Gotowa bibliografia na temat „Active Matter Physics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Active Matter Physics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Active Matter Physics"
Dauchot, Olivier, i Hartmut Löwen. "Chemical Physics of Active Matter". Journal of Chemical Physics 151, nr 11 (21.09.2019): 114901. http://dx.doi.org/10.1063/1.5125902.
Pełny tekst źródłaSUGI, Takuma, Hiroshi ITO i Ken H. NAGAI. "Pattern Formations in Active Matter Physics". Seibutsu Butsuri 60, nr 1 (2020): 006–12. http://dx.doi.org/10.2142/biophys.60.006.
Pełny tekst źródłaDe Magistris, G., i D. Marenduzzo. "An introduction to the physics of active matter". Physica A: Statistical Mechanics and its Applications 418 (styczeń 2015): 65–77. http://dx.doi.org/10.1016/j.physa.2014.06.061.
Pełny tekst źródłaRamaswamy, Sriram. "Active matter". Journal of Statistical Mechanics: Theory and Experiment 2017, nr 5 (22.05.2017): 054002. http://dx.doi.org/10.1088/1742-5468/aa6bc5.
Pełny tekst źródłaKempf, Felix, Romain Mueller, Erwin Frey, Julia M. Yeomans i Amin Doostmohammadi. "Active matter invasion". Soft Matter 15, nr 38 (2019): 7538–46. http://dx.doi.org/10.1039/c9sm01210a.
Pełny tekst źródłaSugi, Takuma, Hiroshi Ito i Ken H. Nagai. "Collective pattern formations of animals in active matter physics". Biophysics and Physicobiology 18 (2021): 254–62. http://dx.doi.org/10.2142/biophysico.bppb-v18.028.
Pełny tekst źródłaTarantola, Marco, Tim Meyer, Christoph F. Schmidt i Wolfram-Hubertus Zimmermann. "Physics meets medicine - At the heart of active matter". Progress in Biophysics and Molecular Biology 144 (lipiec 2019): 1–2. http://dx.doi.org/10.1016/j.pbiomolbio.2019.03.009.
Pełny tekst źródłaChaté, Hugues. "Dry Aligning Dilute Active Matter". Annual Review of Condensed Matter Physics 11, nr 1 (10.03.2020): 189–212. http://dx.doi.org/10.1146/annurev-conmatphys-031119-050752.
Pełny tekst źródłaDas, Moumita, Christoph F. Schmidt i Michael Murrell. "Introduction to Active Matter". Soft Matter 16, nr 31 (2020): 7185–90. http://dx.doi.org/10.1039/d0sm90137g.
Pełny tekst źródłaFu, Yulei, Hengao Yu, Xinli Zhang, Paolo Malgaretti, Vimal Kishore i Wendong Wang. "Microscopic Swarms: From Active Matter Physics to Biomedical and Environmental Applications". Micromachines 13, nr 2 (13.02.2022): 295. http://dx.doi.org/10.3390/mi13020295.
Pełny tekst źródłaRozprawy doktorskie na temat "Active Matter Physics"
Mahault, Benoît. "Outstanding problems in the statistical physics of active matter". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS250/document.
Pełny tekst źródłaActive matter, i.e. nonequilibrium systems composed of many particles capable of exploiting the energy present in their environment in order to produce systematic motion, has attracted much attention from the statistical mechanics and soft matter communities in the past decades. Active systems indeed cover a large variety of examples that range from biological to granular. This Ph.D. focusses on the study of minimal models of dry active matter (when the fluid surrounding particles is neglected), such as the Vicsek model: point-like particles moving at constant speed and aligning their velocities with those of their neighbors locally in presence of noise, that defines a nonequilibrium universalilty class for the transition to collective motion. Four current issues have been addressed: The definition of a new universality class of dry active matter with polar alignment and apolar motion, showing a continuous transition to quasilong-range polar order with continuously varying exponents, analogous to the equilibrium XY model, but that does not belong to the Kosterlitz-Thouless universality class. Then, the study of the faithfulness of kinetic theories for simple Vicsek-style models and their comparison with results obtained at the microscopic and hydrodynamic levels. Follows a quantitative assessment of Toner and Tu theory, which has allowed to compute the exponents characterizing fluctuations in the flocking phase of the Vicsek model, from large scale numerical simulations of the microscopic dynamics. Finally, the establishment of a formalism allowing for the derivation of hydrodynamic field theories for dry active matter models in three dimensions, and their study at the linear level
Watson, Garrett (Garrett A. ). "A method for detecting nonequilibrium dynamics in active matter". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120209.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Active force generation is an important class of out-of-equilibrium activity in cells. These forces play a crucial role in vital processes such as tissue folding, cell division and intracellular transport. It is important to determine the extent of such nonequilibrium activity during cellular processes to understand cell function. Here we present a framework for measuring nonequilibrium activity in biological active matter using time reversal asymmetry based on the Kullbeck-Leibler Divergence (KLD), also known as relative entropy. We estimate the KLD from a stationary time series using a k-nearest neighbors estimator, comparing the time-forwards process to the time-reversed process Using time series data of probe particles embedded in the actin cortex, we establish a lower bound for the entropy production of cortical activity. Our results demonstrate a reliable way to measure the breaking of detailed balance in mesoscopic systems.
by Garrett Watson.
S.B.
Peng, Chenhui. "ACTIVE COLLOIDS IN ISOTROPIC AND ANISOTROPIC ELECTROLYTES". Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1480622734084146.
Pełny tekst źródłaDell'Arciprete, Dario. "Physics of bacterial microcolonies". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23418.
Pełny tekst źródłaAhmed, Israr. "Mathematical and computational modelling of soft and active matter". Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/18641/.
Pełny tekst źródłaStefferson, Michael W. "Dynamics of Crowded and Active Biological Systems". Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.
Pełny tekst źródłaInteractions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.
Putzig, Elias. "An Exploration of the Phases and Structure Formation in Active Nematic Materials Using an Overdamped Continuum Theory". Thesis, Brandeis University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10620560.
Pełny tekst źródłaActive nematics are a class of nonequilibrium systems which have received much attention in the form of continuum models in recent years. For the dense, highly ordered case which is of particular interest, these models focus almost exclusively on suspensions of active particles in which the flow of the medium plays a key role in the dynamical equations. Many active nematics, however, reside at an interface or on a surface where friction excludes the effects of long-range flow. In the following pages we shall construct a general model which describes these systems with overdamped dynamical equations. Through numerical and analytical investigation we detail how many of the striking nonequilibrium behaviors of active nematics arise in such systems.
We shall first discuss how the activity in these systems gives rise to an instability in the nematic ordered state. This instability leads to phase-separation in which bands of ordered active nematic are interspersed with bands of the disordered phase. We expose the factors which control the density contrast and the stability of these bands through numerical investigation.
We then turn to the highly ordered phase of active nematic materials, in which striking nonequilibrium behaviors such as the spontaneous formation, self-propulsion, and ordering of charge-half defects occurs. We extend the overdamped model of an active nematic to describe these behaviors by including the advection of the director by the active forces in the dynamical equations. We find a new instability in the ordered state which gives rise to defect formation, as well as an analog of the instability which is seen in models of active nematic suspensions. Through numerical investigations we expose a rich phenomenology in the neighborhood of this new instability. The phenomenology includes a state in which the orientations of motile, transient defects form long-range order. This is the first continuum model to contain such a state, and we compare the behavior seen here with similar states seen in the experiments and simulations of Stephen DeCamp and Gabriel Redner et. al. [1]
Finally, we propose the measurement of defect shape as a mechanism for the comparison between continuum theories of active nematics and the experimental and simulated realiza- tions of these systems. We present a method for making these measurements which allows for averaging and statistical analysis, and use this method to determine how the shapes of defects depend on the parameters of our continuum theory. We then compare these with the shapes of defects which we measure in the experiments and simulations mentioned above in order to place these systems in the parameter space of our model. It is our hope that this mechanism for comparison between models and realizations of active nematics will provide a key to pairing the two more closely.
Kyriakopoulos, Nikos. "Flocking in active matter systems : structure and response to perturbations". Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231666.
Pełny tekst źródłaBalin, Andrew. "Statistical mechanics of colloids and active matter in and out of equilibrium". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:2941a082-82ca-400b-ae6b-7c22e75cc90c.
Pełny tekst źródłaCohen, Jack Andrew. "Active colloids and polymer translocation". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e8fd2e5d-f96f-4f75-8be8-fc506155aa0f.
Pełny tekst źródłaKsiążki na temat "Active Matter Physics"
K, Poon W. C., Andelman D. 1955- i Scottish Universities Summer School in Physics (59th : 2004 : Edinburgh, Scotland), red. Soft condensed matter physics in molecular and cell biology. New York: Taylor & Francis, 2006.
Znajdź pełny tekst źródłaJosé, Franco, Ferrini Federico, Tenorio-Tagle G. 1947- i Elba International Physics Center, red. Star formation, galaxies and the interstellar medium: Proceedings of the 4th EIPC Astrophysical Workshop held at the Elba International Physics Center, Marciana Marina, Elba Island, Italy, June 1- 6, 1992. Cambridge: Cambridge University Press, 1993.
Znajdź pełny tekst źródłaservice), SpringerLink (Online, red. Interfacial Processes and Molecular Aggregation of Surfactants. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Znajdź pełny tekst źródłaB, Widom, red. Molecular theory of capillarity. Mineola, N.Y: Dover Publications, 2002.
Znajdź pełny tekst źródłaNishiguchi, Daiki. Order and Fluctuations in Collective Dynamics of Swimming Bacteria: Experimental Exploration of Active Matter Physics. Springer, 2020.
Znajdź pełny tekst źródłaNishiguchi, Daiki. Order and Fluctuations in Collective Dynamics of Swimming Bacteria: Experimental Exploration of Active Matter Physics. Springer Singapore Pte. Limited, 2021.
Znajdź pełny tekst źródłaNishiguchi, Daiki. Order and Fluctuations in Collective Dynamics of Swimming Bacteria: Experimental Exploration of Active Matter Physics. Springer, 2020.
Znajdź pełny tekst źródłaAndelman, David, i W. C. K. Poon. Soft Condensed Matter Physics in Molecular and Cell Biology. Taylor & Francis Group, 2006.
Znajdź pełny tekst źródłaSoft condensed matter physics in molecular and cell biology. Boca Raton: CRC Press, 2005.
Znajdź pełny tekst źródłaAndelman, David, i W. C. K. Poon. Soft Condensed Matter Physics in Molecular and Cell Biology. Taylor & Francis Group, 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Active Matter Physics"
Madejski, Greg. "Black Holes in Active Galactic Nuclei". W Dark Matter in Astro- and Particle Physics, 36–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55739-2_4.
Pełny tekst źródłaLee, Duckhwan, i A. C. Albrecht. "On Global Energy Conservation in Nonlinear Light-Matter Interaction: The Nonlinear Spectroscopies, Active and Passive". W Advances in Chemical Physics, 43–87. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470141410.ch2.
Pełny tekst źródłaDas, Ujjal, i Asim Roy. "Incorporation of Rubidium in the Organic–Inorganic FAPbI3 Structure for Stabilizing the Optically Active Perovskite Phase". W Proceedings of 28th National Conference on Condensed Matter Physics, 71–74. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5407-7_9.
Pełny tekst źródłaSadownik, Alicja R. "Posthumanism: Intra-active Entanglements of Parental Involvement (as a Possibility of Change-Making)". W International Perspectives on Early Childhood Education and Development, 179–89. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-38762-3_11.
Pełny tekst źródłaGroenewegen, Maartje, Dimo Stoyanov, Dirk Deichmann i Aart van Halteren. "Connecting with Active People Matters: The Influence of an Online Community on Physical Activity Behavior". W Lecture Notes in Computer Science, 96–109. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35386-4_8.
Pełny tekst źródłaStouvenakers, Gilles, Peter Dapprich, Sebastien Massart i M. Haïssam Jijakli. "Plant Pathogens and Control Strategies in Aquaponics". W Aquaponics Food Production Systems, 353–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15943-6_14.
Pełny tekst źródłaLockner, Yannik, Paul Buske, Maximilian Rudack, Zahra Kheirandish, Moritz Kröger, Stoyan Stoyanov, Seyed Ruhollah Dokhanchi i in. "Improving Manufacturing Efficiency for Discontinuous Processes by Methodological Cross-Domain Knowledge Transfer". W Internet of Production, 1–33. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-98062-7_8-1.
Pełny tekst źródłaSabass, Benedikt, Roland G. Winkler, Thorsten Auth, Jens Elgeti, Dmitry A. Fedosov, Marisol Ripoll, Gerard A. Vliegenthart i Gerhard Gompper. "Computational Physics of Active Matter". W Out-of-equilibrium Soft Matter, 354–90. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839169465-00354.
Pełny tekst źródłaGolestanian, Ramin. "Phoretic Active Matter". W Active Matter and Nonequilibrium Statistical Physics, 230–93. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192858313.003.0008.
Pełny tekst źródłaBerthier, Ludovic, i Jorge Kurchan. "Active Systems". W Active Matter and Nonequilibrium Statistical Physics, 540–90. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780192858313.003.0015.
Pełny tekst źródłaStreszczenia konferencji na temat "Active Matter Physics"
Ramaswamy, Sriram, Alka B. Garg, R. Mittal i R. Mukhopadhyay. "Active Matter: Liquid-Crystal Hydrodynamics With a Difference". W SOLID STATE PHYSICS, PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3605730.
Pełny tekst źródłaBerta, Šimon, Vladimír Goga, Ladislav Šarkán i Justín Murín. "Active vibration damping of aluminum beam using piezoelectric actuator". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0135921.
Pełny tekst źródłaShinde, Anand, Pratik Rasne, Rajkumar Patil i Ghanashyam Chendake. "Quarter car active suspension system using fuzzy linear quadratic regulator controller". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0130932.
Pełny tekst źródłaNemec, Pavol, Ivan Hotový, Robert Andok i Ivan Kostič. "Comparison of TiO2 active area of gas sensors enhanced by annealing and RIE etching". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5119484.
Pełny tekst źródłaArya, Kriti, i Amit Singh. "Mixture active strain hyperelastic constitutive model of skeletal muscle contraction with loss of muscle mass". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0127773.
Pełny tekst źródłaMao, Tso-Yen, Chiu-Min Hsu, Ya-Lan Yang, Su-Hsiang Lee i Wei-Hsun Hsu. "Establishing a ROC curve model by body composition to predict active aging in the community care center elderly". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0117376.
Pełny tekst źródłaNemec, Pavol, Ivan Hotovy, Vlastimil Rehacek i Robert Andok. "TiO2 sensoric structures with controlled extension of their active area by electron-beam lithography and reactive ion etching techniques". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2021). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0067745.
Pełny tekst źródłaMilitello, Valeria. "Active site conformation in the αH87G mutant hemoglobin: An optical absorption and FTIR study". W Fifth scientific conference on nuclear and condensed matter physics. AIP, 2000. http://dx.doi.org/10.1063/1.1303356.
Pełny tekst źródłaMishra, Ashok Kumar, i Satya Prakash Tiwari. "Biologically active compounds to develop bioelectronics and bio photonics". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5032819.
Pełny tekst źródłaSingh, Satya Pal. "Synthesis of regular porous nanomaterials using chemically active surfaces". W 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001592.
Pełny tekst źródłaRaporty organizacyjne na temat "Active Matter Physics"
Avnimelech, Yoram, Richard C. Stehouwer i Jon Chorover. Use of Composted Waste Materials for Enhanced Ca Migration and Exchange in Sodic Soils and Acidic Minespoils. United States Department of Agriculture, czerwiec 2001. http://dx.doi.org/10.32747/2001.7575291.bard.
Pełny tekst źródłaChamovitz, Daniel, i Albrecht Von Arnim. Translational regulation and light signal transduction in plants: the link between eIF3 and the COP9 signalosome. United States Department of Agriculture, listopad 2006. http://dx.doi.org/10.32747/2006.7696515.bard.
Pełny tekst źródłaBarg, Rivka, Erich Grotewold i Yechiam Salts. Regulation of Tomato Fruit Development by Interacting MYB Proteins. United States Department of Agriculture, styczeń 2012. http://dx.doi.org/10.32747/2012.7592647.bard.
Pełny tekst źródła