Gotowa bibliografia na temat „Acoustic wave control in water”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Acoustic wave control in water”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Acoustic wave control in water"
Norris, Andrew, Alexey S. Titovich i Michael Haberman. "Acoustic wave control with cylindrical metamaterial elements in water". Journal of the Acoustical Society of America 138, nr 3 (wrzesień 2015): 1733. http://dx.doi.org/10.1121/1.4933459.
Pełny tekst źródłaSISOMBAT, Félix, Thibaut DEVAUX, Samuel CALLé i Lionel HAUMESSER. "Acoustic reflector remotely tunable by the acoustic radiation force". INTER-NOISE and NOISE-CON Congress and Conference Proceedings 270, nr 4 (4.10.2024): 7893–98. http://dx.doi.org/10.3397/in_2024_4019.
Pełny tekst źródłaHe, Jiahuan, Wei Zhang, Dan Zhao, Nong Li, Qiang Kang, Kunpeng Cai, Li Wang i in. "Numerical Simulation Analysis of Control Factors on Acoustic Velocity in Carbonate Reservoirs". Minerals 14, nr 4 (19.04.2024): 421. http://dx.doi.org/10.3390/min14040421.
Pełny tekst źródłaKos̆tial, Pavol. "Surface acoustic wave control of the ion concentration in water". Applied Acoustics 41, nr 2 (1994): 187–93. http://dx.doi.org/10.1016/0003-682x(94)90068-x.
Pełny tekst źródłaKozaczka, Eugeniusz, Jacek Domagalski, Grażyna Grelowska i Ignacy Gloza. "Identification of hydro-acoustic waves emitted from floating units during mooring tests". Polish Maritime Research 14, nr 4 (1.10.2007): 40–46. http://dx.doi.org/10.2478/v10012-007-0038-5.
Pełny tekst źródłaAnisimkin, Vladimir, Vladimir Kolesov, Anastasia Kuznetsova, Elizaveta Shamsutdinova i Iren Kuznetsova. "An Analysis of the Water-to-Ice Phase Transition Using Acoustic Plate Waves". Sensors 21, nr 3 (29.01.2021): 919. http://dx.doi.org/10.3390/s21030919.
Pełny tekst źródłaLi, Qi, Ke Wu i Mingquan Zhang. "Two-Dimensional Composite Acoustic Metamaterials of Rectangular Unit Cell from Pentamode to Band Gap". Crystals 11, nr 12 (25.11.2021): 1457. http://dx.doi.org/10.3390/cryst11121457.
Pełny tekst źródłaKnight, Rosemary, Jack Dvorkin i Amos Nur. "Acoustic signatures of partial saturation". GEOPHYSICS 63, nr 1 (styczeń 1998): 132–38. http://dx.doi.org/10.1190/1.1444305.
Pełny tekst źródłaMemon, Maria Muzamil, Qiong Liu, Ali Manthar, Tao Wang i Wanli Zhang. "Surface Acoustic Wave Humidity Sensor: A Review". Micromachines 14, nr 5 (27.04.2023): 945. http://dx.doi.org/10.3390/mi14050945.
Pełny tekst źródłaM’zoughi, Fares, Izaskun Garrido, Aitor J. Garrido i Manuel De La Sen. "Rotational Speed Control Using ANN-Based MPPT for OWC Based on Surface Elevation Measurements". Applied Sciences 10, nr 24 (16.12.2020): 8975. http://dx.doi.org/10.3390/app10248975.
Pełny tekst źródłaRozprawy doktorskie na temat "Acoustic wave control in water"
Kourchi, Hasna. "Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Pełny tekst źródłaA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Awodele, M. Kofoworola. "Control of charge transports in semiconductor superlattices using an acoustic wave". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16738.
Pełny tekst źródłaTurnbull, Katharine Frances Vogan. "A surface acoustic wave frost point hygrometer for measurements of atmospheric water vapour". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.619580.
Pełny tekst źródła葉子良 i Tsz-leung Yip. "Active water-wave control by a submerged pitching plate". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B31237976.
Pełny tekst źródłaYip, Tsz-leung. "Active water-wave control by a submerged pitching plate /". Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19003067.
Pełny tekst źródłaEden, L. "Measurements of atmospheric water vapour using a balloon-borne surface acoustic wave frost point hygrometer". Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598746.
Pełny tekst źródłaChen, Feng. "Effect of mesoscale variability of water masses on acoustic wave propagation in a shallow sea". Thesis, University of Plymouth, 2015. http://hdl.handle.net/10026.1/3219.
Pełny tekst źródłaBuck, John R. (John Richard). "Single mode excitation in the shallow water acoustic channel using feedback control". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/40604.
Pełny tekst źródłaLópez, Ríos Juan Carlos. "Water-wave equations and free boundary problems: inverse problems and control". Tesis, Universidad de Chile, 2015. http://repositorio.uchile.cl/handle/2250/135179.
Pełny tekst źródłaEn este trabajo se aborda el problema de existencia de algunos tipos de soluciones para las ecuaciones de ondas en el agua así como la relación que existe entre estas soluciones y la forma de un fondo impermeable sobre la que se desliza el fluido. Empezamos por describir las ecuaciones que modelan el fenómeno físico a partir de las leyes de conservación; el modelo general de las ecuaciones de ondas en el agua, escrito para la restricción de la velocidad potencial a la superficie libre, es \begin{equation*} \left\{ \begin{aligned} &\partial_t\zeta-G(\zeta,b)\psi=0, \\ &\partial_t\psi+g\zeta+\frac{1}{2}|\nabla_X\psi|^2-\frac{1}{2(1+|\nabla_X\zeta|^2)}(G(\zeta,b)\psi+\nabla_X\zeta\cdot\nabla_X\psi)^2=0, \end{aligned} \right. \end{equation*} donde $G=G(\zeta,b)\psi$ es el operador Dirichlet-Neumann, el cual contiene la información del fondo $b$, \begin{equation*} G(\zeta,b)\psi:=-\sqrt{1+|\nabla_X\zeta|^2}\partial_n\phi|_{y=\zeta(t,X)}, \end{equation*} y \begin{equation*} \left\{ \begin{array}{rl} & \Delta\phi=0, \quad \R\times(b,\zeta), \\ & \phi|_{y=\zeta}=\psi, \quad \partial_n \phi|_{y=b(X)}=0. \end{array} \right. \end{equation*} Después de describir las condiciones para un teorema de existencia y unicidad de soluciones de las ecuaciones de ondas en el agua, en espacios de Sobolev, nos preguntamos sobre el mínimo de datos necesarios, sobre la superficie libre, para identificar el fondo de manera única. Por la relación que existe entre el operador Dirichlet-Neumann y la velocidad dentro del fluido y utilizando la propiedad de continuación única de las funciones armónicas hemos probado que basta conocer el perfil, la velocidad potencial y la velocidad normal en un instante de tiempo dado y un abierto de $\R$, aún cuando nuestro sistema es de evolución. En la segunda parte se estudia la existencia de soluciones en forma de salto hidráulico para las ecuaciones estacionarias de ondas en el agua, en dimensión dos y su relación con la velocidad aguas arriba, caracterizada por un parámetro adimensional, llamado el número de Froude, $F$, como consecuencia de la existencia de ramas de bifurcación de la solución trivial para el problema \begin{equation*} \mathcal{F}(\eta,F)=\eta+F\widetilde{\psi}_{y^{\prime }}+\frac{\epsilon}{2}(% \widetilde{\psi}_{x^{\prime }}^2+\widetilde{\psi}_{y^{\prime }}^2)-\epsilon^2\eta_x\widetilde{\psi}_{x^{\prime }}\widetilde{\psi}% _{y^{\prime }}+\frac{\epsilon^3}{2}\eta_x^2\widetilde{\psi}_{y^{\prime }}^2; \end{equation*} donde \begin{equation*} \left\{ \begin{aligned} &\Delta\widetilde{\psi}=\epsilon G, && (-L,L)\times(0,1), \\ &\widetilde{\psi}_{x'}=0, && x'=-L,L, \\ &\widetilde{\psi}=0, && y'=0, \\ &\widetilde{\psi}=-F\eta, && y'=1. \end{aligned} \right. \end{equation*}
Dungan, Mary Elizabeth. "Development of a compact sound source for the active control of turbofan inlet noise /". This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-03302010-020615/.
Pełny tekst źródłaKsiążki na temat "Acoustic wave control in water"
Reddy, J. N. Water absorption studies on polymer coated piezoelectriccrystaland surface acoustic wave devices. Manchester: UMIST, 1994.
Znajdź pełny tekst źródłaUnited States. Environmental Protection Agency. Office of Water, red. WAVE, water management for the 21st century. [Washington, DC]: U.S. Environmental Protection Agency, Office of Water, 1999.
Znajdź pełny tekst źródłaHeadrick, Robert Hugh. Analysis of Internal Wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. Springfield, Va: Available from National Technical Information Service, 1997.
Znajdź pełny tekst źródłaBuck, John R. Single mode excitation in the shallow water acoustic channel using feedback control. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1996.
Znajdź pełny tekst źródłaFrisk, George V. Report on the Office of Naval Research Shallow Water Acoustics Workshop: April 24-26, 1991. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1992.
Znajdź pełny tekst źródłaAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Znajdź pełny tekst źródłaAhrens, John. Irregular wave overtopping of seawall/revetment configurations, Roughans Point, Massachusetts: Experimental model study. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1986.
Znajdź pełny tekst źródłaZhou, Xiaoming, i Gengkai Hu. Acoustic Metamaterials and Wave Control. World Scientific Publishing Co Pte Ltd, 2018.
Znajdź pełny tekst źródłaKorde, Umesh A., i John V. Ringwood. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Znajdź pełny tekst źródłaRingwood, John, i Umesh A. Korde. Hydrodynamic Control of Wave Energy Devices. Cambridge University Press, 2016.
Znajdź pełny tekst źródłaCzęści książek na temat "Acoustic wave control in water"
Stone, Austen, Timothy Waters i Jennifer Muggleton. "Focussing Acoustic Waves with Intent to Control Biofouling in Water Pipes". W Mechanisms and Machine Science, 1059–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15758-5_109.
Pełny tekst źródłaLin, Hejie, Turgay Bengisu i Zissimos P. Mourelatos. "Derivation of Acoustic Wave Equation". W Lecture Notes on Acoustics and Noise Control, 27–48. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_2.
Pełny tekst źródłaLin, Hejie, Turgay Bengisu i Zissimos P. Mourelatos. "Solutions of Acoustic Wave Equation". W Lecture Notes on Acoustics and Noise Control, 49–79. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-88213-6_3.
Pełny tekst źródłaNayfeh, Adnan H. "Acoustic Wave Reflection from Water/Laminated Composite Interfaces". W Review of Progress in Quantitative Nondestructive Evaluation, 1119–28. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1893-4_128.
Pełny tekst źródłaKurosawa, Minoru Kuribayashi. "Surface Acoustic Wave Motor Modeling and Motion Control". W Next-Generation Actuators Leading Breakthroughs, 7–18. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-991-6_2.
Pełny tekst źródłaHoskin, R. E., B. M. Count, N. K. Nichols i D. A. C. Nicol. "Phase Control for the Oscillating Water Column". W Hydrodynamics of Ocean Wave-Energy Utilization, 257–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82666-5_22.
Pełny tekst źródłaRajan, Subramaniam D., i George V. Frisk. "The Effect of Seasonal Temperature Fluctuations in the Water Column on Sediment Compressional Wave Speed Profiles in Shallow Water". W Ocean Variability & Acoustic Propagation, 69–80. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3312-8_5.
Pełny tekst źródłaUscinski, B. J. "Acoustic Scattering in Wave-Covered Shallow Water. The Coherent Field". W Impact of Littoral Environmental Variability of Acoustic Predictions and Sonar Performance, 329–36. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0626-2_41.
Pełny tekst źródłaVolkov, Grigory A., Aleksey A. Gruzdkov i Yuri V. Petrov. "A Randomized Approach to Estimate Acoustic Strength of Water". W Mechanics and Control of Solids and Structures, 633–40. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93076-9_30.
Pełny tekst źródłaSantiago, J. A. F., i L. C. Wrobel. "Boundary Element Method for Two-Dimensional Shallow Water Acoustic Wave Propagation". W IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method, 281–92. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9793-7_24.
Pełny tekst źródłaStreszczenia konferencji na temat "Acoustic wave control in water"
Yun, Gu Qiu, Hu HaoHao, Wang Biao, Zhu RuiQi, Wang Kang i Zuo Wang. "Vibro-Acoustic Characteristics of Ribbed Cylindrical Shells in Shallow Water Based on Wave Superposition". W 2024 OES China Ocean Acoustics (COA), 1–8. IEEE, 2024. http://dx.doi.org/10.1109/coa58979.2024.10723699.
Pełny tekst źródłaMokhtari, Alireza, i Vijay Chatoorgoon. "Study of Wall Thickness and Material Effect on Acoustic Wave Propagation in Water-Filled Piping". W ASME 2012 Noise Control and Acoustics Division Conference at InterNoise 2012. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ncad2012-1131.
Pełny tekst źródłaBender, Florian, Fabien Josse, Rachel E. Mohler i Antonio J. Ricco. "Design of SH-surface acoustic wave sensors for detection of ppb concentrations of BTEX in water". W 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702067.
Pełny tekst źródłaSracic, Michael W., Jordan D. Petrie, Henry A. Moroder, Ryan T. Koniecko, Andrew R. Abramczyk i Kamlesh Suthar. "Acoustic Pressure Fields Generated With a High Frequency Acoustic Levitator". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71849.
Pełny tekst źródłaCai, Feyan, Hairong Zheng, Zhaojian He, Zhengyou Liu i Ji Wang. "Off-axis directional acoustic wave beaming control by an asymmetric rubber heterostructures film deposited on steel plate in water". W 2009 IEEE International Ultrasonics Symposium. IEEE, 2009. http://dx.doi.org/10.1109/ultsym.2009.5441953.
Pełny tekst źródłaFriedt, J. M., L. El Fissi, F. Cherioux, B. Guichardaz, V. Blondeau-Patissier i S. Ballandras. "Design and Use of Wafer Level Fluidic Packaging for Surface Acoustic Wave Sensors". W 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319099.
Pełny tekst źródłaDunham, Eric M., Junwei Zhang i Dan Moos. "Constraints on Pipe Friction and Perforation Cluster Efficiency from Water Hammer Analysis". W SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/212337-ms.
Pełny tekst źródłaAndrienko, Yu A. "Generation of focused shock waves in medicine using lasers". W The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf22.
Pełny tekst źródłaGupta, Samikhshak, i Vijaya V. N. Sriram Malladi. "Utilizing Steady-State Traveling Waves in a Quiescent Water Environment for Particle Propulsion". W ASME 2024 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/smasis2024-140461.
Pełny tekst źródłaWang, Y. Jenny, i Brian W. Anthony. "Using Local Concentration to Model the Progress of Acoustophoretic Assembly of Microspheres in Planar Standing Waves". W ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112310.
Pełny tekst źródłaRaporty organizacyjne na temat "Acoustic wave control in water"
Yamamoto, Tokuo. Models of Acoustic Wave Scattering at 0.2-10 kHz From Turbulence in Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2008. http://dx.doi.org/10.21236/ada533110.
Pełny tekst źródłaOrr, Marshall H. The Influence of the Shallow Water Internal Wave Field on the Properties of Acoustic Signals. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1997. http://dx.doi.org/10.21236/ada629255.
Pełny tekst źródłaGodin, Oleg A., i Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2006. http://dx.doi.org/10.21236/ada613572.
Pełny tekst źródłaGodin, Oleg A., i Alexander G. Voronovich. Multiple Scattering of Sound by Internal Waves and Acoustic Characterization of Internal Wave Fields in Deep and Shallow Water. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2007. http://dx.doi.org/10.21236/ada541756.
Pełny tekst źródłaYamamoto, Tokuo. Measurement and Modeling of Low Frequency Acoustic Wave Propagation and Scattering in Shallow Water with Comprehensive Subbottom Structure Measurements. Fort Belvoir, VA: Defense Technical Information Center, luty 1996. http://dx.doi.org/10.21236/ada305049.
Pełny tekst źródłaKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer, Kenneth D. Ham i Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), kwiecień 2012. http://dx.doi.org/10.2172/1042547.
Pełny tekst źródłaKhan, Fenton, Gary E. Johnson, Ida M. Royer, Nathan RJ Phillips, James S. Hughes, Eric S. Fischer i Gene R. Ploskey. Acoustic Imaging Evaluation of Juvenile Salmonid Behavior in the Immediate Forebay of the Water Temperature Control Tower at Cougar Dam, 2010. Office of Scientific and Technical Information (OSTI), październik 2011. http://dx.doi.org/10.2172/1029871.
Pełny tekst źródłaWadman, Heidi, i Jesse McNinch. Use of chirp sub-bottom acoustics to assess integrity of water-control structures : Inner Harbor Navigation Canal Lock, New Orleans. Engineer Research and Development Center (U.S.), wrzesień 2024. http://dx.doi.org/10.21079/11681/49198.
Pełny tekst źródłaPosacka, Anna, i Peter Ross. Tackling microfibre pollution through science, policy, and innovation: A framework for Canadian leadership. Raincoast Conservation Foundation, listopad 2024. http://dx.doi.org/10.70766/47.9973.
Pełny tekst źródłaO'Connell, Kelly, David Burdick, Melissa Vaccarino, Colin Lock, Greg Zimmerman i Yakuta Bhagat. Coral species inventory at War in the Pacific National Historical Park: Final report. National Park Service, 2024. http://dx.doi.org/10.36967/2302040.
Pełny tekst źródła