists in depositing by epitaxy a layer of GaSb and a layer of highly doped InAsSb on a GaAs substrate before a photolithography step to define the mask of the etching reactive ionic etching in order to obtain the diffraction grating. An experimental work then made it possible to characterize the component (measurement under normal incidence, angular study, measurement at low temperature) with in particular the realization of an angular characterization setup.In parallel, I studied an appropriate stack of doped materials allowing, by applying an electrical voltage, to move the free electrons from doping in the grating and the guide, which then locally modifies the refractive index and therefore directly the conditions for guiding the light by phase variation. Different approaches have been presented in an attempt to adjust the resonance wavelength of the GMR spectral filter: accumulation and depletion of charges in the diffraction grating, insertion of a PN junction in the waveguide, ...Finally, a first brick for the integration of a T2SL in an optical nano-resonator to make an all-semiconductor nano-structured photodetector was studied. I proposed the theoretical design of several nano-resonators integrating a T2SL type photodetector (InAs/GaSb). I designed three architectures with distinct spectral properties, which differ in particular in the thickness of the T2SL layer
Hill, Bradford K. Greene Michael E. "A linear CMOS tunable active resistor". Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SPRING/Electrical_and_Computer_Engineering/Thesis/Hill_Bradford_35.pdf.
Pełny tekst źródłaWang, Lei [Verfasser]. "Small molecule organic semiconductors as efficient visible light-active photocatalysts / Lei Wang". Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2017. http://d-nb.info/1225685842/34.
Pełny tekst źródłaToffanin, Stefano. "Multifunctional organic semiconductors as active materials for electronic and opto-electronic devices". Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426094.
Pełny tekst źródłaFin dalla scoperta dell’effetto fotoelettrico nell’antracene, i composti organici sono stati studiati come materiali multifunzionali data la loro capacità di mostrare una varietà di proprietà differenti, come il trasporto di carica, emissione/assorbimento di luce, fotoconduttività, elettroluminescenza e superconduttività. Il lavoro presentato in questa tesi di dottorato si prefigge lo scopo di studiare differenti classi di materiali organici ? coniugati che presentino le proprietà funzionali adatte per la realizzazione di dispositivi optoelettronici. In particolare viene prestata particolare attenzione allo studio di due specifiche proprietà che sono profondamente connesse con l’organizzazione molecolare nei dispositivi multifunzionali con dimensioni nanometriche: il trasporto di carica e l’emissione di luce. Nei film sottili, univocamente considerati interessanti dal punto di vista tecnologico, l’organizzazione molecolare è fortemente dipendente dai processi di deposizione e dalla natura del substrato. Per aumentare le prestazioni dei dispositivi basati sui film sottili risulta fondamentale comprendere le strutture supermolecolari e le caratteristiche morfologiche su scala micro- e nanometrica che possono favorire il trasporto di carica e/o i processi di trasferimento di energia. Si dimostra che in generale gli oligotiofeni lineari depositati in film sottile possano organizzarsi vantaggiosamente in modo da garantire l’opportuna sovrapposizione tra gli orbitali molecolari che permette un efficiente trasporto di carica. Introducendo una nuova classe di oligotiofeni ramificati, denominati spider-like, ci proponiamo di studiare come una complessa architettura 3D possa modificare le proprietà di emissione, di organizzazione supermolecolare e di trasporto. Si procede quindi ad indagare la possibilità di aumentare l’efficienza di emissione di luce di sistemi organici molecolari mediante l’introduzione di un nuovo sistema host-guest con proprietà di lasing ottenuto sublimando un derivato diarilfluorenico (T3, donore) con una noto colorante emettitore nel rosso (DCM, accettare). In questa soluzione solida binaria, si verifica un efficiente trasferimento di energia alla Förster tra la matrice di T3 e le molecole di colorante quando la concentrazione di colorante viene opportunamente ottimizzata. Inoltre, la soglia di emissione spontanea amplificata del campione avente le molecole di DCM disperse al 2% in peso nel T3 risulta quasi un ordine di grandezza più bassa rispetto a quella del campione modello misurato nelle stesse condizioni sperimentali avente la stessa concentrazione in peso si molecole di DCM disperse in una matrice di Alq3. La possibilità di combinare diverse proprietà funzionali in un unico dispositivo risulta di notevole interesse per un ulteriore sviluppo dell’elettronica organica nei componenti integrati e nei circuiti. Si è dimostrato che i transistor organici ad emissione di luce sono capaci di combinare in un singolo dispositivo le proprietà di switch dei transistor ad effetto di campo con la capacità di generare luce. Quando i materiali organici vengono utilizzati come strati attivi nei dispositivi, le interfacce formate dai diversi materiali assumono un ruolo di primaria importanza. La comprensione dei processi fisici che avvengono ad ogni interfaccia è cruciale per disegnare nuovi materiali per dispositivi o per aumentare le prestazioni quelli già esistenti. In questo lavoro di tesi viene presentato un nuovo approccio per realizzare transistor ambipolari ad emissione di luce. Nell’eterogiunzione che viene proposta il primo e il terzo strato sono dedicati al trasporto di portatori di carica (elettroni e lacune) per effetto di campo mentre il secondo strato è formato da una soluzione solida host-guest che mostra efficiente emissione di luce ed emissione spontanea di luce se pompata otticamente. La specificità dell’approccio che presentiamo è che le regioni di trasporto di carica sono fisicamente separate da quella in cui avviene la formazione dell’eccitone. In questo modo viene ridotta completamente l’interazione tra l’eccitone e il portatore di carica. Dopo aver ottimizzato il trasporto di carica e le proprietà di emissione di luce, si è potuto realizzare un dispositivo basato sull’eterogiunzione a tre strati che presenta valori di mobilità per gli elettroni e le lacune bilanciati (~10-1-10-2 cm2/Vs), alta densità di portatori di carica in corrispondenza del massimo di elettroluminescenza (~ 1 KA/cm2) e intensa emissione di luce.
Palakodety, Atmaram Mohanty Saraju. "CMOS active pixel sensors for digital cameras current state-of-the-art /". [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3631.
Pełny tekst źródłaShen, Chao. "Study of CMOS active pixel image sensor on SOI/SOS substrate /". View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202003%20SHEN.
Pełny tekst źródłaIncludes bibliographical references (leaves 67-69). Also available in electronic version. Access restricted to campus users.
Książki na temat "Active semiconductors"
Mitchell, W. S. E. Compendium of active devices. London: Institution of Electrical and Electronic Incorporated Engineers, 1987.
Znajdź pełny tekst źródłaYuan, Fei. CMOS active inductors and transformers: Principle, implementation, and applications. New York: Springer, 2008.
Znajdź pełny tekst źródłaFistulʹ, V. I. Amfoternye primesi v poluprovodnikakh. Moskva: "Metallurgii͡a︡", 1992.
Znajdź pełny tekst źródłaWorkshop on Radiation-Induced and/or Process-Related Electrically Active Defects in Semiconductor-Insulator Systems (2nd 1989 Microelectronics Center of North Carolina). Proceedings from the Second Workshop on Radiation-Induced and/or Process-Related Electrically Active Defects in Semiconductor Systems. Redaktorzy Reisman A, Microelectronics Center of North Carolina., North Carolina State University i University of North Carolina at Charlotte. Research Triangle Park, NC: MCNC, 1989.
Znajdź pełny tekst źródłaW, E. Heraeus Seminar (157th 1996 Bad Honnef Germany). Self-organization in activator-inhibitor-systems: Semiconductors, gas-discharge and chemical active media : contributions to the 157th WE-Heraeus-Seminar, March 4-6, 1996. Berlin: Wissenschaft und technik Verlag, 1996.
Znajdź pełny tekst źródłaInc, Siborg Systems, red. Semiconductor devices explained: Using active simulation. Chichester [England]: J. Wiley, 1999.
Znajdź pełny tekst źródłaGorelikov, Ivan. Hybrid plymer-semiconductor materials optically active in Vis-NIR region. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaIntegrated Photonics Research Topical Meeting. (1991 Monterey, Calif.). Integrated photonics research: Summaries of papers presented at the Integrated Photonics Research Topical Meeting, April 9-11, 1991, Monterey, California ; including Workshop on Active and Passive Fiber Components. Washington, D.C: Optical Society of America, 1991.
Znajdź pełny tekst źródłaOptically Active Charge Traps And Chemical Defects In Semiconducting. Springer International Publishing AG, 2013.
Znajdź pełny tekst źródłaRhodes, R. G., i Heinz K. Henisch. Imperfections and Active Centres in Semiconductors: International Series of Monographs on Semiconductors, Vol. 6. Elsevier Science & Technology Books, 2014.
Znajdź pełny tekst źródłaCzęści książek na temat "Active semiconductors"
Candal, Roberto, i Azael Martínez-de la Cruz. "New Visible-Light Active Semiconductors". W Photocatalytic Semiconductors, 41–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10999-2_2.
Pełny tekst źródłaStroyuk, Oleksandr. "Synthesis of Nanocrystalline Photo-Active Semiconductors". W Lecture Notes in Chemistry, 241–318. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-68879-4_5.
Pełny tekst źródłaNishanthi, S. T., Battula Venugopala Rao i Kamalakannan Kailasam. "Metal-Free Organic Semiconductors for Visible-Light-Active Photocatalytic Water Splitting". W Visible Light-Active Photocatalysis, 329–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527808175.ch12.
Pełny tekst źródłaSpassova, Emily M. "Semiconductor on the Basis of Active ZnO". W Proceedings of the 17th International Conference on the Physics of Semiconductors, 951–53. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4615-7682-2_212.
Pełny tekst źródłaStrijbos, R. C., A. V. Muravjov, J. H. Blok, J. N. Hovenier, J. G. S. Lok, S. G. Pavlov, R. N. Schouten, V. N. Shastin i W. Th Wenckebach. "Active Mode Locking of a P-GE Light-Heavy Hole Band Laser by Electrically Modulating its Gain: Theory and Experiment". W Hot Carriers in Semiconductors, 631–33. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0401-2_145.
Pełny tekst źródłaRink, Klaus, i Wolfgang Jöckel. "New Concepts of High Current Sensing by Using Active Semiconductors for the Energy Management in Automotive Applications". W Advanced Microsystems for Automotive Applications 2012, 27–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29673-4_3.
Pełny tekst źródłaPowell, Richard F. "Semiconductor Diodes". W Testing Active and Passive Electronic Components, 83–101. Boca Raton: Routledge, 2022. http://dx.doi.org/10.1201/9780203737255-7.
Pełny tekst źródłaBezoušek, P. "Modelling of Active Semiconductor Circuit Elements". W Microwave Integrated Circuits, 136–72. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1224-6_3.
Pełny tekst źródłaBen Moshe, Assaf, i Gil Markovich. "Optically Active and Chiral Semiconductor Nanocrystals". W Chiral Nanomaterials: Preparation, Properties and Applications, 85–98. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527682782.ch4.
Pełny tekst źródłaRastelli, Armando, Suwit Kiravittaya i Oliver G. Schmidt. "Growth and control of optically active quantum dots". W Single Semiconductor Quantum Dots, 31–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-87446-1_2.
Pełny tekst źródłaStreszczenia konferencji na temat "Active semiconductors"
Fischer, Anna, Wai Kit Ng, Jakub Dranczewski, Dhruv Saxena, T. V. Raziman, Tobias Farchy, Jonathan Peters i in. "Image sensitive spectral response of semiconductor random network lasers". W Active Photonic Platforms (APP) 2024, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou, 6. SPIE, 2024. http://dx.doi.org/10.1117/12.3028100.
Pełny tekst źródłaHosono, Hideo. "Amorphous Oxide Semiconductor TFTs Toward Memory Application". W 2024 31st International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), 4–5. IEEE, 2024. http://dx.doi.org/10.23919/am-fpd61635.2024.10615885.
Pełny tekst źródłaKazakov, Dmitry, Theodore P. Letsou, Marco Piccardo, Lorenzo Columbo, Massimo Brambilla, Franco Prati, Pawan Ratra i in. "Active nonlinear mid-infrared photonics". W CLEO: Science and Innovations, SM4N.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sm4n.5.
Pełny tekst źródłaTaghinejad, Hossein, i Ali Adibi. "Ultra-miniaturized lateral heterostructures in 2D semiconductors". W Active Photonic Platforms XIII, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2593849.
Pełny tekst źródłaMenon, Vinod M. "Control of light-matter interaction in 2D semiconductors". W Active Photonic Platforms XIII, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2594379.
Pełny tekst źródłaJariwala, Deep. "Strong light-matter coupling in hetero-structures of atomically thin semiconductors". W Active Photonic Platforms XII, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2567587.
Pełny tekst źródłaVasa, P., W. Wang, R. Pomraenke, M. Maiuri, C. Manzoni, G. Cerullo i C. Lienau. "Active plasmonics: merging metals with semiconductors". W SPIE OPTO, redaktorzy Markus Betz, Abdulhakem Y. Elezzabi, Jin-Joo Song i Kong-Thon Tsen. SPIE, 2014. http://dx.doi.org/10.1117/12.2038091.
Pełny tekst źródłaKim, Kwanghyun, Joshua Perkins, Avik Mandal i Behrad Gholipour. "Volatile broadband switchable thermo-optic properties of phase change chalcogenide semiconductors". W Active Photonic Platforms (APP) 2023, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2677104.
Pełny tekst źródłaFoerste, Jonathan, Victor Funk, Johannes Scherzer, Shen Zhao, Alexander Hoegele i Samarth Vadia. "Two-dimensional semiconductors for chiral directionality and electro-optic modulation in photonic systems". W Active Photonic Platforms (APP) 2023, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2023. http://dx.doi.org/10.1117/12.2677335.
Pełny tekst źródłaCojocaru, Crina, Laura Rodríguez-Suné, Michael Scalora, Neset Akozbek, Maria Atonietta Vincenti, Domenico de Ceglia i Jose Trull. "Harmonic generation in the opaque region of semiconductors: the role of the surface and magnetic nonlinearities". W Active Photonic Platforms XII, redaktorzy Ganapathi S. Subramania i Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2567233.
Pełny tekst źródłaRaporty organizacyjne na temat "Active semiconductors"
Nurmikko, Arto V. Optically Active 3-Dimensional Semiconductor Quantum Dot Assemblies in Heterogeneous Nanoscale Hosts. Office of Scientific and Technical Information (OSTI), maj 2017. http://dx.doi.org/10.2172/1355658.
Pełny tekst źródłaWilliam L. Dunn i Douglas McGregor. High-Efficiency Thin-Film-Coated Semiconductor Neutron Detectors for Active Dosimetry Monitors. Office of Scientific and Technical Information (OSTI), grudzień 2009. http://dx.doi.org/10.2172/970981.
Pełny tekst źródłaMetzger, Wyatt K. Photovoltaic Cells Employing Group II-VI Compound Semiconductor Active Layers: Cooperative Research and Development Final Report, CRADA Number CRD-09-325. Office of Scientific and Technical Information (OSTI), wrzesień 2018. http://dx.doi.org/10.2172/1475129.
Pełny tekst źródła