Gotowa bibliografia na temat „ABRASIVE JET MACHINING”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „ABRASIVE JET MACHINING”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "ABRASIVE JET MACHINING"
Madhu, S., i M. Balasubramanian. "A Review on Abrasive Jet Machining Process Parameters". Applied Mechanics and Materials 766-767 (czerwiec 2015): 629–34. http://dx.doi.org/10.4028/www.scientific.net/amm.766-767.629.
Pełny tekst źródłaArivazhagan, R., C. Dominic Savio, K. Aakash, M. Ahamed Abuthahir i C. Ganesh. "An Investigation on Cut Quality of Aluminum Matrix Composites Cut by Abrasive Waterjet". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 535–43. http://dx.doi.org/10.22214/ijraset.2022.41263.
Pełny tekst źródłaKURIYAGAWA, Tsunemoto, Norio YOSHIDA i Katsuo SYOJI. "Machining Characteristics of Abrasive Jet Machining." Journal of the Japan Society for Precision Engineering 64, nr 6 (1998): 881–85. http://dx.doi.org/10.2493/jjspe.64.881.
Pełny tekst źródłaLiu, Zeng Wen, i R. Y. Liu. "Study on Pre-Mixed Micro Abrasive Water Jet Machining System". Applied Mechanics and Materials 618 (sierpień 2014): 475–79. http://dx.doi.org/10.4028/www.scientific.net/amm.618.475.
Pełny tekst źródłaGrover, Punit, Sanjay Kumar i Qasim Murtaza. "Study of Aluminum Oxide Abrasive on Tempered Glass in Abrasive Jet Machining Using Taguchi Method". International Journal of Advance Research and Innovation 2, nr 1 (2014): 201–5. http://dx.doi.org/10.51976/ijari.211432.
Pełny tekst źródłaJanković, Predrag, Miroslav Radovanović, Oana Dodun, Miloš Madić i Dušan Petković. "Aspects of Machining Parameter Effect on Cut Quality in Abrasive Water Jet Cutting". Applied Mechanics and Materials 809-810 (listopad 2015): 201–6. http://dx.doi.org/10.4028/www.scientific.net/amm.809-810.201.
Pełny tekst źródłaSreekesh, K., i P. Govindan. "Experimental Investigation and Analysis of Abrasive Water-Jet Machining Process". Asian Review of Mechanical Engineering 2, nr 2 (5.11.2013): 42–48. http://dx.doi.org/10.51983/arme-2013.2.2.2347.
Pełny tekst źródłaWang, Hongqi, Ruifu Yuan, Xinmin Zhang, Penghui Zai i Junhao Deng. "Research Progress in Abrasive Water Jet Processing Technology". Micromachines 14, nr 8 (29.07.2023): 1526. http://dx.doi.org/10.3390/mi14081526.
Pełny tekst źródłaTsai, Feng Che, Yann Long Lee i Ju Chun Yeh. "The technical development of titanium alloy surface process using electrochemical abrasive jet machining". Industrial Lubrication and Tribology 70, nr 8 (12.11.2018): 1545–51. http://dx.doi.org/10.1108/ilt-05-2017-0119.
Pełny tekst źródłaKurbegovic, Ramiz, i Mileta Janjic. "Jet lagging in abrasive water jet cutting of high-speed tool steel". IMK-14 - Istrazivanje i razvoj 27, nr 2 (2021): 73–80. http://dx.doi.org/10.5937/imk2102073k.
Pełny tekst źródłaRozprawy doktorskie na temat "ABRASIVE JET MACHINING"
Bui, Van Hung. "Strategies in 3 and 5-axis abrasive water jet machining of titanium alloys". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30218.
Pełny tekst źródłaTitanium alloy is generally used for aeronautical structural parts having a large size and as thin walls while having to withstand considerable effort. Machining these parts is difficult with conventional methods such as milling, because the high cutting forces can easily deform the part. Machining of titanium alloy (Ti6Al4V) by an abrasive water jet (AWJ) process can potentially be used to replace conventional machining methods. However, the understanding of the different aspects of this process is insufficient to allow its industrialization. This thesis presents a model of prediction of the machined depth in two cases of direction of the jet: a jet perpendicular to the surface of the part and an inclined jet. At first, the understanding of the removal material process and the obtained surface quality is studied through the observation of the influence of the process parameters. In a second step, a model based on the Gaussian distribution of abrasive particles in the water jet is proposed to characterize an elementary pass and to predict the pocket bottom profile obtained by a succession of elementary passes. Then, a method to machine pocket corners using an adaptive control of the feed rate is presented. Finally, a new model of the pocket bottom profile taking into account the angle of inclination of the jet is presented. Throughout this thesis work, the experimental validation showed a good agreement between the measured and modeled values and thus demonstrated the ability of the abrasive water jet milling to machine to a controlled depth
Cortés, Rodríguez Carlos Julio [Verfasser]. "Cutting edge preparation of precision cutting tools by applying micro-abrasive jet machining and brushing / Carlos Julio Cortés Rodríguez". Kassel : Kassel University Press, 2009. http://d-nb.info/1007184876/34.
Pełny tekst źródłaZhong, Yu Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "A study of the cutting performance in multipass abrasive waterjet machining of alumina ceramics with controlled nozzle oscillation". Publisher:University of New South Wales. Mechanical & Manufacturing Engineering, 2008. http://handle.unsw.edu.au/1959.4/41216.
Pełny tekst źródłaDoležal, Václav. "Návrh technologie výroby tvarového víka". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2013. http://www.nusl.cz/ntk/nusl-230851.
Pełny tekst źródłaBrym, Radek. "Trendy vývoje obrábění vodním paprskem". Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228165.
Pełny tekst źródłaHejjaji, Akshay Amaranath. "Abrasive waterjet milling of CFRP composites and its influence on the mechanical behavior and patch adhesion intended for repair application". Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30235.
Pełny tekst źródłaControlled depth milling of carbon fiber reinforced plastic (CFRP) composites by abrasive water jet (AWJ) process is a recent advancement which can potentially be used for repairing composite structures. Aircraft composite structural repair is a costly affair owing to stringent requirements of skilled labor, time and regulatory certifications. Presently the aircraft maintenance industry lacks a reliable machining process for repair procedure. In comparison with conventional machining process AWJ milling could be a major advantage in the favor of the aircraft maintenance industry. However, knowledge on many aspects of this process is inadequate for reliable industrialization. Hence, this thesis focuses on narrowing this research gap by defining three objectives. Firstly, understanding the machinability of CFRPs, for this, the influence of process parameters on material removal rate, surface quality and nature and size of defects are studied. The machining quality is benchmarked using the traditional surface roughness criterion and a newly proposed criterion crater volume 'Cv' based on the quantification of the crater defects. The newly proposed machined surface quality criterion clears all the ambiguity that was previously present with the usage of surface roughness criterion. Secondly, the influence of machined surface quality and defects on static tensile and tension-tension fatigue behavior is studied for specimens with varying nature and levels of machining induced defects. The tensile strength and the endurance limits of various specimens are correlated with machining quality (Ra and Cv). The damage initiation and progression during loading and the role of defects in the promotion of the damage is studied using techniques like acoustic emission, thermography and X-ray tomography. Finally, the influence of machining quality on the quality of repair patch adhesion is examined by performing tensile tests on the specimens milled and bonded using an epoxy adhesive with new CFRP plies. These studies aid the industrial community to ascertain the usability of AWJ milling for composite repair and lay a strong foundation for industrialization of the AWJ milling process
VIVEK, AAMERIA. "ABRASIVE JET MACHINING ON TEMPERED GLASS USING SILICON CARBIDE ABRASIVES". Thesis, 2013. http://dspace.dtu.ac.in:8080/jspui/handle/repository/15697.
Pełny tekst źródłaTsai, Feng-Che, i 蔡逢哲. "A Study on Abrasive Jet Technology for Micro-Machining". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/60284237450862631366.
Pełny tekst źródła國立中央大學
機械工程研究所
96
This study introduces an Abrasive Jet Polishing (AJP) technique to improve the polishing performance. Furthermore, a Gas Atomization technique is employed to fabricate Wax-coated #3000SiC particles, investigations to establish the optimal AJP parameters for the surface finishing of different SKD61 mold steel specimens shape and processed. Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of SKD61 mold steel specimens. Using #2000SiC particles were mixed with water wax and pure water in a ratio of 500: 1000: 1500 (Water Wax: SiC particles: Pure Water). Following 90 minutes of blasting, the surface roughness is improved from an initial value of 7.74 μm Rmax to 0.45 μm Rmax, thereby obtain a mirror-like surface finish. AJP polishing of the micro-grooving SKD61 surface, Linear type micro-channel SKD61 surface and Curvee type micro-channel SKD61 surface using #3000SiC particles mixed with water wax and pure water in the ratio 500:1000:1500 (Water Wax: SiC particles: Water) reduces the surface roughness from an initial value of Rmax = 2.32 μm, Rmax = 3.45 μm and Rmax = 3.58 μm to a final value of Rmax = 0.40 μm, Rmax = 0.43 μm and Rmax = 0.45 μm within 30 minutes, 60 minutes and 60 minutes, respectively. Gas Atomization system used in this study to fabricate the Wax-coated #3000SiC particles. AJP polishing of the ground SKD61 surface using wax-coated #3000SiC particles mixed with water wax and pure water in the ratio 500: 1000: 1500 (Water Wax: SiC particles: Water) reduces the surface roughness from an initial value of Rmax = 3.26 μm to a final value of Rmax = 0.31 μm within 45 minutes. In addition, using wax-coated #3000SiC particles of the micro-grooving SKD61 surface, Linear type micro-channel SKD61 surface and Curvee type micro-channel SKD61 surface reduces, the surface roughness from an initial value of Rmax = 2.32 μm, Rmax = 3.45 μm and Rmax = 3.58 μm to a final value of Rmax = 0.31 μm, Rmax = 0.35 μm and Rmax = 0.40 μm within 30 minutes, 60 minutes and 75 minutes, respectively. Overall, the results show that the use of wax-coated abrasive particles reduces the polishing time and achieves an improved surface finish.
Chao, Tseng-Min, i 趙曾民. "Abrasive jet machining of micro-hole array on brittle materials". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/y8yn3n.
Pełny tekst źródła淡江大學
機械與機電工程學系碩士班
104
Brittle materials such as glasses, silicon, silicon carbide are normally categorized as difficult to machine materials for its high hardness and brittleness s. However, they have attracted more and more attentions and been playing critical roles in many scientific/engineering applications for their advanced physic/optical/electronic properties. Micro-patterns such as micro-hole (array) of various sizes and shapes are frequently required to be generated on brittle materials. Many researchers have tried different approaches such as laser ablation, ultrasonic machining, rotary ultrasonic machining…. to produce micro-hole in brittle materials. This research applied abrasive jet machining to fabricate micro-hole array on glass. Efforts have been made to investigated the effect of grit-size, stand-off distance, pressure, scanning speed on the material removal rate and the obtained hole accuracy. Micro-holes of various shapes and with characteristic dimension ranged from 0.2mm to 2mm are successfully produced in glass plate of 0.4mm thickness.
Chi, Hou-Jen, i 紀厚任. "Investigation of AWJ(Abrasive-Water-Jet) Machining of Brittle Materials". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/38366447693230840292.
Pełny tekst źródła淡江大學
機械與機電工程學系碩士班
100
Water abrasive jet (WAJ) is regarded as one of the very effective ways of machining difficult-to-machine materials such as steel, titanium alloys, composite and ceramic materials. Its applications can range from cutting/dicing/drilling when applying the AWJ with a high impact angle to micro-cutting/polishing/cleaning where the impact angle is kept very low. This research aimed to study the feasibility of using AWJ to cut the chemically toughened cover glasses and to polish the precision ground tungsten carbide (WC) materials. Alumina (Al2O3) and silicon carbide (SiC) particles of various sizes were used as the abrasives. Chemically toughened Gorilla (Corning) glass and WC of different cobalt concentrations were the tested materials. It is founded that, owing to the different removal rate between Co and WC, surface roughness of precision ground WC specimen of high Co concentration (18%) is more difficult to be improved than those of lower Co concentration (0~3%). SiC abrasives, having the higher hardness value, can achieve better material removal than Al2O3. As to the AWJ dicing process, a novel laser/AWJ hybrid dicing process where using laser to penetrate the toughened layer and AWJ to finish the dicing process was proposed and verified in this study.
Książki na temat "ABRASIVE JET MACHINING"
Momber, Andreas W., i Radovan Kovacevic. Principles of Abrasive Water Jet Machining. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1572-4.
Pełny tekst źródłaMomber, Andreas W. Principles of Abrasive Water Jet Machining. London: Springer London, 1998.
Znajdź pełny tekst źródłaMomber, Andreas W. Principles of abrasive water jet machining. London: Springer, 1998.
Znajdź pełny tekst źródłaJagadish i Kapil Gupta. Abrasive Water Jet Machining of Engineering Materials. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36001-6.
Pełny tekst źródłaJun, Wang. Abrasive waterjet machining of engineering materials. Uetikon-Zuerich, Switzerland: Trans Tech Publications, Ltd., 2003.
Znajdź pełny tekst źródłaPrinciples of Abrasive Water Jet Machining. Springer, 2012.
Znajdź pełny tekst źródłaGupta, Kapil, i Jagadish. Abrasive Water Jet Machining of Engineering Materials. Springer, 2019.
Znajdź pełny tekst źródłaCzęści książek na temat "ABRASIVE JET MACHINING"
Boparai, Kamaljit Singh, i Jasgurpreet Singh Chohan. "Abrasive Jet Machining". W Non-Conventional Hybrid Machining Processes, 117–34. First edfition. | Boca Raton : CRC Press, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9780429029165-8.
Pełny tekst źródłaShukla, Mukul. "Abrasive Water Jet Milling". W Nontraditional Machining Processes, 177–203. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5179-1_6.
Pełny tekst źródłaSingh, Sachin, Vishal Gupta i M. R. Sankar. "Abrasive Water Jet Machining". W Materials Forming, Machining and Tribology, 71–96. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43312-3_4.
Pełny tekst źródłaBayraktar, Şenol, i Cem Alparslan. "Sustainable Abrasive Jet Machining". W Advances in Sustainable Machining and Manufacturing Processes, 173–88. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003284574-11.
Pełny tekst źródłaAydin, Gokhan, i Izzet Karakurt. "Abrasive Water Jet Machining (AWJM)". W Advanced Machining Science, 15–36. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780429160011-2.
Pełny tekst źródłaHashish, M. "Three-Dimensional Machining with Abrasive-Waterjets". W Jet Cutting Technology, 605–20. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2678-6_40.
Pełny tekst źródłaGupta, Kapil, Muralidhar Avvari, Able Mashamba i Manjaiah Mallaiah. "Ice Jet Machining: A Sustainable Variant of Abrasive Water Jet Machining". W Sustainable Machining, 67–78. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51961-6_4.
Pełny tekst źródłaMomber, Andreas W., i Radovan Kovacevic. "Generation of Abrasive Water Jets". W Principles of Abrasive Water Jet Machining, 20–76. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1572-4_3.
Pełny tekst źródłaJagadish i Kapil Gupta. "Introduction to Abrasive Water Jet Machining". W Abrasive Water Jet Machining of Engineering Materials, 1–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36001-6_1.
Pełny tekst źródłaMomber, Andreas W., i Radovan Kovacevic. "Classification and Characterization of Abrasive Materials". W Principles of Abrasive Water Jet Machining, 5–19. London: Springer London, 1998. http://dx.doi.org/10.1007/978-1-4471-1572-4_2.
Pełny tekst źródłaStreszczenia konferencji na temat "ABRASIVE JET MACHINING"
Slătineanua, Laurenţiu, Margareta Coteaţă, Nicolae Pop, Irina Beşliu i Vasile Braha. "Superficial Abrasive Jet Machining". W THE 14TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2011. AIP, 2011. http://dx.doi.org/10.1063/1.3589701.
Pełny tekst źródłaKumar, S. Naga, P. Sasidhar, M. Rajyalakshmi i K. I. Vishnu Vandana. "Experimental Investigation of Optimization of Machining Parameters in Abrasive Water Jet Machining". W 1st International Conference on Mechanical Engineering and Emerging Technologies. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-2ov163.
Pełny tekst źródłaPasken, Greg, Jianfeng Ma, Muhammad P. Jahan i Shuting Lei. "Numerical Simulation of Pure Water Jet Machining of Al 6061-T6 With Experimental Validation". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2712.
Pełny tekst źródłaSAKUYAMA, T., T. KURIYAGAWA, K. SYOJI i H. ONODERA. "DEVELOPMENT OF A NEW ABRASIVE JET MACHINING DEVICE". W Proceedings of the Third International Conference on Abrasive Technology (ABTEC '99). WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812817822_0041.
Pełny tekst źródłaPaul, Lijo, i J. Babu. "Grey Relation Approach in Abrasive Jet Machining Process". W ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2852.
Pełny tekst źródłaBaumler, Mark. "Abrasive Water Jet Cutting of Mirror Cores". W Optical Fabrication and Testing. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oft.1992.thc4.
Pełny tekst źródłaAshrafi, Nariman. "Viscoelastic Abrasive Waterjet". W ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63051.
Pełny tekst źródłaKalpana, K., O. V. Mythreyi i M. Kanthababu. "Review on condition monitoring of Abrasive Water Jet Machining system". W 2015 International Conference on Robotics, Automation, Control and Embedded Systems (RACE). IEEE, 2015. http://dx.doi.org/10.1109/race.2015.7097254.
Pełny tekst źródłaZhang, FengLian. "Study on improving the efficiency of abrasive water jet machining". W 2021 IEEE International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT). IEEE, 2021. http://dx.doi.org/10.1109/iceemt52412.2021.9601589.
Pełny tekst źródłaPatel, Divyansh, i Puneet Tandon. "Optimization of Kerf Surface and Material Removal Rate Using Abrasive Water-Slurry Jet Machining Setup". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64245.
Pełny tekst źródła