Rozprawy doktorskie na temat „A posteriori error bound”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „A posteriori error bound”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Kunert, Gerd, Zoubida Mghazli i Serge Nicaise. "A posteriori error estimation for a finite volume discretization on anisotropic meshes". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601352.
Pełny tekst źródłaRankin, Richard Andrew Robert. "Fully computable a posteriori error bounds for noncomforming and discontinuous galekin finite elemant approximation". Thesis, University of Strathclyde, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501776.
Pełny tekst źródłaMerdon, Christian. "Aspects of guaranteed error control in computations for partial differential equations". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16818.
Pełny tekst źródłaThis thesis studies guaranteed error control for elliptic partial differential equations on the basis of the Poisson model problem, the Stokes equations and the obstacle problem. The error control derives guaranteed upper bounds for the energy error between the exact solution and different finite element discretisations, namely conforming and nonconforming first-order approximations. The unified approach expresses the energy error by dual norms of one or more residuals plus computable extra terms, such as oscillations of the given data, with explicit constants. There exist various techniques for the estimation of the dual norms of such residuals. This thesis focuses on equilibration error estimators based on Raviart-Thomas finite elements, which permit efficient guaranteed upper bounds. The proposed postprocessing in this thesis considerably increases their efficiency at almost no additional computational costs. Nonconforming finite element methods also give rise to a nonconsistency residual that permits alternative treatment by conforming interpolations. A side aspect concerns the explicit residual-based error estimator that usually yields cheap and optimal refinement indicators for adaptive mesh refinement but not very sharp guaranteed upper bounds. A novel variant of the residual-based error estimator, based on the Luce-Wohlmuth equilibration design, leads to highly improved reliability constants. A large number of numerical experiments compares all implemented error estimators and provides evidence that efficient and guaranteed error control in the energy norm is indeed possible in all model problems under consideration. Particularly, one model problem demonstrates how to extend the error estimators for guaranteed error control on domains with curved boundary.
Camacho, Fernando F. "A Posteriori Error Estimates for Surface Finite Element Methods". UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/21.
Pełny tekst źródłaAinsworth, Mark. "A posteriori error estimation in the finite element method". Thesis, Durham University, 1989. http://etheses.dur.ac.uk/6326/.
Pełny tekst źródłaKöhler, Karoline Sophie. "On efficient a posteriori error analysis for variational inequalities". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17635.
Pełny tekst źródłaEfficient and reliable a posteriori error estimates are a key ingredient for the efficient numerical computation of solutions for variational inequalities by the finite element method. This thesis studies such reliable and efficient error estimates for arbitrary finite element methods and three representative variational inequalities, namely the obstacle problem, the Signorini problem, and the Bingham problem in two space dimensions. The error estimates rely on a problem connected Lagrange multiplier, which presents a connection between the variational inequality and the corresponding linear problem. Reliability and efficiency are shown with respect to some total error. Reliability and efficiency are shown under minimal regularity assumptions. The approximation to the exact solution satisfies the Dirichlet boundary conditions, and an approximation of the Lagrange multiplier is non-positive in the case of the obstacle and Signorini problem and has an absolute value smaller than 1 for the Bingham flow problem. These general assumptions allow for reliable and efficient a posteriori error analysis even in the presence of inexact solve, which naturally occurs in the context of variational inequalities. From the point of view of the applications, reliability and efficiency with respect to the error of the primal variable in the energy norm is of great interest. Such estimates depend on the efficient design of a discrete Lagrange multiplier. Affirmative examples of discrete Lagrange multipliers are presented for the obstacle and Signorini problem and three different first-order finite element methods, namely the conforming Courant, the non-conforming Crouzeix-Raviart, and the mixed Raviart-Thomas FEM. Partial results exist for the Bingham flow problem. Numerical experiments highlight the theoretical results, and show efficiency and reliability. The numerical tests suggest that the resulting adaptive algorithms converge with optimal convergence rates.
Chow, Chak-On 1968. "On a posteriori finite element bound procedures for nonsymmetric Eigenvalue problems". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85266.
Pełny tekst źródłaPled, Florent. "Vers une stratégie robuste et efficace pour le contrôle des calculs par éléments finis en ingénierie mécanique". Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2012. http://tel.archives-ouvertes.fr/tel-00776633.
Pełny tekst źródłaApel, Thomas, i Cornelia Pester. "Clément-type interpolation on spherical domains - interpolation error estimates and application to a posteriori error estimation". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601335.
Pełny tekst źródłaKunert, Gerd. "A posteriori error estimation for convection dominated problems on anisotropic meshes". Universitätsbibliothek Chemnitz, 2002. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200200255.
Pełny tekst źródłaRussant, Stuart. "A-posteriori error estimation using higher moments in computational fluid dynamics". Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/aposteriori-error-estimation-using-higher-moments-in-computational-fluid-dynamics(77bdb9c6-e99a-490d-9624-fdc61525d039).html.
Pełny tekst źródłaGiacomini, Matteo. "Quantitative a posteriori error estimators in Finite Element-based shape optimization". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX070/document.
Pełny tekst źródłaGradient-based shape optimization strategies rely on the computation of the so-called shape gradient. In many applications, the objective functional depends both on the shape of the domain and on the solution of a PDE which can only be solved approximately (e.g. via the Finite Element Method). Hence, the direction computed using the discretized shape gradient may not be a genuine descent direction for the objective functional. This Ph.D. thesis is devoted to the construction of a certification procedure to validate the descent direction in gradient-based shape optimization methods using a posteriori estimators of the error due to the Finite Element approximation of the shape gradient.By means of a goal-oriented procedure, we derive a fully computable certified upper bound of the aforementioned error. The resulting Certified Descent Algorithm (CDA) for shape optimization is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion basedon the norm of the shape gradient.Two main applications are tackled in the thesis. First, we consider the scalar inverse identification problem of Electrical Impedance Tomography and we investigate several a posteriori estimators. A first procedure is inspired by the complementary energy principle and involves the solution of additionalglobal problems. In order to reduce the computational cost of the certification step, an estimator which depends solely on local quantities is derived via an equilibrated fluxes approach. The estimators are validated for a two-dimensional case and some numerical simulations are presented to test the discussed methods. A second application focuses on the vectorial problem of optimal design of elastic structures. Within this framework, we derive the volumetric expression of the shape gradient of the compliance using both H 1 -based and dual mixed variational formulations of the linear elasticity equation. Some preliminary numerical tests are performed to minimize the compliance under a volume constraint in 2D using the Boundary Variation Algorithm and an a posteriori estimator of the error in the shape gradient is obtained via the complementary energy principle
Castellazzi, Giovanni <1975>. "Verification in computational structural mechanics: recovery-based a posteriori error estimation". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/441/1/Giovanni_Castellazzi.pdf.
Pełny tekst źródłaCastellazzi, Giovanni <1975>. "Verification in computational structural mechanics: recovery-based a posteriori error estimation". Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/441/.
Pełny tekst źródłaBacharach, Lucien. "Caractérisation des limites fondamentales de l'erreur quadratique moyenne pour l'estimation de signaux comportant des points de rupture". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS322/document.
Pełny tekst źródłaThis thesis deals with the study of estimators' performance in signal processing. The focus is the analysis of the lower bounds on the Mean Square Error (MSE) for abrupt change-point estimation. Such tools will help to characterize performance of maximum likelihood estimator in the frequentist context but also maximum a posteriori and conditional mean estimators in the Bayesian context. The main difficulty comes from the fact that, when dealing with sampled signals, the parameters of interest (i.e., the change points) lie on a discrete space. Consequently, the classical large sample theory results (e.g., asymptotic normality of the maximum likelihood estimator) or the Cramér-Rao bound do not apply. Some results concerning the asymptotic distribution of the maximum likelihood only are available in the mathematics literature but are currently of limited interest for practical signal processing problems. When the MSE of estimators is chosen as performance criterion, an important amount of work has been provided concerning lower bounds on the MSE in the last years. Then, several studies have proposed new inequalities leading to tighter lower bounds in comparison with the Cramér-Rao bound. These new lower bounds have less regularity conditions and are able to handle estimators’ MSE behavior in both asymptotic and non-asymptotic areas. The goal of this thesis is to complete previous results on lower bounds in the asymptotic area (i.e. when the number of samples and/or the signal-to-noise ratio is high) for change-point estimation but, also, to provide an analysis in the non-asymptotic region. The tools used here will be the lower bounds of the Weiss-Weinstein family which are already known in signal processing to outperform the Cramér-Rao bound for applications such as spectral analysis or array processing. A closed-form expression of this family is provided for a single and multiple change points and some extensions are given when the parameters of the distributions on each segment are unknown. An analysis in terms of robustness with respect to the prior influence on our models is also provided. Finally, we apply our results to specific problems such as: Gaussian data, Poisson data and exponentially distributed data
Tempone, Olariaga Raul. "Numerical Complexity Analysis of Weak Approximation of Stochastic Differential Equations". Doctoral thesis, KTH, Numerisk analys och datalogi, NADA, 2002. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3413.
Pełny tekst źródłaQC 20100825
Wilkins, Catherine. "Adaptive finite element methods for the damped wave equation". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302398.
Pełny tekst źródłaOhlberger, Mario. "A posteriori error estimates and adaptive methods for convection dominated transport processes". [S.l. : s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=961616245.
Pełny tekst źródłaCreusé, Emmanuel, Gerd Kunert i Serge Nicaise. "A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations". Universitätsbibliothek Chemnitz, 2003. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200300057.
Pełny tekst źródłaGrepl, Martin A. (Martin Alexander) 1974. "Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32387.
Pełny tekst źródłaIncludes bibliographical references (p. 243-251).
Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities of interest, evaluation of which demands the solution of a partial differential equation. We present in this thesis a technique for the prediction of outputs of interest of parabolic partial differential equations. The essential ingredients are: (i) rapidly convergent reduced-basis approximations - Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter-time space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide rigorous and sharp bounds for the error in specific outputs of interest: the error estimates serve a priori to construct our samples and a posteriori to confirm fidelity; and (iii) offline-online computional procedures - in the offline stage the reduced- basis approximation is generated; in the online stage, given a new parameter value, we calculate the reduced-basis output and associated error bound. The operation count for the online stage depends only on N (typically small) and the parametric complexity of the problem; the method is thus ideally suited for repeated, rapid, reliable evaluation of input-output relationships in the many-query or real-time contexts. We first consider parabolic problems with affine parameter dependence and subsequently extend these results to nonaffine and certain classes of nonlinear parabolic problems.
(cont.) To this end, we introduce a collateral reduced-basis expansion for the nonaffine and nonlinear terms and employ an inexpensive interpolation procedure to calculate the coefficients for the function approximation - the approach permits an efficient offline-online computational decomposition even in the presence of nonaffine and highly nonlinear terms. Under certain restrictions on the function approximation, we also introduce rigorous a posteriori error estimators for nonaffine and nonlinear problems. Finally, we apply our methods to the solution of inverse and optimal control problems. While the efficient evaluation of the input-output relationship is essential for the real-time solution of these problems, the a posteriori error bounds let us pursue a robust parameter estimation procedure which takes into account the uncertainty due to measurement and reduced-basis modeling errors explicitly (and rigorously). We consider several examples: the nondestructive evaluation of delamination in fiber-reinforced concrete, the dispersion of pollutants in a rectangular domain, the self-ignition of a coal stockpile, and the control of welding quality. Numerical results illustrate the applicability of our methods in the many-query contexts of optimization, characterization, and control.
by Martin A. Grepl.
Ph.D.
Mavriplis, Cathy. "Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques". Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/14526.
Pełny tekst źródłaIncludes bibliographical references (leaves 151-157).
by Catherine Andria Mavriplis.
Ph.D.
Simões, Eduardo Tenório. "Linear and nonlinear hirarchical plate models and a posteriori kinematical error estimator". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3144/tde-26072016-151855/.
Pełny tekst źródłaEste estudo explora o uso de modelos hierárquicos para representar sólidos tridimensionais de forma computacionalmente barata. Em primeiro lugar, é explorada a escolha dos espaços de elementos finitos e como isso afeta a convergência em relação ao parâmetro da espessura. Foram estudados três modelos diferentes. Mostrou-se que a menor ordem adequada do espaço de discretização cresce para todos os campos conforme a ordem do modelo é enriquecida . Isso impõe um problema, já que um maior polinômio exige maior custo computacional e modelos de alta ordem só são necessários perto do contorno. Depois, são usados estimadores de erro na discretização e na hipótese cinemática. Mostra-se que o erro implementado na discretização é capaz de capiturar a camada limite de forma automatizada para qualquer modelo. Também é apresentada uma técnica de erro a posteriri na hipótese cinemática com base no erro no equilíbrio de modelos de ordem superior. No final, é apresentado um modelo hierárquico de casca geométricamente não linear e sua discretização. Mostra-se que o modelo consegue representar a solução tridimensional quando comparado com o um software comercial.
Kunert, Gerd. "A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes". Doctoral thesis, [S.l. : s.n.], 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10324701.
Pełny tekst źródłaRen, Chengfang. "Caractérisation des performances minimales d'estimation pour des modèles d'observations non-standards". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112167/document.
Pełny tekst źródłaIn the parametric estimation context, estimators performances can be characterized, inter alia, by the mean square error and the resolution limit. The first quantities the accuracy of estimated values and the second defines the ability of the estimator to allow a correct resolvability. This thesis deals first with the prediction the "optimal" MSE by using lower bounds in the hybrid estimation context (i.e. when the parameter vector contains both random and non-random parameters), second with the extension of Cramér-Rao bounds for non-standard estimation problems and finally to the characterization of estimators resolution. This manuscript is then divided into three parts :First, we fill some lacks of hybrid lower bound on the MSE by using two existing Bayesian lower bounds: the Weiss-Weinstein bound and a particular form of Ziv-Zakai family lower bounds. We show that these extended lower bounds are tighter than the existing hybrid lower bounds in order to predict the optimal MSE.Second, we extend Cramer-Rao lower bounds for uncommon estimation contexts. Precisely: (i) Where the non-random parameters are subject to equality constraints (linear or nonlinear). (ii) For discrete-time filtering problems when the evolution of states are defined by a Markov chain. (iii) When the observation model differs to the real data distribution.Finally, we study the resolution of the estimators when their probability distributions are known. This approach is an extension of the work of Oh and Kashyap and the work of Clark to multi-dimensional parameters estimation problems
Ludwig, Marcus John. "Finite element error estimation and adaptivity for problems of elasticity". Thesis, Brunel University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246151.
Pełny tekst źródłaZhu, Liang. "Robust a posteriori error estimation for discontinuous Galerkin methods for convection diffusion problems". Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/23337.
Pełny tekst źródłaBridgeman, Leila. "Stability and a posteriori error analysis of discontinious Galerkin methods for linearized elasticity". Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=95054.
Pełny tekst źródłaNous considérons les méthodes de Galerkin pour la discrétisation des relations déformations-déplacements linéaires en deux dimensions d'espace. Des résultats du stabilité inf-sup sur les niveaux continus et discrets sont fournis. En plus, nous dérivons des limites inférieurs et supérieures pour l'erreur a posteriori qui peuvent être utilisées dans des procédures de maillage automatisées sans difficulté et qui demeurent robustes dans le cas des matériaux qui ne sont presque pas compressibles. Les résultats théoriques sont illustrés par des expériences numériques.
Andrews, J. G. "An a posteriori error indicator and its application to adaptive methods in CFD". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319051.
Pełny tekst źródłaEffland, Alexander [Verfasser]. "Discrete Riemannian Calculus and A Posteriori Error Control on Shape Spaces / Alexander Effland". Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1150777796/34.
Pełny tekst źródłaYu, Peng. "Isogeometric analysis with local adaptivity based on a posteriori error estimation for elastodynamics". Thesis, Cardiff University, 2019. http://orca.cf.ac.uk/119867/.
Pełny tekst źródłaLins, Rafael Marques. "A posteriori error estimations for the generalized finite element method and modified versions". Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-03092015-083839/.
Pełny tekst źródłaEsta tese investiga dois estimadores de erro a posteriori, baseados na recuperação do gradiente, visando preencher o hiato das estimativas de erro para o Generalized FEM (GFEM) e, sobretudo, suas versões modificadas denominadas Corrected XFEM (C-XFEM) e Stable GFEM (SGFEM). De modo a alcançar este objetivo, primeiramente, breves revisões a respeito do GFEM e suas versões modificadas são apresentadas, onde as principais vantagens atribuídas a cada método são destacadas. Em seguida, alguns importantes conceitos relacionados ao estudo do erro são apresentados. Além disso, algumas contribuições envolvendo estimativas de erro a posteriori para o GFEM são brevemente descritas. Posteriormente, os dois estimadores de erro propostos neste trabalho são abordados focando em problemas da mecânica da fratura elástico linear. O primeiro estimador foi originalmente proposto para o C-XFEM e por este meio é estendido para o âmbito do SGFEM. O segundo é baseado em uma divisão do campo de tensões recuperadas em duas partes distintas: singular e suave. A parte singular é calculada com o auxílio da integral J, enquanto que a suave é calculada a partir da combinação entre as técnicas Superconvergent Patch Recovery (SPR) e Singular Value Decomposition (SVD). Finalmente, vários exemplos numéricos são selecionados para avaliar a robustez dos estimadores de erro considerando diferentes tipos de enriquecimento, versões do GFEM, modos solicitantes e tipos de elemento. Aspectos relevantes tais como índices de efetividade, distribuição do erro e taxas de convergência são usados para descrever os estimadores de erro. As principais contribuições desta tese são: o desenvolvimento de dois eficientes estimadores de erro a posteriori para o GFEM e suas versões modificadas; uma comparação entre o GFEM e suas versões modificadas; a identificação das características positivas de cada estimador de erro e um estudo detalhado sobre a questão dos elementos de mistura.
Buß, Hinderk M. "A posteriori error estimators based on duality techniques from the calculus of variations". [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10790752.
Pełny tekst źródłaElSheikh, Ahmed H. Chidiac S. E. Smith Spencer B. "Multiscale a posteriori error estimation and mesh adaptivity for reliable finite element analysis". *McMaster only, 2007.
Znajdź pełny tekst źródłaHouston, Paul D. "Lagrange-Galerkin methods for unsteady convection-diffusion problems : a posteriori error analysis and adaptivity". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337607.
Pełny tekst źródłaKunert, Gerd [Verfasser]. "A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes / Gerd Kunert". Chemnitz : Universitätsbibliothek Chemnitz, 1999. http://d-nb.info/1210931834/34.
Pełny tekst źródłaMoldenhauer, Marcel [Verfasser], i Gerhard [Akademischer Betreuer] Starke. "Stress reconstruction and a-posteriori error estimation for elasticity / Marcel Moldenhauer ; Betreuer: Gerhard Starke". Duisburg, 2020. http://d-nb.info/1221061712/34.
Pełny tekst źródłaLin, Shan. "Analysing Generalisation Error Bounds For Convolutional Neural Networks". Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20315.
Pełny tekst źródłaKieweg, Michael. "An a posteriori error analysis for distributed elliptic optimal control problems with pointwise state constraints". kostenfrei kostenfrei, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:384-opus-7184.
Pełny tekst źródłaPester, Cornelia. "A residual a posteriori error estimator for the eigenvalue problem for the Laplace-Beltrami operator". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601556.
Pełny tekst źródłaWu, Heng. "An a-posteriori finite element error estimator for adaptive grid computation of viscous incompressible flows". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0021/NQ53797.pdf.
Pełny tekst źródłaTrenz, Stefan [Verfasser]. "POD-Based A-posteriori Error Estimation for Control Problems Governed by Nonlinear PDEs / Stefan Trenz". Konstanz : Bibliothek der Universität Konstanz, 2017. http://d-nb.info/1142113868/34.
Pełny tekst źródłaBrenner, Andreas [Verfasser], Eberhard [Gutachter] Bänsch i Charalambos [Gutachter] Makridakis. "A-posteriori error estimates for pressure-correction schemes / Andreas Brenner ; Gutachter: Eberhard Bänsch, Charalambos Makridakis". Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016. http://d-nb.info/1114499692/34.
Pełny tekst źródłaKirby, Robert Charles. "Local time stepping and a posteriori error estimates for flow and transport in porous media /". Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaKunert, Gerd. "Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes". Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000867.
Pełny tekst źródłaGrosman, Serguei. "The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes". Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601418.
Pełny tekst źródłaKunert, Gerd. "A posteriori H^1 error estimation for a singularly perturbed reaction diffusion problem on anisotropic meshes". Universitätsbibliothek Chemnitz, 2001. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200100730.
Pełny tekst źródłaGrosz, Lutz [Verfasser]. "A-posteriori error estimates for the finite element solution on non-linear variational problems / Lutz Grosz". Karlsruhe : KIT-Bibliothek, 1997. http://d-nb.info/1013872436/34.
Pełny tekst źródłaLu, James 1977. "An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34134.
Pełny tekst źródłaIncludes bibliographical references (leaves 169-178).
Introduction: Aerodynamic design optimization has seen significant development over the past decade. Adjoint-based shape design for elliptic systems was first proposed by Pironneau and applied to transonic flow by Jameson . A review of the aerodynamic shape optimization literature and a large list of references is given in. Over the years much technology has been developed, allowing engineers to contemplate applying optimization methods to a wide variety of problems. In the context of structured grids, adjoint-based applications include multipoint, multi-objective airfoil design using compressible Navier-Stokes equations and 3D multipoint design of aircraft configurations using inviscid Euler equations. There have also been significant effort in applying adjoint methods to the unstructured grid setting. In this context, Newman et al., Elliot and Peraire were among the first to develop discrete adjoint approaches for the inviscid Euler equations.
by James Ching-Chi
Ph.D.
Sen, Sugata 1977. "Reduced basis approximation and a posteriori error estimation for non-coercive elliptic problems : applications to acoustics". Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39355.
Pełny tekst źródłaIncludes bibliographical references (p. 251-261).
Modern engineering problems often require accurate, reliable, and efficient evaluation of quantities of interest, evaluation of which demands the solution of a partial differential equation. We present in this thesis a general methodology for the predicition of outputs of interest of non-coercive elliptic partial differential equations. The essential ingredients are: (i) rapidly convergent reduced basis approximations - Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter-time space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide rigorous and sharp bounds for the error in specific outputs of interest; and (iii) offline-online computational procedures - in the offline stage the reduced basis approximation is generated; in the online stage, given a new parameter value, we calculate the reduced basis output and associated error bound. The operation count for the online stage depends only on N (typically small) and the parametric complexity of the problem; the method is thus ideally suited for repeated, rapid, reliable evaluation of input-output relationships in the many-query or real-time contexts. We consider the crucial ingredients for the treatment of acoustics problems
(cont.) - simultaneous treatment of non-coercive (and near-resonant), non-Hermitian elliptic operators, complex-valued fields, often unbounded domains, and quadratic outputs of interest. We introduce the successive constraint approach to approximate lower bounds to the inf-sup stability constant, a key ingredient of our rigorous a posteriori output error estimator. We develop a novel expanded formulation that enables treatment of quadratic outputs as linear compliant outputs. We also build on existing ideas in domain truncation to develop a radiation boundary condition to truncate unbounded domains. We integrate the different theoretical contributions and apply our methods as proof of concept to some representative applications in acoustic filter design and characterization. In the online stage, we achieve O(10) computational economies of cost while demonstrating both the rapid convergence of the reduced basis approximation, and the sharpness of our error estimators ([approx.] O(20)). The obtained computational economies are expected to be significantly greater for problems of larger size. We thus emphasize the feasibility of our methods in the many-query contexts of optimization, characterization, and control.
by Sugata Sen.
Ph.D.
Frankenbach, Matthias [Verfasser]. "An Adjoint Based A Posteriori Error Estimator for Moving Meshes in Large Eddy Simulations / Matthias Frankenbach". München : Verlag Dr. Hut, 2014. http://d-nb.info/1055863877/34.
Pełny tekst źródła