Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: A-182.

Artykuły w czasopismach na temat „A-182”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „A-182”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Lindström, Olle, John Bull, Beverly Collins, Inger M. Mees, Michael Barnes, Alison E. Chapman, Arne Olofsson i in. "Reviews and notices". Moderna Språk 84, nr 2 (13.11.1990): 170–208. http://dx.doi.org/10.58221/mosp.v84i2.10444.

Pełny tekst źródła
Streszczenie:
Includes the following reviews: pp. 170-173. Olle Lindström. Wells, J.C., Longman Pronunciation Dictionary. pp. 174-175. John Bull. Banham, M., The Cambridge Guide to World Theatre. + Hodgson, T., The Batsford Dictionary of Drama. pp. 175-177. Beverly Collins & Inger M. Mees. Davidsen-Nielsen, N. & Ulseth, B., English Intonation. pp. 178-180. Michael Barnes. Kjellmer, G., Ordlista för språkvetare, Svensk-engelsk och engelsk-svensk. pp. 181-182. Alison E. Chapman. Honey, J., Does Accent Matter?-The Pygmalion Factor. pp. 182-183. Arne Olofsson. Larsson, B., At your service! Ordbok för turist- och resenäringen (Engelsk-svensk, svensk-engelsk). pp. 183-184. Linda Schenck. Bowen, D. & Bowen, M. (eds), Interpreting, Yesterday and Today, Tomorrow. p. 185. Joakim Nivre. Herslund, M. (ed.), Data and Linguistic Theory: Three Essays on Linguistic Methodology. pp. 185-188. Beatrice Warren. Dickson, P., What Do You Call A Person From...? pp. 188-189. Alistair Davies. Murray, D. (ed.), Literary Theory and Poetry: Extenting the Canon. pp. 189-192. Christine Räisänen. Technical Writing: A Survey of Some Textbooks. p. 192. Margareta Olsson. Miller, J., Mr. Teach. Metodbok för lärare. pp. 193-194. Gunnar Magnusson. Braun, P., Schaeder, B. & Volmert, J. (Hgg.), Internationalismen. pp. 195-196. Gustav Korlén. Stedje, A., Deutsche Sprache gestern und heute. + Wolff, G., Deutsche Sprachgeschichte. Ein Studienbuch. pp. 197-198. Jan Olsson. Rothstein, S., Der Traum von der Gemeinschaft. Kontinuität und Innovation in Ernst Tollers Dramen. pp. 198-200. Hartmut Böhme. Madsen, B., Auf der Suche nach einer Identität. Studien zu Hubert Fichtes Romantetralogie "Das Waisenhaus", "Die Palette", "Detlevs Imitationen 'Grünspan'", "Versuch über die Pubertät". pp. 200-202. Rüdiger Bernhardt. Hammarskjöld, G., Schuldlos schuldig sein. Zur Schuld und Freiheit in Hermann Kants Roman "Der Aufenthalt". pp. 202-205. Göran Bornäs. Lötmarker, R. & Mezieres, P., Parlons de la France. Aspects politiques, économiques et sociaux. + Berg-Compère, J., Pierre, Paul, Fatma et les autres... Les Français devant l'Europe. 207-208. Redaktionsmeddelande/A Message From the Editors.
Style APA, Harvard, Vancouver, ISO itp.
2

Lundskær-Nielsen, Tom, David Isitt, Jeremy Lane, Alistair Davies, Bertil Nolin, Alvar Ellegård, Maria Holmgren Troy i in. "Reviews and notices". Moderna Språk 96, nr 2 (1.12.1992): 177–223. http://dx.doi.org/10.58221/mosp.v96i2.10237.

Pełny tekst źródła
Streszczenie:
Includes the following reviews: pp. 177-180. Tom Lundskær-Nielsen. Ljungs, M. & Ohlander, S., Gleerups engelska grammatik. pp. 180-182. David Isitt. Oakland, J., British Civilization: An Introduction. + MacQueen, D., Americal Social Studies: A University Primer. + Lundén, R. & Srigley, M. (eds.), Ideas and Identities: British and American Culture. pp. 182-183. Jeremy Lane. Watson, G., British Literature since 1945. pp. 183-184. Alistair Davies. Katz, W. & Sternberg Katz, L. (eds.), The Columbia Granger's Guide to Poetry Anthologies. pp. 184-185. Bertil Nolin. Barker, H., Collected Plays, Vol I *Seven Lears; The Pursuit of Good; Golgo: Sermons on pain and privilege *Arguments for a Theatre. pp. 185-186. Alvar Ellegård. MacQueen, D.S., Using Numbers in English. pp. 187-189. Maria Holmgren Troy. Duff, A. & Maley, A., Literature. + McRae, J. & Pantaleoni, L., Chapter & Verse. pp. 189-190. Elleke Boehmer. Grandqvist, R. (ed.), Signs and Signals: Popular Culture in Africa. pp. 190-192. Gunnar Bergh. Bell, A., The Language of News Media. pp. 193-194. Patrick Burke. Jarringron, J.P. (ed.), Modern Irish Drama. p. 194. Göran Kjellmer. Crystal, S. (series editor), Penguin English Linguistics, Vols. 1-5- p. 195. Helena Bergmann. Bradbury, M. & Cooke, J. (eds.), New Writing. pp. 196-198. Birgit Stolt. von Polenz, P., Deutsche Sprachgeschichte vom Spätmittelalter bis zur Gegenwart. Bd. I. Einführung. Grundbegriffe. Deutsch in der frühbürgerlichen Zeit. pp. 198-200. Gustav Korlén. Paul, H., Deutschen Wörterbuch. 9. Aufl. pp. 201-203. Gunnar Magnusson. Linke, A., Nussbaumer, M. & Portmann, P.R., Studienbuch Linguistik. pp. 204-205. Folke Freund. Helbig, G., Deutsche Grammatik. Grundfragen und Abriß. pp. 205-208. Frank-Michael Kirsch. Malchow, H. & Winkels, H. (Hrsg.), Die Zeit danach. Neue deutsche Literatur. pp. 208-210. Christa Grimm. Frisch, C., "Geniestreich". "Lehrstück", "Revolutionsgestammel". Zur Rezeption des Dramas "Marat/Sade" in der Literaturwissenschaft und auf den Bühnen der Bundesrepublik Deutschland, der Deutschen Demokratischen Republik und Schwedens. pp. 210-212. Göran Bornäs. Blinkenberg, A. & Høybye, P., Dansk-fransk ordbog. pp. 212-217. Börje Schlyer. de Troyes, C., Le Chevalier de la Charrette (Lancelot) *Lancelot ou le Chevalier de la Charrette *Le Conte du Graal ou le Roman de Perceval *Lancelot du Lac. pp. 218-220. Ken Benson. Ciplijauskaité, B., La novela femenina contemporánea (1970-1985). Hacia una tipología de la narración en primera persona. pp. 220-222. Kan Benson. Marful Amor, I., Lorca y sus dobles. Interpretación psicoanalítica de la obra dramática y dibujística. p. 223. Redaktionsmeddelande/A Message from the Editors.
Style APA, Harvard, Vancouver, ISO itp.
3

Bouchard, Patrice, Yves Bousquet, Anthony E. Davies i Chenyang Cai. "On the nomenclatural status of type genera in Coleoptera (Insecta)". ZooKeys 1194 (13.03.2024): 1–981. http://dx.doi.org/10.3897/zookeys.1194.106440.

Pełny tekst źródła
Streszczenie:
More than 4700 nominal family-group names (including names for fossils and ichnotaxa) are nomenclaturally available in the order Coleoptera. Since each family-group name is based on the concept of its type genus, we argue that the stability of names used for the classification of beetles depends on accurate nomenclatural data for each type genus. Following a review of taxonomic literature, with a focus on works that potentially contain type species designations, we provide a synthesis of nomenclatural data associated with the type genus of each nomenclaturally available family-group name in Coleoptera. For each type genus the author(s), year of publication, and page number are given as well as its current status (i.e., whether treated as valid or not) and current classification. Information about the type species of each type genus and the type species fixation (i.e., fixed originally or subsequently, and if subsequently, by whom) is also given. The original spelling of the family-group name that is based on each type genus is included, with its author(s), year, and stem. We append a list of nomenclaturally available family-group names presented in a classification scheme. Because of the importance of the Principle of Priority in zoological nomenclature, we provide information on the date of publication of the references cited in this work, when known. Several nomenclatural issues emerged during the course of this work. We therefore appeal to the community of coleopterists to submit applications to the International Commission on Zoological Nomenclature (henceforth “Commission”) in order to permanently resolve some of the problems outlined here. The following changes of authorship for type genera are implemented here (these changes do not affect the concept of each type genus): CHRYSOMELIDAE: Fulcidax Crotch, 1870 (previously credited to “Clavareau, 1913”); CICINDELIDAE: Euprosopus W.S. MacLeay, 1825 (previously credited to “Dejean, 1825”); COCCINELLIDAE: Alesia Reiche, 1848 (previously credited to “Mulsant, 1850”); CURCULIONIDAE: Arachnopus Boisduval, 1835 (previously credited to “Guérin-Méneville, 1838”); ELATERIDAE: Thylacosternus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); EUCNEMIDAE: Arrhipis Gemminger, 1869 (previously credited to “Bonvouloir, 1871”), Mesogenus Gemminger, 1869 (previously credited to “Bonvouloir, 1871”); LUCANIDAE: Sinodendron Hellwig, 1791 (previously credited to “Hellwig, 1792”); PASSALIDAE: Neleides Harold, 1868 (previously credited to “Kaup, 1869”), Neleus Harold, 1868 (previously credited to “Kaup, 1869”), Pertinax Harold, 1868 (previously credited to “Kaup, 1869”), Petrejus Harold, 1868 (previously credited to “Kaup, 1869”), Undulifer Harold, 1868 (previously credited to “Kaup, 1869”), Vatinius Harold, 1868 (previously credited to “Kaup, 1869”); PTINIDAE: Mezium Leach, 1819 (previously credited to “Curtis, 1828”); PYROCHROIDAE: Agnathus Germar, 1818 (previously credited to “Germar, 1825”); SCARABAEIDAE: Eucranium Dejean, 1833 (previously “Brullé, 1838”). The following changes of type species were implemented following the discovery of older type species fixations (these changes do not pose a threat to nomenclatural stability): BOLBOCERATIDAE: Bolbocerus bocchus Erichson, 1841 for Bolbelasmus Boucomont, 1911 (previously Bolboceras gallicum Mulsant, 1842); BUPRESTIDAE: Stigmodera guerinii Hope, 1843 for Neocuris Saunders, 1868 (previously Anthaxia fortnumi Hope, 1846), Stigmodera peroni Laporte & Gory, 1837 for Curis Laporte & Gory, 1837 (previously Buprestis caloptera Boisduval, 1835); CARABIDAE: Carabus elatus Fabricius, 1801 for Molops Bonelli, 1810 (previously Carabus terricola Herbst, 1784 sensu Fabricius, 1792); CERAMBYCIDAE: Prionus palmatus Fabricius, 1792 for Macrotoma Audinet-Serville, 1832 (previously Prionus serripes Fabricius, 1781); CHRYSOMELIDAE: Donacia equiseti Fabricius, 1798 for Haemonia Dejean, 1821 (previously Donacia zosterae Fabricius, 1801), Eumolpus ruber Latreille, 1807 for Euryope Dalman, 1824 (previously Cryptocephalus rubrifrons Fabricius, 1787), Galeruca affinis Paykull, 1799 for Psylliodes Latreille, 1829 (previously Chrysomela chrysocephala Linnaeus, 1758); COCCINELLIDAE: Dermestes rufus Herbst, 1783 for Coccidula Kugelann, 1798 (previously Chrysomela scutellata Herbst, 1783); CRYPTOPHAGIDAE: Ips caricis G.-A. Olivier, 1790 for Telmatophilus Heer, 1841 (previously Cryptophagus typhae Fallén, 1802), Silpha evanescens Marsham, 1802 for Atomaria Stephens, 1829 (previously Dermestes nigripennis Paykull, 1798); CURCULIONIDAE: Bostrichus cinereus Herbst, 1794 for Crypturgus Erichson, 1836 (previously Bostrichus pusillus Gyllenhal, 1813); DERMESTIDAE: Dermestes trifasciatus Fabricius, 1787 for Attagenus Latreille, 1802 (previously Dermestes pellio Linnaeus, 1758); ELATERIDAE: Elater sulcatus Fabricius, 1777 for Chalcolepidius Eschscholtz, 1829 (previously Chalcolepidius zonatus Eschscholtz, 1829); ENDOMYCHIDAE: Endomychus rufitarsis Chevrolat, 1835 for Epipocus Chevrolat, 1836 (previously Endomychus tibialis Guérin-Méneville, 1834); EROTYLIDAE: Ips humeralis Fabricius, 1787 for Dacne Latreille, 1797 (previously Dermestes bipustulatus Thunberg, 1781); EUCNEMIDAE: Fornax austrocaledonicus Perroud & Montrouzier, 1865 for Mesogenus Gemminger, 1869 (previously Mesogenus mellyi Bonvouloir, 1871); GLAPHYRIDAE: Melolontha serratulae Fabricius, 1792 for Glaphyrus Latreille, 1802 (previously Scarabaeus maurus Linnaeus, 1758); HISTERIDAE: Hister striatus Forster, 1771 for Onthophilus Leach, 1817 (previously Hister sulcatus Moll, 1784); LAMPYRIDAE: Ototreta fornicata E. Olivier, 1900 for Ototreta E. Olivier, 1900 (previously Ototreta weyersi E. Olivier, 1900); LUCANIDAE: Lucanus cancroides Fabricius, 1787 for Lissotes Westwood, 1855 (previously Lissotes menalcas Westwood, 1855); MELANDRYIDAE: Nothus clavipes G.-A. Olivier, 1812 for Nothus G.-A. Olivier, 1812 (previously Nothus praeustus G.-A. Olivier, 1812); MELYRIDAE: Lagria ater Fabricius, 1787 for Enicopus Stephens, 1830 (previously Dermestes hirtus Linnaeus, 1767); NITIDULIDAE: Sphaeridium luteum Fabricius, 1787 for Cychramus Kugelann, 1794 (previously Strongylus quadripunctatus Herbst, 1792); OEDEMERIDAE: Helops laevis Fabricius, 1787 for Ditylus Fischer, 1817 (previously Ditylus helopioides Fischer, 1817 [sic]); PHALACRIDAE: Sphaeridium aeneum Fabricius, 1792 for Olibrus Erichson, 1845 (previously Sphaeridium bicolor Fabricius, 1792); RHIPICERIDAE: Sandalus niger Knoch, 1801 for Sandalus Knoch, 1801 (previously Sandalus petrophya Knoch, 1801); SCARABAEIDAE: Cetonia clathrata G.-A. Olivier, 1792 for Inca Lepeletier & Audinet-Serville, 1828 (previously Cetonia ynca Weber, 1801); Gnathocera vitticollis W. Kirby, 1825 for Gnathocera W. Kirby, 1825 (previously Gnathocera immaculata W. Kirby, 1825); Melolontha villosula Illiger, 1803 for Chasmatopterus Dejean, 1821 (previously Melolontha hirtula Illiger, 1803); STAPHYLINIDAE: Staphylinus politus Linnaeus, 1758 for Philonthus Stephens, 1829 (previously Staphylinus splendens Fabricius, 1792); ZOPHERIDAE: Hispa mutica Linnaeus, 1767 for Orthocerus Latreille, 1797 (previously Tenebrio hirticornis DeGeer, 1775). The discovery of type species fixations that are older than those currently accepted pose a threat to nomenclatural stability (an application to the Commission is necessary to address each problem): CANTHARIDAE: Malthinus Latreille, 1805, Malthodes Kiesenwetter, 1852; CARABIDAE: Bradycellus Erichson, 1837, Chlaenius Bonelli, 1810, Harpalus Latreille, 1802, Lebia Latreille, 1802, Pheropsophus Solier, 1834, Trechus Clairville, 1806; CERAMBYCIDAE: Callichroma Latreille, 1816, Callidium Fabricius, 1775, Cerasphorus Audinet-Serville, 1834, Dorcadion Dalman, 1817, Leptura Linnaeus, 1758, Mesosa Latreille, 1829, Plectromerus Haldeman, 1847; CHRYSOMELIDAE: Amblycerus Thunberg, 1815, Chaetocnema Stephens, 1831, Chlamys Knoch, 1801, Monomacra Chevrolat, 1836, Phratora Chevrolat, 1836, Stylosomus Suffrian, 1847; COLONIDAE: Colon Herbst, 1797; CURCULIONIDAE: Cryphalus Erichson, 1836, Lepyrus Germar, 1817; ELATERIDAE: Adelocera Latreille, 1829, Beliophorus Eschscholtz, 1829; ENDOMYCHIDAE: Amphisternus Germar, 1843, Dapsa Latreille, 1829; GLAPHYRIDAE: Anthypna Eschscholtz, 1818; HISTERIDAE: Hololepta Paykull, 1811, Trypanaeus Eschscholtz, 1829; LEIODIDAE: Anisotoma Panzer, 1796, Camiarus Sharp, 1878, Choleva Latreille, 1797; LYCIDAE: Calopteron Laporte, 1838, Dictyoptera Latreille, 1829; MELOIDAE: Epicauta Dejean, 1834; NITIDULIDAE: Strongylus Herbst, 1792; SCARABAEIDAE: Anisoplia Schönherr, 1817, Anticheira Eschscholtz, 1818, Cyclocephala Dejean, 1821, Glycyphana Burmeister, 1842, Omaloplia Schönherr, 1817, Oniticellus Dejean, 1821, Parachilia Burmeister, 1842, Xylotrupes Hope, 1837; STAPHYLINIDAE: Batrisus Aubé, 1833, Phloeonomus Heer, 1840, Silpha Linnaeus, 1758; TENEBRIONIDAE: Bolitophagus Illiger, 1798, Mycetochara Guérin-Méneville, 1827. Type species are fixed for the following nominal genera: ANTHRIBIDAE: Decataphanes gracilis Labram & Imhoff, 1840 for Decataphanes Labram & Imhoff, 1840; CARABIDAE: Feronia erratica Dejean, 1828 for Loxandrus J.L. LeConte, 1853; CERAMBYCIDAE: Tmesisternus oblongus Boisduval, 1835 for Icthyosoma Boisduval, 1835; CHRYSOMELIDAE: Brachydactyla annulipes Pic, 1913 for Pseudocrioceris Pic, 1916, Cassida viridis Linnaeus, 1758 for Evaspistes Gistel, 1856, Ocnoscelis cyanoptera Erichson, 1847 for Ocnoscelis Erichson, 1847, Promecotheca petelii Guérin-Méneville, 1840 for Promecotheca Guérin- Méneville, 1840; CLERIDAE: Attelabus mollis Linnaeus, 1758 for Dendroplanetes Gistel, 1856; CORYLOPHIDAE: Corylophus marginicollis J.L. LeConte, 1852 for Corylophodes A. Matthews, 1885; CURCULIONIDAE: Hoplorhinus melanocephalus Chevrolat, 1878 for Hoplorhinus Chevrolat, 1878; Sonnetius binarius Casey, 1922 for Sonnetius Casey, 1922; ELATERIDAE: Pyrophorus melanoxanthus Candèze, 1865 for Alampes Champion, 1896; PHYCOSECIDAE: Phycosecis litoralis Pascoe, 1875 for Phycosecis Pascoe, 1875; PTILODACTYLIDAE: Aploglossa sallei Guérin-Méneville, 1849 for Aploglossa Guérin-Méneville, 1849, Colobodera ovata Klug, 1837 for Colobodera Klug, 1837; PTINIDAE: Dryophilus anobioides Chevrolat, 1832 for Dryobia Gistel, 1856; SCARABAEIDAE: Achloa helvola Erichson, 1840 for Achloa Erichson, 1840, Camenta obesa Burmeister, 1855 for Camenta Erichson, 1847, Pinotus talaus Erichson, 1847 for Pinotus Erichson, 1847, Psilonychus ecklonii Burmeister, 1855 for Psilonychus Burmeister, 1855. New replacement name: CERAMBYCIDAE: Basorus Bouchard & Bousquet, nom. nov. for Sobarus Harold, 1879. New status: CARABIDAE: KRYZHANOVSKIANINI Deuve, 2020, stat. nov. is given the rank of tribe instead of subfamily since our classification uses the rank of subfamily for PAUSSINAE rather than family rank; CERAMBYCIDAE: Amymoma Pascoe, 1866, stat. nov. is used as valid over Neoamymoma Marinoni, 1977, Holopterus Blanchard, 1851, stat. nov. is used as valid over Proholopterus Monné, 2012; CURCULIONIDAE: Phytophilus Schönherr, 1835, stat. nov. is used as valid over the unnecessary new replacement name Synophthalmus Lacordaire, 1863; EUCNEMIDAE: Nematodinus Lea, 1919, stat. nov. is used as valid instead of Arrhipis Gemminger, 1869, which is a junior homonym. Details regarding additional nomenclatural issues that still need to be resolved are included in the entry for each of these type genera: BOSTRICHIDAE: Lyctus Fabricius, 1792; BRENTIDAE: Trachelizus Dejean, 1834; BUPRESTIDAE: Pristiptera Dejean, 1833; CANTHARIDAE: Chauliognathus Hentz, 1830, Telephorus Schäffer, 1766; CARABIDAE: Calathus Bonelli, 1810, Cosnania Dejean, 1821, Dicrochile Guérin-Méneville, 1847, Epactius D.H. Schneider, 1791, Merismoderus Westwood, 1847, Polyhirma Chaudoir, 1850, Solenogenys Westwood, 1860, Zabrus Clairville, 1806; CERAMBYCIDAE: Ancita J. Thomson, 1864, Compsocerus Audinet-Serville, 1834, Dorcadodium Gistel, 1856, Glenea Newman, 1842; Hesperophanes Dejean, 1835, Neoclytus J. Thomson, 1860, Phymasterna Laporte, 1840, Tetrops Stephens, 1829, Zygocera Erichson, 1842; CHRYSOMELIDAE: Acanthoscelides Schilsky, 1905, Corynodes Hope, 1841, Edusella Chapuis, 1874; Hemisphaerota Chevrolat, 1836; Physonota Boheman, 1854, Porphyraspis Hope, 1841; CLERIDAE: Dermestoides Schäffer, 1777; COCCINELLIDAE: Hippodamia Chevrolat, 1836, Myzia Mulsant, 1846, Platynaspis L. Redtenbacher, 1843; CURCULIONIDAE: Coeliodes Schönherr, 1837, Cryptoderma Ritsema, 1885, Deporaus Leach, 1819, Epistrophus Kirsch, 1869, Geonemus Schönherr, 1833, Hylastes Erichson, 1836; DYTISCIDAE: Deronectes Sharp, 1882, Platynectes Régimbart, 1879; EUCNEMIDAE: Dirhagus Latreille, 1834; HYBOSORIDAE: Ceratocanthus A. White, 1842; HYDROPHILIDAE: Cyclonotum Erichson, 1837; LAMPYRIDAE: Luciola Laporte, 1833; LEIODIDAE: Ptomaphagus Hellwig, 1795; LUCANIDAE: Leptinopterus Hope, 1838; LYCIDAE: Cladophorus Guérin-Méneville, 1830, Mimolibnetis Kazantsev, 2000; MELOIDAE: Mylabris Fabricius, 1775; NITIDULIDAE: Meligethes Stephens, 1829; PTILODACTYLIDAE: Daemon Laporte, 1838; SCARABAEIDAE: Allidiostoma Arrow, 1940, Heterochelus Burmeister, 1844, Liatongus Reitter, 1892, Lomaptera Gory & Percheron, 1833, Megaceras Hope, 1837, Stenotarsia Burmeister, 1842; STAPHYLINIDAE: Actocharis Fauvel, 1871, Aleochara Gravenhorst, 1802; STENOTRACHELIDAE: Stenotrachelus Berthold, 1827; TENEBRIONIDAE: Cryptochile Latreille, 1828, Heliopates Dejean, 1834, Helops Fabricius, 1775. First Reviser actions deciding the correct original spelling: CARABIDAE: Aristochroodes Marcilhac, 1993 (not Aritochroodes); CERAMBYCIDAE: Dorcadodium Gistel, 1856 (not Dorcadodion), EVODININI Zamoroka, 2022 (not EVODINIINI); CHRYSOMELIDAE: Caryopemon Jekel, 1855 (not Carpopemon), Decarthrocera Laboissière, 1937 (not Decarthrocerina); CICINDELIDAE: Odontocheila Laporte, 1834 (not Odontacheila); CLERIDAE: CORMODINA Bartlett, 2021 (not CORMODIINA), Orthopleura Spinola, 1845 (not Orthoplevra, not Orthopleuva); CURCULIONIDAE: Arachnobas Boisduval, 1835 (not Arachnopus), Palaeocryptorhynchus Poinar, 2009 (not Palaeocryptorhynus); DYTISCIDAE: Ambarticus Yang et al., 2019 and AMBARTICINI Yang et al., 2019 (not Ambraticus, not AMBRATICINI); LAMPYRIDAE: Megalophthalmus G.R. Gray, 1831 (not Megolophthalmus, not Megalopthalmus); SCARABAEIDAE: Mentophilus Laporte, 1840 (not Mintophilus, not Minthophilus), Pseudadoretus dilutellus Semenov, 1889 (not P. ditutellus). While the correct identification of the type species is assumed, in some cases evidence suggests that species were misidentified when they were fixed as the type of a particular nominal genus. Following the requirements of Article 70.3.2 of the International Code of Zoological Nomenclature we hereby fix the following type species (which in each case is the taxonomic species actually involved in the misidentification): ATTELABIDAE: Rhynchites cavifrons Gyllenhal, 1833 for Lasiorhynchites Jekel, 1860; BOSTRICHIDAE: Ligniperda terebrans Pallas, 1772 for Apate Fabricius, 1775; BRENTIDAE: Ceocephalus appendiculatus Boheman, 1833 for Uroptera Berthold, 1827; BUPRESTIDAE: Buprestis undecimmaculata Herbst, 1784 for Ptosima Dejean, 1833; CARABIDAE: Amara lunicollis Schiødte, 1837 for Amara Bonelli, 1810, Buprestis connexus Geoffroy, 1785 for Polistichus Bonelli, 1810, Carabus atrorufus Strøm, 1768 for Patrobus Dejean, 1821, Carabus gigas Creutzer, 1799 for Procerus Dejean, 1821, Carabus teutonus Schrank, 1781 for Stenolophus Dejean, 1821, Carenum bonellii Westwood, 1842 for Carenum Bonelli, 1813, Scarites picipes G.-A. Olivier, 1795 for Acinopus Dejean, 1821, Trigonotoma indica Brullé, 1834 for Trigonotoma Dejean, 1828; CERAMBYCIDAE: Cerambyx lusitanus Linnaeus, 1767 for Exocentrus Dejean, 1835, Clytus supernotatus Say, 1824 for Psenocerus J.L. LeConte, 1852; CICINDELIDAE: Ctenostoma jekelii Chevrolat, 1858 for Ctenostoma Klug, 1821; CURCULIONIDAE: Cnemogonus lecontei Dietz, 1896 for Cnemogonus J.L. LeConte, 1876; Phloeophagus turbatus Schönherr, 1845 for Phloeophagus Schönherr, 1838; GEOTRUPIDAE: Lucanus apterus Laxmann, 1770 for Lethrus Scopoli, 1777; HISTERIDAE: Hister rugiceps Duftschmid, 1805 for Hypocaccus C.G. Thomson, 1867; HYBOSORIDAE: Hybosorus illigeri Reiche, 1853 for Hybosorus W.S. MacLeay, 1819; HYDROPHILIDAE: Hydrophilus melanocephalus G.-A. Olivier, 1793 for Enochrus C.G. Thomson, 1859; MYCETAEIDAE: Dermestes subterraneus Fabricius, 1801 for Mycetaea Stephens, 1829; SCARABAEIDAE: Aulacium carinatum Reiche, 1841 for Mentophilus Laporte, 1840, Phanaeus vindex W.S. MacLeay, 1819 for Phanaeus W.S. MacLeay, 1819, Ptinus germanus Linnaeus, 1767 for Rhyssemus Mulsant, 1842, Scarabaeus latipes Guérin-Méneville, 1838 for Cheiroplatys Hope, 1837; STAPHYLINIDAE: Scydmaenus tarsatus P.W.J. Müller & Kunze, 1822 for Scydmaenus Latreille, 1802. New synonyms: CERAMBYCIDAE: CARILIINI Zamoroka, 2022, syn. nov. of ACMAEOPINI Della Beffa, 1915, DOLOCERINI Özdikmen, 2016, syn. nov. of BRACHYPTEROMINI Sama, 2008, PELOSSINI Tavakilian, 2013, syn. nov. of LYGRINI Sama, 2008, PROHOLOPTERINI Monné, 2012, syn. nov. of HOLOPTERINI Lacordaire, 1868.
Style APA, Harvard, Vancouver, ISO itp.
4

Nazarov, N. V., A. V. Martynov i V. V. Kavurka. "НОВІ ЗНАХІДКИ РІДКІСНИХ ТВЕРДОКРИЛИХ У МЕЖАХ РІВНИННОЇ ЧАСТИНИ ПРАВОБЕРЕЖНОЇ УКРАЇНИ. І. ТУРУНИ (COLEOPTERA: CARABIDAE)". Ukrainian Entomological Journal, nr 20 (20.12.2022): 108–12. http://dx.doi.org/10.15421/282204.

Pełny tekst źródła
Streszczenie:
Наведено дані про нові знахідки 15 видів турунів (Leistus rufomarginatus (Duft­schmidt, 1812), Blethisa multipunctata (Linnaeus, 1758), Ophonus sabulicola (Panzer, 1796), Acupalpus brunnipes (Sturm, 1825), Stenolophus proximus Dejean, 1829, S. skrim­shi­ranus Stephens, 1828, Dromius quadrimaculatus (Linnaeus, 1758), Microlestes maurus (Sturm, 1827), Agonum angustatum Dejean, 1828, A. duftschmidi J. Schmidt, 1994, A. emar­ginatum (Gyllenhal, 1827), A. longicorne Chaudoir, 1846, Paranchus albipes (Fabricius, 1796), Platynus livens (Gyllenhal, 1810), Pterostichus quadrifoveolatus Letzner, 1852) з території рівнинної частини Правобережної України з короткими відомостями щодо їх екологічних та біологічних особливостей. Leistus rufomarginatus (Duftschmidt, 1812) вперше вказано для Житомирської області, а Stenolophus skrim­shi­ranus Stephens, 1828 — для Правобережного Полісся.
Style APA, Harvard, Vancouver, ISO itp.
5

Bousquet, Y., i A. Larochelle. "CATALOGUE OF THE GEADEPHAGA (COLEOPTERA: TRACHYPACHIDAE, RHYSODIDAE, CARABIDAE INCLUDING CICINDELINI) OF AMERICA NORTH OF MEXICO". Memoirs of the Entomological Society of Canada 125, S167 (1993): 3–397. http://dx.doi.org/10.4039/entm125167fv.

Pełny tekst źródła
Streszczenie:
AbstractAll species-group names of Trachypachidae, Rhysodidae, and Carabidae (including cicindelincs) correctly recorded from America north of Mexico are catalogued with state and province records. Valid names are listed with the author(s), date of publication, and page citation in their current and original combinations while all synonyms are provided in their original combinations. Genus-group names are recorded with the author(s), date of publication, page citation, type species, and kind of type species fixation. Species groups were preferred to subgenera but subscneric names are also listed.The following nomenclatural changes are proposed and discussed: Bembidion neocoerulescens Bousquet, new replacement name for B. coerulescens Van Dyke, 1925; Chlaenius circumcinctus Say, 1830 for C. perplexus Dejean, 1831; Cyclotrachelus dejeanellus (Csiki, 1930) for C. morio (Dejean, 1828); Cyclotrachelus freitagi Bousquet, new replacement name for C. obsoletus (Say, 1830); Dyschirius aeneolus LeConte, 1850 for D. frigidus Mannerheim, 1853; Harpalus laevipes Zetterstedt, 1828 for H. quadripunctatus Dejean, 1829; Harpalus providens Casey, 1914 for H. viduus LeConte, 1865; Harpalus reversus Casey, 1924 for H. funerarius Csiki, 1932; Notiophilus sierranus Casey, 1920 for N. obscurus Fall, 1901; Pseudamara Lindroth, 1968 for Disamara Lindroth, 1976; Pterostichus trinarius (Casey, 1918) for P. ohionis Csiki, 1930; Stenolophus carbo Bousquet, new replacement name for S. carbonarius (Dejean, 1829).Thirty-six new synonyms are established and seven, considered as questionable, are confirmed. They are (with the valid names in parentheses): Agonothorax planipennis Motschulsky, 1850 (= ? Agonum affine Kirby, 1837); Platynus variolatus LeConte, 1851 (= Agonum limbatum Motschulsky, 1845); Agonum nitidum Harris, 1869 (= ? Agonum melanarium Dejean, 1828); Amerinus fuscicornis Casey, 1914 and A. longipennis Casey, 1914 (= Amerinus linearis (LeConte, 1863)); Apristus fuscipennis Motschulsky, 1864 (= Apristus latens LeConte, 1848); Batenus aeneolus Motschulsky, 1865 (= Agonum exaratum (Mannerheim, 1853)); Brachystylus curtipennis Motschulsky, 1859 (= Pterostichus congestus (Ménétriés, 1843)); Brachystylus parallelus Motschulsky, 1859 (= ? Pterostichus californicus (Dejean, 1828)); Cratacanthus cephalotes Casey, 1914, C. subovalis Casey, 1914, and C. texanus Casey, 1884 (= Cratacanthus dubius (Palisot de Beauvois, 1811)); Cymindis comma T.W. Harris, 1869 (= ? Cymindis limbatus Dejean, 1831); Feronia praetermissa Chaudoir, 1868 (= Pterostichus commutabilis (Motschulsky, 1866)); Galerita angusticeps Casey, 1920 (= Galerita janus (Fabricius, 1792)); Gonoderus cordicollis Motschulsky 1859 (= Pterostichus tristis (Dejean, 1828)); Anisodactylus alternans LeConte, 1851 (= Anisodactylus alternans (Motschulsky, 1845)); Hypherpes spissitarsis Casey, 1918 (= Pterostichus tarsalis LeConte, 1873); Lebia brunnicollis Motschulsky, 1864 (= Lebia lobulata LeConte, 1863); Lebia subfigurata Motschulsky, 1864 and L. sublimbata Motschulsky, 1864 (= Lebia analis Dejean, 1825); Lophoglossus bispiculatus Casey, 1913 and L. illini Casey, 1913 (= Lophoglossus scrutator (LeConte, 1848)); Platysma leconteianum Lutshnik, 1922 (= Pterostichus commutabilis (Motschulsky, 1866)); Loxandrus iris Motschulsky, 1866(= Loxandrus rectus (Say, 1823)); Masoreus americanus Motschulsky, 1864 (= Stenolophus rotundicollis (Haldeman, 1843)); Notaphus laterimaculatus Motschulsky, 1859 (= Bembidion approximatum (LeConte, 1852)); Notiophilus cribrilaterus Motschulsky, 1864 (= Notiophilus novemstriatus LeConte, 1848); Omaseus brevibasis Casey, 1924 (= Pterostichus luctuosus (Dejean, 1828)); Notaphus incertus Motschulsky, 1845 (= Bembidion breve (Motschulsky, 1845)); Peryphus concolor Motschulsky, 1850 (= Bembidion platynoides Hayward, 1897); Peryphus erosus Motschulsky, 1850 (= Bembidion transversale Dejean, 1831); Peryphus subinflatus Motschulsky, 1859 (= Bembidion petrosum petrosum Gebler, 1833); Planesus fuscicollis Motschulsky, 1865 and P. laevigatas Motschulsky, 1865 (= Cymindis platicollis (Say, 1823)); Poecilus pimalis Casey, 1913 (= Poecilus diplophryus Chaudoir, 1876); Pterostichus arizonicus Schaeffer, 1910 (= Ophryogaster flohri Bates, 1882); Pterostichus sequoiarum Casey, 1913 (= Pterostichus tarsalis LeConte, 1873); Scaphinotus grandis Gistel, 1857 (= ? Scaphinotus unicolor unicolor (Fabricius, 1787)); Stenocrepis chalcas Bates, 1882 and S. chalcochrous Chaudoir, 1883 (= Stenocrepis texana (LeConte, 1863)); Stenolophus humeralis Motschulsky, 1864 (= Stenolophus plebejus Dejean, 1829); and Stenolophus laticollis Motschulsky, 1864 (= Stenolophus ochropezus (Say, 1823)).Olisthopus iterans Casey, 1913 and Pterostichus illustris LeConte, 1851, listed as junior synonyms of O. parmatus (Say, 1823) and P. congestus (Ménétriés, 1843), respectively, are considered in the present work as valid species.The type species (listed in parentheses) of the following 14 genus-group taxa are designated for the first time: Circinalidia Casey, 1920 (Agonum aeruginosum Dejean, 1828); Evolenes LeConte, 1853 (Oodes exaratus Dejean, 1831); Leucagonum Casey, 1920 (Agonum maculicolle Dejean, 1828); Megaliridia Casey, 1920 (Cychrus viduus Dejean, 1826); Megalostylus Chaudoir, 1843 (Feronia lucidula Dejean, 1828 = Feronia recta Say, 1823); Micragra Chaudoir, 1872 (Micragra lissonota Chaudoir, 1872); Onota Chaudoir, 1872 (Onota bicolor Chaudoir, 1872); Oodiellus Chaudoir, 1882 (Oodiellus mexicanus Chaudoir, 1882 = Anatrichis alutacea Bates, 1882); Oxydrepanus Putzeys, 1866 (Dyschirius rufus Putzeys, 1846); Paranchomenus Casey, 1920 (Platynus stygicus LeConte, 1854 = Anchomenus mannerheimii Dejean, 1828); Pemphus Motschulsky, 1866 (Cychrus velutinus Ménétriés, 1843); Peronoscelis Chaudoir, 1872 (Tetragonoderus figuratus Dejean, 1831); Rhombodera Reiche, 1842 (Rhombodera virgata Reiche, 1842 = Lebia trivittata Dejean, 1831); and Stenous Chaudoir, 1857 (Oodes cupreus Chaudoir, 1843).Two new family-group names are proposed, Cnemalobini (= Cnemacanthini of authors) based on Cnemalobus Guérin-Méneville, 1839 and Loxandrini based on Loxandrus LeConte, 1852.The work also includes a synopsis of all extant world carabid tribes, a bibliography of all original descriptions, a full taxonomic index, and, as appendices, lists of nomina nuda and unjustified emendations, and annotated lists of species incorrectly or doubtfully recorded from America north of Mexico and of new North American records.
Style APA, Harvard, Vancouver, ISO itp.
6

Lisbão, Rogério Salles, João Baptista Fornasier, Toshio Igue i Rui Ribeiro dos Santos. "Comportamento de híbridos de cebola nas condições de Monte Alegre do Sul, SP". Bragantia 45, nr 1 (1986): 123–31. http://dx.doi.org/10.1590/s0006-87051986000100011.

Pełny tekst źródła
Streszczenie:
Avaliou-se o comportamento de cinco híbridos comerciais de cebola (Allium cepa L.) - Granex 33, Granex 429, Baia Ouro AG-55, Baia Ouro AG-55R e Baia Ouro AG-59 e cinco experimentais - FMX-151, FMX- 179, FMX-181, FMX-182 e FMX-183 quanto à qualidade e produtividade, visando introduzi-los e indicar aos produtores os melhores para o cultivo nas condições de Monte Alegre do Sul, SP, e áreas de ecologia similar. O experimento foi conduzido na Estação Experimental do Instituto Agronômico, situada naquela localidade, de 21 de março (semeadura) a 7 de novembro de 1983 (última colheita). Nas suas condições, outono-inverno, verificou-se que quanto à produtividade de bulbos comerciáveis, os híbridos Granex 33 (testemunha), Baia Ouro AG-55 e Baia Ouro AG-59 foram superiores aos híbridos FMX-181 e FMX-182, não diferindo de Baia Ouro AG-55R, Granex 429, FMX-151, FMX-179 e FMX-183. Em relação ao peso médio de bulbos comerciáveis, os de melhor comportamento foram Baia Ouro AG-55 e Baia Ouro AG-59, que superaram Baia Ouro AG-55R, Granex 429, FMX-181 e FMX-182, porém não diferiram de Granex 33, FMX-151, FMX-179 e FMX-183. O híbrido Baia Ouro AG-55R e os experimentais FMX-181, FMX- 182 e FMX- 183 apresentaram porcentagens mais elevadas de bulbos tipo "charuto", tendo os três últimos, ainda, maior desuniformidade quanto ao formato de bulbos. Não se verificou ocorrência de florescimento prematuro em nenhum material avaliado. Quanto ao ciclo, o mais precoce foi Granex 33 e o mais tardio, Baia Ouro AG-55. Em relação às características consideradas, podem-se indicar os híbridos Granex 33, Granex 429, Baia Ouro AG-55, Baia Ouro AG-59, FMX-151 e FMX-179, como de aptidão ao cultivo em regiões de ecologia similar à de Monte Alegre do Sul
Style APA, Harvard, Vancouver, ISO itp.
7

Popovic, Radomir. "Nicifor Ninkovic - on the trail of his “Autobiography ” and other historical sources". Prilozi za knjizevnost, jezik, istoriju i folklor, nr 82 (2016): 89–107. http://dx.doi.org/10.2298/pkjif1682089p.

Pełny tekst źródła
Streszczenie:
?My Autobiography? by Nicifor Ninkovic, barber to Prince Milos, is one of the most widely read Serbian memoirs. There were five reprints from 1976 to 2016. Our only information on his life can be gathered from that work. He was born in the Syrmian village of Dobrinci in 1788. He crossed over to insurgent Serbia in 1807. In the winter of 1812-1813 he moved through Wallachia and went to Constantinople. He returned to Serbia in 1819. He was personal barber to Prince Milos from 1822 to 1826. Then he served as a scribe in the Rudnik District Magistrate in 1828-1829. He left Serbia again in 1831 and spent ten years roaming around Turkey. He finally came back to Serbia in late 1841 or early 1842. This paper focuses on the unknown sources from the Archive of Serbia and the Historical Archive of Belgrade related to Nicifor Ninkovic, which include his requests to Prince Milos dated April 28/May 10, 1819, April 24/May 6, 1825, and April 14/26, 1826, in which he asks for the ruler?s mercy or employment, also a letter to Prince Milos?s secretary Nikola Nikolajevic dated October 13/25, 1820, in which he recommends himself for the post of the Prince?s barber. The registers of births, marriages and deaths of Belgrade Cathedral contain information on the date of his marriage to Hristina from Zemun (April 30/May 12, 1822), the birth and death of his daughter Draginja (March 16/28, 1827 - March 18/30, 1834), and the death of his wife Hristina (January 5/17, 1835). We put forth a new argument that Nicifor Ninkovic died in Belgrade, and not in Pozarevac, as has been held so far.
Style APA, Harvard, Vancouver, ISO itp.
8

Tang, Xiaoli, Dong Zheng, Ping Hu, Zongyue Zeng, Ming Li, Lynne Tucker, Renee Monahan, Murray B. Resnick, Manran Liu i Bharat Ramratnam. "Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells". Nucleic Acids Research 42, nr 5 (12.12.2013): 2988–98. http://dx.doi.org/10.1093/nar/gkt1275.

Pełny tekst źródła
Streszczenie:
Abstract Glycogen synthase kinase 3 beta (GSK3β) is a critical protein kinase that phosphorylates numerous proteins in cells and thereby impacts multiple pathways including the β-Catenin/TCF/LEF-1 pathway. MicroRNAs (miRs) are a class of noncoding small RNAs of ∼22 nucleotides in length. Both GSK3β and miR play myriad roles in cell functions including stem cell development, apoptosis, embryogenesis and tumorigenesis. Here we show that GSK3β inhibits the expression of miR-96, miR-182 and miR-183 through the β-Catenin/TCF/LEF-1 pathway. Knockout of GSK3β in mouse embryonic fibroblast cells increases expression of miR-96, miR-182 and miR-183, coinciding with increases in the protein level and nuclear translocation of β-Catenin. In addition, overexpression of β-Catenin enhances the expression of miR-96, miR-182 and miR-183 in human gastric cancer AGS cells. GSK3β protein levels are decreased in human gastric cancer tissue compared with surrounding normal gastric tissue, coinciding with increases of β-Catenin protein, miR-96, miR-182, miR-183 and primary miR-183-96-182 cluster (pri-miR-183). Furthermore, suppression of miR-183-96-182 cluster with miRCURY LNA miR inhibitors decreases the proliferation and migration of AGS cells. Knockdown of GSK3β with siRNA increases the proliferation of AGS cells. Mechanistically, we show that β-Catenin/TCF/LEF-1 binds to the promoter of miR-183-96-182 cluster gene and thereby activates the transcription of the cluster. In summary, our findings identify a novel role for GSK3β in the regulation of miR-183-96-182 biogenesis through β-Catenin/TCF/LEF-1 pathway in gastric cancer cells.
Style APA, Harvard, Vancouver, ISO itp.
9

Henzler, Christine, i John J. Harper. "Implementing a Computer-Assisted Appropriateness Review Using DRG 182/183". Joint Commission Journal on Quality Improvement 21, nr 5 (maj 1995): 239–47. http://dx.doi.org/10.1016/s1070-3241(16)30145-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Muraleedharan, Chithra K., Sharon A. McClellan, Sandamali A. Ekanayaka, Rebecca Francis, Alex Zmejkoski, Linda D. Hazlett i Shunbin Xu. "The miR-183/96/182 Cluster Regulates Macrophage Functions in Response to Pseudomonas aeruginosa". Journal of Innate Immunity 11, nr 4 (2019): 347–58. http://dx.doi.org/10.1159/000495472.

Pełny tekst źródła
Streszczenie:
Macrophages (Mϕ) are an important component of the innate immune system; they play critical roles in the first line of defense to pathogen invasion and modulate adaptive immunity. MicroRNAs (miRNAs) are a newly recognized, important level of gene expression regulation. However, their roles in the regulation of Mϕ and the immune system are still not fully understood. In this report, we provide evidence that the conserved miR-183/96/182 cluster (miR-183/96/182) modulates Mϕ function in their production of reactive nitrogen (RNS) and oxygen species (ROS) and their inflammatory response to Pseudomonas aeruginosa (PA) infection and/or lipopolysaccharide (LPS) treatment. We show that knockdown of miR-183/96/182 results in decreased production of multiple proinflammatory cytokines in response to PA or LPS treatment in Mϕ-like Raw264.7 cells. Consistently, peritoneal Mϕ from miR-183/96/182-knockout versus wild-type mice are less responsive to PA or LPS, although their basal levels of proinflammatory cytokines are increased. In addition, overexpression of miR-183/96/182 results in decreased production of nitrite and ROS in Raw264.7 cells. We also provide evidence that DAP12 and Nox2 are downstream target genes of miR-183/96/182. These data suggest that miR-183/96/182 imposes global regulation on various aspects of Mϕ function through different downstream target genes.
Style APA, Harvard, Vancouver, ISO itp.
11

Wang, Zhichao, Lin Su, Tong Wu, Lei Sun, Zhenghai Sun, Yuchen Wang, Ping Li i Guangcheng Cui. "Inhibition of MicroRNA-182/183 Cluster Ameliorates Schizophrenia by Activating the Axon Guidance Pathway and Upregulating DCC". Oxidative Medicine and Cellular Longevity 2022 (10.11.2022): 1–17. http://dx.doi.org/10.1155/2022/9411276.

Pełny tekst źródła
Streszczenie:
Schizophrenia (SZ) is a complex disorder caused by a variety of genetic and environmental factors. Mounting evidence suggests the involvement of microRNAs (miRNAs) in the pathology of SZ. Accordingly, the current study set out to investigate the possible implication of the miR-182/183 cluster, as well as its associated mechanism in the progression of SZ. Firstly, rat models of SZ were established by intraperitoneal injection of MK-801. Moreover, rat primary hippocampal neurons were exposed to MK-801 to simulate injury of hippocampal neurons. The expression of miR-182/183 or its putative target gene DCC was manipulated to examine their effects on SZ in vitro and in vivo. It was found that miR-182 and miR-183 were both highly expressed in peripheral blood of SZ patients and hippocampal tissues of SZ rats. In addition, the miR-182/183 cluster could target DDC and downregulate the expression of DDC. On the other hand, inhibition of the miR-182/183 cluster ameliorated SZ, as evidenced by elevated serum levels of NGF and BDNF, along with reductions in spontaneous activity, serum GFAP levels, and hippocampal neuronal apoptosis. Additionally, DCC was found to activate the axon guiding pathway and influence synaptic activity in hippocampal neurons. Collectively, our findings highlighted that inhibition of the miR-182/183 cluster could potentially attenuate SZ through DCC-dependent activation of the axon guidance pathway. Furthermore, inhibition of the miR-182/183 cluster may represent a potential target for the SZ treatment.
Style APA, Harvard, Vancouver, ISO itp.
12

Ru, Wenxiu, Kunpeng Liu, Jiameng Yang, Jianyong Liu, Xinglei Qi, Bizhi Huang i Hong Chen. "miR-183/96/182 Cluster Regulates the Development of Bovine Myoblasts through Targeting FoxO1". Animals 12, nr 20 (17.10.2022): 2799. http://dx.doi.org/10.3390/ani12202799.

Pełny tekst źródła
Streszczenie:
Muscle development is an important factor affecting meat yield and quality and is coordinated by a variety of the myogenic genes and signaling pathways. Recent studies reported that miRNA, a class of highly conserved small noncoding RNA, is actively involved in regulating muscle development, but many miRNAs still need to be further explored. Here, we identified that the miR-183/96/182 cluster exhibited higher expression in bovine embryonic muscle; meanwhile, it widely existed in other organizations. Functionally, the results of the RT-qPCR, EdU, CCK8 and immunofluorescence assays demonstrated that the miR-183/96/182 cluster promoted proliferation and differentiation of bovine myoblast. Next, we found that the miR-183/96/182 cluster targeted FoxO1 and restrained its expression. Meanwhile, the expression of FoxO1 had a negative correlation with the expression of the miR-183/96/182 cluster during myoblast differentiation. In a word, our findings indicated that the miR-183/96/182 cluster serves as a positive regulator in the proliferation and differentiation of bovine myoblasts through suppressing the expression of FoxO1.
Style APA, Harvard, Vancouver, ISO itp.
13

Zhou, Li, Guihua Li, Xiling Zhang, Shunbin Xu i Qing-Sheng Mi. "MicroRNA-183/96/182 cluster regulates iNKT cell development and function (IRM7P.706)". Journal of Immunology 194, nr 1_Supplement (1.05.2015): 61.7. http://dx.doi.org/10.4049/jimmunol.194.supp.61.7.

Pełny tekst źródła
Streszczenie:
Abstract MicroRNAs (miRNAs), a class of non-coding small RNAs. Invariant Natural Killer T (iNKT) cells are potent regulators of diverse immune responses. Our previous study indicated that lack of miRNAs following the deletion of Dicer, a miRNAs-processing enzyme, affect iNKT cell development and function (PNAS, 2009). However, the roles of specific miRNA in iNKT cell development and function remain unclear. The miR-183/96/182 cluster, composed of 3 miRNA genes, is significantly upregulated upon T cell activation. In this study, we investigate the role of miR-183/96/182 cluster on development and function of iNKT cells, using miR-183/96/182 knockout (KO) mice. We found that the frequency of immature iNKT cells significantly increased, while mature iNKT cells significantly decreased in thymus of KO mice compared to littermate control (P<0.05), indicating the blockage of iNKT cell development in thymus. Furthermore, lack of miR-183/96/182 resulted in a substantial reduction of iNKT cell number (p<0.05) in the thymus and in spleen. The mutant iNKT cells displayed defective cytokine production, including IL-4 and IFNγ, compared to iNKT cells from littermate control (P<0.05). Finally, bone marrow chimera transferring experiments further suggested the miR-183/96/182 cluster controlled iNKT cell development and function by cell-intrinsic characteristics. Thus, our data define a specific role of miR-183/96/182 cluster in the development and function of iNKT cells.
Style APA, Harvard, Vancouver, ISO itp.
14

Gebremedhn, S., D. Salilew-Wondim, M. Hoelker, F. Rings, C. Neuhoff, E. Tholen, C. Looft, K. Schellander i D. Tesfaye. "129 microRNA-183~96~182 CLUSTER PROMOTE BOVINE GRANULOSA CELL PROLIFERATION THROUGH COORDINATED REGULATION OF FOXO1". Reproduction, Fertility and Development 28, nr 2 (2016): 194. http://dx.doi.org/10.1071/rdv28n2ab129.

Pełny tekst źródła
Streszczenie:
Among other microRNA clusters, we previously showed that the miR-183~96~182 cluster (miR-183, miR-96, and miR-182) is abundantly expressed in bovine granulosa cells (bGC) of preovulatory dominant follicles obtained at the follicular phase of the bovine oestrous cycle. Moreover, this miRNA cluster are validated to coordinately target the Fork head O1 (FOXO1), a subfamily of transcription factors that regulate genes involved in cell proliferation, apoptosis, cell cycle arrest, and metabolism. However, the functional involvement of miR-183~96~182 cluster in bGC function by regulation of FOXO1 is not yet determined. Here, we aimed to investigate the function of miR-183~96~182 cluster in bGC using in vitro cell culture model. For this, bGC were aspirated from ovarian follicles (Ø 3–5 mm) obtained from local abattoir. Cells were plated in 24-well plate (2.5 × 105 cells well–1) in DMEM/F-12 (Sigma, Germany) supplemented with 10% FBS (GIBCO, Grand Island, NY) and 1% penicillin/streptomycin (GIBCO) and incubated at 37°C in 5% CO2. Transfection of bGC with miRNA mimics, inhibitors, FOXO1-siRNA, and appropriate controls (Exiqon, Vedbæk, Denmark) was performed using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Cell proliferation was determined using Cell Counting Kit-8 (CCK-8; Dojindo Molecular Technology, Kumamoto, Japan). Cell cycle distribution was determined with flow cytometric analysis. Total RNA was isolated using miRNeasy mini kit (Qiagen, Hilden, Germany), quantification of target gene was performed using qPCR, and data were analysed using ΔΔCT method. Differences in the mean expression values between treatments were analysed with two-tailed Student’s t-test and statistical significance was defined at P ≤ 0.05. Results showed that a sponge effect was observed upon inhibition in individual miRNA of the cluster, which could be attributed to the partial sequence similarity among cluster members. Both FOXO1 mRNA and protein expression were significantly reduced upon transfection of bGC with miR-183~96~182 cluster mimics, while miR-183~96~182 cluster inhibition increased both FOXO1 mRNA and protein expression. Transfection of bGC with miR-183~96~182 mimics promoted cell proliferation, while inhibition tends to slow down proliferation. Furthermore, the proportion of bGC under G0/G1 arrest markedly declined (P < 0.05), while the S and G2/M phases increased in response to miR-183~96~182 mimicking. Selective knockdown of FOXO1 with FOXO1-siRNA significantly reduced FOXO1 mRNA and protein expression. Interestingly, knockdown of FOXO1 showed similar phenotypic effects such as that of miR-183~96~182 mimics transfection, which resulted in elevated bGC proliferation and reduction in the proportion of cells under G0/G1 arrest. In conclusion, overexpression of miR-183~96~182 cluster promote bGC proliferation and G0/G1 to S and G2/M cell cycle transition through coordinated regulation of genes in the FOXO1 signaling axis.
Style APA, Harvard, Vancouver, ISO itp.
15

Camargo, Carlos Eduardo de Oliveira, João Carlos Felício, Antonio Wilson Penteado Ferreira Filho, José Guilherme de Freitas, Ricardo Augusto Dias Kanthack i Benedito de Camargo Barros. "Melhoramento do trigo: XXIV. Avaliação de novos genótipos no Estado de São Paulo". Bragantia 50, nr 2 (1991): 203–23. http://dx.doi.org/10.1590/s0006-87051991000200004.

Pełny tekst źródła
Streszczenie:
Compararam-se vinte e três linhagens de diversas origens e dois cultivares de trigo em ensaios tanto em condição de irrigação por aspersão como de sequeiro, analisando-se a produção de grãos, outros componentes da produção e resistência às doenças. Em casa de vegetação, estudou-se a resistência às misturas de raças prevalecentes dos agentes causais da ferrugem-do-colmo e da-folha e, em condições de laboratório, a tolerância ao alumínio, em soluções nutritivas. As linhagens IAC-243, IAC-187 e IAC-188, de porte baixo, resistentes ao acamamento e de ciclo médio, e a linhagem IAC-190, de porte médio, salientaram-se quanto à produção de grãos em condições de irrigação por aspersão. Em sequeiro, destacaram-se quanto à produtividade as linhagens IAC-188 e IAC-193, de porte baixo, resistentes ao acamamento e de ciclo precoce. A linhagem 17 mostrou resistência às três misturas de raças prevalecentes do agente causal da ferrugem-da-folha em estádio de plântula, imunidade a essa ferrugem em condições de campo (planta adulta), resistência às duas misturas de raças de ferrugem-do-colmo, moderada resistência ao oídio e menor grau de área infectada pelos patógenos causadores de manchas foliares. O cultivar Alondra-S-46 mostrou ser fonte genética do caráter espiga comprida; a linhagem IAC-182, de maior número de espiguetas por espiga; 'Anahuac', de maior número de grãos por espiga e por espigueta e as linhagens IAC-188 e 17, de grãos mais pesados. As linhagens 2, IAC-182, IAC-243, 7, IAC-186, IAC-187 e IAC-193 foram as mais tolerantes à toxicidade de alumínio.
Style APA, Harvard, Vancouver, ISO itp.
16

ZHANG, Y. H., X. H. ZHOU, J. J. HE, Z. LIU, Y. D. FANG, W. T. GUO, X. G. LEI i in. "SEARCH FOR SIGNATURE INVERSION IN THE πi13/2 ⊗ νi13/2 BANDS IN 182,184,186Au". International Journal of Modern Physics E 15, nr 07 (październik 2006): 1437–45. http://dx.doi.org/10.1142/s0218301306005125.

Pełny tekst źródła
Streszczenie:
Search for low-spin signature inversion in the πi13/2 ⊗ νi13/2 bands in odd-odd 182,184,186 Au has been conducted through the standard in-beam γ-spectroscopy techniques. The experiments for 182 Au and 186 Au have been performed in the Japan Atomic Energy Agency (JAEA) via the 152 Sm (35 Cl ,5 n )182 Au and 172 Yb (19 F ,5 n )186 Au reactions, respectively. A study of 184 Au has been made using a multi-detector array GASP in LNL, Italy, via the 159 Tb (29 Si ,4 n )184 Au reaction. The πi13/2 ⊗ νi13/2 bands in these three nuclei have been identified and extended up to high-spin states. In particular, the inter-band connection between the πi13/2 ⊗ νi13/2 band and the ground-state band in 184 Au has been established, leading to a firm spin-and-parity assignment for the πi13/2 ⊗ νi13/2 band. The low-spin signature inversion is found in the πi13/2 ⊗ νi13/2 bands in 182,184,186 Au according to our spin-assignment and the signature crossing observed at high-spin states.
Style APA, Harvard, Vancouver, ISO itp.
17

Ahsan, M. Farid, i Ibrahim Khalil Al Haidar. "A comparative study of avian diversity in Teknaf Wildlife Sanctuary, Inani Reserve Forest and Chittagong University campus in Bangladesh". Journal of Threatened Taxa 9, nr 5 (26.05.2017): 10158. http://dx.doi.org/10.11609/jott.2942.9.5.10158-10170.

Pełny tekst źródła
Streszczenie:
We performed a comparative study of birds in Teknaf Wildlife Sanctuary (TWS), Inani Reserve Forest (IRF) and the Chittagong University Campus (CUC) in 2015. A total of 249 species belonging to 50 families were recorded: 210 species from 46 families in TWS, 187 species from 45 families in IRF, and 182 species from 45 families in CUC. Of these, 181 species (73%) were resident, 57 (23%) winter visitors, three (1.20%) summer visitors, two (0.80%) passage migrants and five (2%) vagrants. According to their frequency of occurrence, 73 species (29.32%) were very common, 66 (26.5%) common, 62 (25%) uncommon and 48 (19%) rare. 120 species (48%) were passerines (97 in TWS, 95 in IRF and 97 in CUC) and 129 (52%) non-passerines (113 in TWS, 92 in IRF and 85 in CUC). Among the three areas, TWS had the greatest diversity in terms of total species, (210˃187˃182), residents (161˃148˃134), non-residents (49˃48˃39), forest indicator birds (47˃44˃31) and wading birds (48˃34˃24).
Style APA, Harvard, Vancouver, ISO itp.
18

Sedgeman, Leslie R., Carine Beysen, Ryan M. Allen, Marisol A. Ramirez Solano, Scott M. Turner i Kasey C. Vickers. "Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes". American Journal of Physiology-Gastrointestinal and Liver Physiology 315, nr 5 (1.11.2018): G810—G823. http://dx.doi.org/10.1152/ajpgi.00238.2018.

Pełny tekst źródła
Streszczenie:
Colesevelam is a bile acid sequestrant approved to treat both hyperlipidemia and type 2 diabetes, but the mechanism for its glucose-lowering effects is not fully understood. The aim of this study was to investigate the role of hepatic microRNAs (miRNAs) as regulators of metabolic disease and to investigate the link between the cholesterol and glucose-lowering effects of colesevelam. To quantify the impact of colesevelam treatment in rodent models of diabetes, metabolic studies were performed in Zucker diabetic fatty (ZDF) rats and db/db mice. Colesevelam treatments significantly decreased plasma glucose levels and increased glycolysis in the absence of changes to insulin levels in ZDF rats and db/db mice. High-throughput sequencing and real-time PCR were used to quantify hepatic miRNA and mRNA changes, and the cholesterol-sensitive miR-96/182/183 cluster was found to be significantly increased in livers from ZDF rats treated with colesevelam compared with vehicle controls. Inhibition of miR-182 in vivo attenuated colesevelam-mediated improvements to glycemic control in db/db mice. Hepatic expression of mediator complex subunit 1 (MED1), a nuclear receptor coactivator, was significantly decreased with colesevelam treatments in db/db mice, and MED1 was experimentally validated to be a direct target of miR-96/182/183 in humans and mice. In summary, these results support that colesevelam likely improves glycemic control through hepatic miR-182–5p, a mechanism that directly links cholesterol and glucose metabolism. NEW & NOTEWORTHY Colesevelam lowers systemic glucose levels in Zucker diabetic fatty rats and db/db mice and increases hepatic levels of the sterol response element binding protein 2-responsive microRNA cluster miR-96/182/183. Inhibition of miR-182 in vivo reverses the glucose-lowering effects of colesevelam in db/db mice. Mediator complex subunit 1 (MED1) is a novel, direct target of the miR-96/182/183 cluster in mice and humans.
Style APA, Harvard, Vancouver, ISO itp.
19

Hua, Mingqiang, Qi Feng, Ju Li, Yu Hou, Shuwen Wang, Anli Liu, Jun Peng i Ming Hou. "Aberrant Expression of MicroRNAs in CD4+ Cells May Contribute to the Imbalance of Th17/Treg Cells in Primary Immune Thrombocytopenia". Blood 132, Supplement 1 (29.11.2018): 1140. http://dx.doi.org/10.1182/blood-2018-99-115569.

Pełny tekst źródła
Streszczenie:
Abstract Backgrounds:Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by reduced platelet count and an increased risk of bleeding. The imbalance of Treg/Th17 cells has been demonstrated in ITP, but the mechanism of Th17/Treg cells imbalance is still not clear. In this study, we aimed to investigate whether the expression of helper T (Th) or Treg cell-related microRNAs, such as miR-183-96-182 cluster, miR-17-5p, miR-99a, miR-146-5p, miR-155-5p, miR-181-5p, and miR-326, regulates the ratio of Th17/Treg in CD4+ T cells and could be used to evaluate the clinical implications of ITP patients. Methods: Peripheral blood was obtained from 54 patients with active ITP and 34 healthy controls. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density-gradient centrifugation and the CD4+ cells were separated by immuno-magnetic microbeads selection. Amplification technique of RT-PCR using stem-loop primers was applied to detect the relative expression of microRNAs (miR-17-5p, miR-99a, miR-96-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-182-5p, miR-183-5, miR-326) and U6 was normalized as control for miRNA quantification. The frequencies of Th17 and Treg cells in peripheral blood were analyzed by flow cytometry. The mRNA expression levels of Il-6, Il-10, Il-17, Rorγ-t and Foxp-3 in CD4+ cells were determined by RT-PCR. Platelet autoantibodies specific for GPIIb/IIIaor GPIb/IX were measured using MAIPA method. CD4+ cells were transfected with miRNAs (miR-99a, miR-182-5p, miR-183-5), mimics or inhibitors, which were used to detect the function of miRNAs. Cytokines in culture medium were determined by ELISA. Results: Our results showed that the relative expression of miR-182-5p and miR-183-5p in CD4+ cells was significantly increased in active ITP patients, compared to healthy controls (miR-182-5p, median 9.2678 vs 5.2723, p < 0.05, Fig. 1a; miR-183-5p, median 5.4435 vs 2.009, p < 0.05, Fig. 1b). In addition, the relative expression of miR-99a in ITP patients was lower than that of healthy controls (median 3.4214 vs 7.9648, p < 0.05; Fig. 1c). Moreover, the frequency of Treg cells decreased significantly in ITP patients compared to those in controls (1.89±1.59% vs 4.12±1.42%, p < 0.05; Fig. 2a), and the percentage of Treg cells was positively correlated with the relative expression of miR-99a in ITP patients(r=0.461, p< 0.05; Fig. 2c) and health controls(r=0.729, p< 0.05; Fig. 2d). Though the percentage of Th17 cells increased in ITP patients compared to the health controls (3.51±2.13%vs 1.85±0.63%, p < 0.05; Fig. 2b), there was no correlation between the percentage of Th17 and the relative expression of microRNAs in ITP patients or health controls. Besides, there was no correlation between the expression of mRNAs (Il-10, Il-17, Rorγ-t and Foxp-3) and microRNAs (miR-99a, miRNA-182-5p or miR-183-5p). No significant correlation was found between the microRNAs expression and platelets counts or different autoantibody subsets in ITP patients. The relative expression of other microRNAs (miR-17-5p, miR-96-5p, miR-146a-5p, miR-155-5p, miR-181-5p, miR-326) revealed no difference in CD4+ cells between ITP patients and health controls. Furthermore, the down-regulated expression of miR-183-5p with inhibitors promoted to the differentiation of Th17 cells(Fig. 3a), while up-regulated expression of miR-99a with mimics contributed to Treg cells in CD4+ cells from ITP patients (Fig. 3b). Meanwhile, the IL-17A in culture medium decreased in inhibitor group of miR-183-5p or miR-183-5p. However, miR-182-5p inhibitor had no effect on the differentiation of Th17 cells. Conclusions: Our results show the abnormal expression of microRNAs (miR-99a, miRNA-182-5p and miR-183-5p) in CD4+ cells and the miR-99a was closely correlated with the Treg cells. The aberrant expression of microRNAs may contribute to the imbalance of Th17/Treg cells in the development of ITP patients and potentially constitute a novel therapeutic target. Disclosures No relevant conflicts of interest to declare.
Style APA, Harvard, Vancouver, ISO itp.
20

Binder, Mascha, Florian Otto, Roland Mertelsmann, Hendrik Veelken i Martin Trepel. "The epitope recognized by rituximab". Blood 108, nr 6 (15.09.2006): 1975–78. http://dx.doi.org/10.1182/blood-2006-04-014639.

Pełny tekst źródła
Streszczenie:
AbstractRituximab is a monoclonal antibody widely used in the treatment of malignant lymphoma and autoimmunity. Its epitope within the B-cell antigen CD20 is largely unknown. We used phage display libraries to select peptides binding to rituximab. Enriched peptides showed 2 sequence patterns: one motif (CALMIANSC) is related to (170)ANPS(173) within CD20, while another motif (WEWTI) may mimic the CD20 segment (182)YCYSI(185). Phages displaying either motif specifically bound rituximab. Binding to rituximab by the CD20 peptides ANPS and YCYSI was weak when used separately and enhanced when both peptides were linked. Recombinant CD20 extracellular loop proteins blocked binding of the selected CWWEWTIGC phage to rituximab, suggesting that CWWEWTIGC mimics the epitope. Blocking capacity was strongly reduced upon mutation of the CD20 strings ANPS or YCYSI. We conclude that rituximab binds a discontinuous epitope in CD20, comprised of (170)ANPS(173) and (182)YCYSI(185), with both strings brought in steric proximity by a disulfide bridge between C(167) and C(183).
Style APA, Harvard, Vancouver, ISO itp.
21

Firestone, R. B. "Nuclear Data Sheets for A=182". Nuclear Data Sheets 54, nr 2 (czerwiec 1988): 307–411. http://dx.doi.org/10.1016/s0090-3752(88)80133-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Stebbins, Glenn T. "182. Development of a rating scale". Toxicon 93 (styczeń 2015): S57. http://dx.doi.org/10.1016/j.toxicon.2014.11.185.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Singh, Balraj, i Joel C. Roediger. "Nuclear Data Sheets for A=182". Nuclear Data Sheets 111, nr 8 (sierpień 2010): 2081–330. http://dx.doi.org/10.1016/j.nds.2010.08.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Singh, Balraj. "Nuclear Data Sheets for A = 182". Nuclear Data Sheets 130 (grudzień 2015): 21–126. http://dx.doi.org/10.1016/j.nds.2015.11.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Singh, B., i R. B. Firestone. "Nuclear Data Sheets for A = 182". Nuclear Data Sheets 74, nr 3 (marzec 1995): 383–460. http://dx.doi.org/10.1006/ndsh.1995.1013.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Lin, Min-Ying, Yu-Chan Chang, Shan-Ying Wang, Muh-Hwa Yang, Chih-Hsien Chang, Michael Hsiao, Richard N. Kitsis i Yi-Jang Lee. "OncomiR miR-182-5p Enhances Radiosensitivity by Inhibiting the Radiation-Induced Antioxidant Effect through SESN2 in Head and Neck Cancer". Antioxidants 10, nr 11 (14.11.2021): 1808. http://dx.doi.org/10.3390/antiox10111808.

Pełny tekst źródła
Streszczenie:
Radiotherapy is routinely used for the treatment of head and neck squamous cell carcinoma (HNSCC). However, the therapeutic efficacy is usually reduced by acquired radioresistance and locoregional recurrence. In this study, The Cancer Genome Atlas (TCGA) analysis showed that radiotherapy upregulated the miR-182/96/183 cluster and that miR-182 was the most significantly upregulated. Overexpression of miR-182-5p enhanced the radiosensitivity of HNSCC cells by increasing intracellular reactive oxygen species (ROS) levels, suggesting that expression of the miR-182 family is beneficial for radiotherapy. By intersecting the gene targeting results from three microRNA target prediction databases, we noticed that sestrin2 (SESN2), a molecule resistant to oxidative stress, was involved in 91 genes predicted in all three databases to be directly recognized by miR-182-5p. Knockdown of SESN2 enhanced radiation-induced ROS and cytotoxicity in HNSCC cells. In addition, the radiation-induced expression of SESN2 was repressed by overexpression of miR-182-5p. Reciprocal expression of the miR-182-5p and SESN2 genes was also analyzed in the TCGA database, and a high expression of miR-182-5p combined with a low expression of SESN2 was associated with a better survival rate in patients receiving radiotherapy. Taken together, the current data suggest that miR-182-5p may regulate radiation-induced antioxidant effects and mediate the efficacy of radiotherapy.
Style APA, Harvard, Vancouver, ISO itp.
27

Zhou, Lili, Caitlyn Miller, Loren J. Miraglia, Angelica Romero, Ludovic S. Mure, Satchidananda Panda i Steve A. Kay. "A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms". Proceedings of the National Academy of Sciences 118, nr 1 (21.12.2020): e2020454118. http://dx.doi.org/10.1073/pnas.2020454118.

Pełny tekst źródła
Streszczenie:
The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription–translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.
Style APA, Harvard, Vancouver, ISO itp.
28

Wei, Liang, Betty Pham, Mouer Wang, Aleishia Harris, Lori Phillips, Karine Piard-Ruster, Olivia Martinez i Sheri Krams. "Expression of microRNA miR-182 is induced in alloimmune responses (169.23)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 169.23. http://dx.doi.org/10.4049/jimmunol.186.supp.169.23.

Pełny tekst źródła
Streszczenie:
Abstract MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by translational repression or mRNA degradation. We defined a profile of miRNAs expression during graft rejection and suggested that the miRNA miR-182, which is a member of the mir-183-miR-96-miR-182 cluster, is significantly increased in the allograft, graft infiltrating cells, spleen and peripheral blood lymphocytes during rejection. To further define the function of miR-182 in alloimmune responses, splenocytes isolated from C57BL/6 or BALB/c mice were used as responders or stimulators in a one-way MLR. Proliferation was measured by [3H]-thymidine uptake on days 0 to 7 and cells were collected at each time point and RNA isolated to detect kinetic expression of miR-182 and its potential targets. Expression of miR-182 increased specifically in allo MLR between days 2-3 and reached peak expression on day 5. Computational target prediction suggested the genes Foxo1, Rac1, Bcl2 and Grb2 as putative targets of miR-182. The four genes all decreased from days 4 to 6 specifically in the allo MLR group supporting that increased expression of miR-182 may inhibit expression of these genes. CONCLUSION. Our results suggest an important role of miR-182 in alloimmune responses. Further studies may result in novel therapeutics to control the proliferation of alloreactive cells.
Style APA, Harvard, Vancouver, ISO itp.
29

Mohammed AL-Temimi, Shoroq. "Circulating microRNA-182 overexpression as a biomarker for breast cancer". AL-QADISIYAH MEDICAL JOURNAL 11, nr 20 (18.07.2017): 1–10. http://dx.doi.org/10.28922/qmj.2015.11.20.1-10.

Pełny tekst źródła
Streszczenie:
Background:- MiR-182 is one of the most frequently studied cancer-related gene miRs and plays a crucial role in tumorigenesis , progression and may become a potential therapeutic target and biomarker of tumor diagnosis and prognosis.Aim of study:-Estimation of miR-182 gene expression levels in both fresh tissues and serum of same breast cancer patients by using stem-loop follow by Taq-Man real time PCR (RT-PCR) technique and correlate the miR-182 gene expression with ER,PR and Her-2 by IHC technique .Material and methods:- Stem-loop RT-PCR was performed to identify the level of miR-182 gene expression in both fresh tissues and serum of same breast cancer patients . The expression levels of miR-182 relative to mRNA of GAPDH were determined using the livak method . IHC were done for ER,PR and HER-2 .Results:- Mean fold change of miR-182 was statistical significantly higher in breast cancer from paraneoplastic tissues , mean fold change of miR-182 was statistical significantly higher in serum of patients from apparently healthy control and miR‑182 serum level of patients with ER,PR positive was statistical significantly lower compared with the negative patients.Conclusion:- The miR‑182 as a new original diagnostic and prognostic biomarker for breast cancer .
Style APA, Harvard, Vancouver, ISO itp.
30

Alcorta-Nuñez, Fernando, Diana Cristina Pérez-Ibave, Carlos Horacio Burciaga-Flores, Miguel Ángel Garza, Moisés González-Escamilla, Patricia Rodríguez-Niño, Juan Francisco González-Guerrero i in. "SARS-CoV-2 Neutralizing Antibodies in Mexican Population: A Five Vaccine Comparison". Diagnostics 13, nr 6 (22.03.2023): 1194. http://dx.doi.org/10.3390/diagnostics13061194.

Pełny tekst źródła
Streszczenie:
Neutralizing antibodies (NAs) are key immunological markers and are part of the humoral response of the adaptive immune system. NA assays determine the presence of functional antibodies to prevent SARS-CoV-2 infection. We performed a real-world evidence study to detect NAs that confer protection against SARS-CoV-2 after the application of five vaccines (Pfizer/BioNTech, AstraZeneca, Sinovac, Moderna, and CanSino) in the Mexican population. Side effects of COVID-19 vaccines and clinical and demographic factors associated with low immunogenicity were also evaluated. A total of 242 SARS-CoV-2-vaccinated subjects were recruited. Pfizer/BioNTech and Moderna proved the highest percentage of inhibition in a mono-vaccine scheme. Muscular pain, headache, and fatigue were the most common adverse events. None of the patients reported severe adverse events. We found an estimated contagion-free time of 207 (IQR: 182–231) and 187 (IQR: 184–189) days for Pfizer/BioNTech and CanSino in 12 cases in each group. On the basis of our results, we consider that the emerging vaccination strategy in Mexico is effective and safe.
Style APA, Harvard, Vancouver, ISO itp.
31

Luz, Américo. "Área indígena - Demarcação - Interdição". Revista de Direito Administrativo 193 (1.07.1993): 292–315. http://dx.doi.org/10.12660/rda.v193.1993.45880.

Pełny tekst źródła
Streszczenie:
Mandado de Segurança. Área Indígena - Declaração de Posse e Definição de Limites para Demarcação Administrativa - Portaria Ministerial Decorrente de Proposição da FUNAI - Interdição da Área - Título Dominical Privado - Constituição Federal. art. 231 - ADCT. art. 67 - Lei n. 6.001173 - Decreto Federal nº 11/91 - Decreto Federal nº 22/91.Suficientemente pré-constituida a prova das situações e fatos da impetração, ainda que complexos, mas incontrovertidos, fica desembaraçada a via processual do "mandamus" para a verificação da liquidez e certeza, para a correta aplicação da lei.O direito privado de propriedade, seguindo-se a dogmática tradicional (Código Civil, arts. 524 e 527), à luz da Constituição Federal (art. 5º, XXII, CF.), dentro das modernas relações jurídicas, políticas, sociais e econômicas, com limitações de uso e gozo, deve ser reconhecido com sujeição à disciplina e exigência da sua função social (arts. 170, II e III, 182, 183, 185 e 186. CF.).É a passagem do Estado-proprietário para o Estado solidário, transportando-se do "monosistema" para o "polissistema" do uso do solo (arts. 5º, XXIV, 22, II, 24, VI, 30, VIII, 182, §§ 3º e 4º 184 e 185, CF.).Na "área indígena" estabelecida a dominialidade (arts. 20 e 231, CF.), a União é nua-proprietária e os índios situam-se como usufrutuários, ficando excepcionado o direito adquirido do particular (art. 231, §§ 6º e 7º CF.), porém, com a inafastável necessidade de ser verificada a habilitação ou ocupação tradicional dos índios, seguindo-se a demarcatória no prazo de cinco anos (art. 67, ADCT).Enquanto se procede a demarcação, por singelo ato administrativo, ex abrupto, a PROIBIÇÃO, além de ir e vir, do ingresso, do trânsito e da permanência do proprietário ou particular usufrutuário habitual, a título de INTERDIÇÃO, malfere reconhecidos direitos. A Inervenção, "se necessária': somente será viável nos estritos limites da legalidade e decidida pelo Presidente da República (art. 20, Lei 6.001/73).Não conferindo a lei o direito à "intervenção" (não está prevista na lei 6.001/73), unicamente baseada no Decreto nº 22/91, a sua decretação revela acintoso divórcio com a legalidade.Sem agasalho legítimo a malsinada "interdição" da propriedade, anula-se o item III, da Portaria do Senhor Ministro da Justiça, fulminandose o labéu flutuante, nessa parte, do ato administrativo ilegal.Segurança parcialmente concedida.
Style APA, Harvard, Vancouver, ISO itp.
32

Wang, Fei, Shanliang Zhong, Haijun Zhang, Wei Zhang, Hongming Zhang, Xue Wu i Baoan Chen. "Prognostic Value of MicroRNA-182 in Cancers: A Meta-Analysis". Disease Markers 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/482146.

Pełny tekst źródła
Streszczenie:
Objective. MicroRNA-182 (miR-182) exhibits altered expression in various cancers. The aim of this study was to investigate the predictive value of miR-182 expression for cancer patient survival.Methods. Eligible studies were identified through multiple search strategies, and the hazard ratios (HRs) for patient outcomes were extracted and estimated. A meta-analysis was performed to evaluate the prognostic value of miR-182.Results. In total, 14 studies were included. A high miR-182 expression level predicted a worse outcome with a pooled HR of 2.18 (95% CI: 1.53–3.11) in ten studies related to overall survival (OS), especially in Chinese populations. The results of seven studies evaluating disease-free survival/relapse-free survival/recurrence-free interval/disease-specific survival (DFS/RFS/RFI/DSS) produced a pooled HR of 1.77 (95% CI: 0.91–3.43), which was not statistically significant; however, the trend was positive. When disregarding the DSS from one study, the expression of miR-182 was significantly correlated with DFS/RFS/RFI (pooled HR = 2.52, 95% CI: 1.67–3.79).Conclusions. High miR-182 expression is associated with poor OS and DFS/RFS/RFI in some types of cancers, and miR-182 may be a useful prognostic biomarker for predicting cancer prognosis. However, given the current insufficient relevant data, further clinical studies are needed.
Style APA, Harvard, Vancouver, ISO itp.
33

Bossert, Amanda, i Katrina Jongman-Sereno. "Misinformation Beliefs, Intellectual Humility, and Vaccine Attitudes and Status". Psi Chi Journal of Psychological Research 29, nr 2 (2024): 158–67. http://dx.doi.org/10.24839/2325-7342.jn29.2.158.

Pełny tekst źródła
Streszczenie:
The current research examined the role of openness to information—and misinformation—in vaccine attitudes and COVID-19 vaccine status. Openness to information was examined in 2 ways: misinformation susceptibility, or the extent to which people endorse alternative health beliefs, pseudoscience, and conspiracy theories, and intellectual humility, or the extent to which people are open to information differing from their current beliefs. Results showed that antivaccination attitudes were related to a lower likelihood of being vaccinated against COVID-19, Χ2(11, N = 107) = 43.78, p < .001, exp(B)=. 72, 95% CI [0.53, 0.99]. Interestingly, endorsing pseudoscientific beliefs predicted a higher likelihood of being vaccinated against COVID-19, Χ2(11, N = 107) = 43.78, p < .001, exp(B)=1 .30, 95% CI [1.05, 1.61]. Endorsing antivaccination attitudes was related to greater belief in alternative health beliefs, r(183) = .29, p < .001, pseudoscience, r(119) = .55, p < .001, and conspiracy theories (generic: r(182) = .73, p < .001; vaccine: r(180) = .88, p < .001). Participants with high intellectual humility were more likely to endorse generic and vaccine conspiracy beliefs, r(184) = .23, p < .001 and r(182) = .19, p = .01, respectively, but no more or less likely to endorse other misinformation beliefs. Intellectual humility was not related to COVID-19 vaccine status. More research is needed to clarify the relationships among misinformation susceptibility, intellectual humility, and vaccine attitudes and status.
Style APA, Harvard, Vancouver, ISO itp.
34

Yu, K., L. Woodrow, M. Chun Shi i D. Anderson. "Registration of HS-182 and HS-183 food-grade soybean [Glycine max (L.) Merr.] germplasm". Canadian Journal of Plant Science 99, nr 4 (1.08.2019): 568–71. http://dx.doi.org/10.1139/cjps-2018-0332.

Pełny tekst źródła
Streszczenie:
HS-182 and HS-183 are food-grade soybean lines [Glycine max (L.) Merr.] with distinct seed protein profiles and food processing quality. HS-182 is a 7S β-conglycinin α’ and 11S glycinin A4 null with a high protein concentration of 45.7% and good processing quality. HS-183 is a 7S β-conglycinin α’ and 11S glycinin null with a protein concentration of 42.7% and poor tofu processing quality. They are adapted to areas of southwestern Ontario with 3100 or more crop heat units and have relative maturity groups of 2.5 and 2.4, respectively.
Style APA, Harvard, Vancouver, ISO itp.
35

Wang, Zhuang, Bettina Heid, Jingjing Ren, Michael R. Edwards, Thomas E. Cecere, Ran Lu, Deena Khan i in. "Depletion of microRNA-183-96-182 miRNA cluster in lymphocytes suppresses anti-dsDNA autoantibody production and IgG deposition in kidney in C57BL/6-Faslpr/lpr mice". Journal of Immunology 206, nr 1_Supplement (1.05.2021): 25.11. http://dx.doi.org/10.4049/jimmunol.206.supp.25.11.

Pełny tekst źródła
Streszczenie:
Abstract The miR-183-96-182 (miR-183C) is a highly conserved miRNA cluster among species. Our previous work found a significant upregulation of miR-183C in the splenic cells of three different murine models of systemic lupus erythematosus (SLE). Current studies revealed that miR-183C miRNAs are critically involved in immunity and autoimmunity. In this study, we found that inhibition of miR-182 alone or miR-183C in vitro with antagomirs significantly reduced lupus-related inflammatory cytokine IFN-γ and IL-6 in activated splenocytes from MRL or MRL/lpr mice. To further characterize the pathogenic role of miR-182 and miR-183C in lupus in vivo, we developed B6-lpr mice with conditional depletion of miR-182 or miR-183C in CD2+ lymphocyte. We found that depletion of either miR-182 or miR-183C in the lymphocytes of B6/lpr mice had no obvious effect on T and B cell development as similar percentage of CD4+. CD8+, CD19+, as well as Tregs, follicular helper T (TFH), germinal center B (GCB), and plasma cells were observed in the miR-182−/− and miR-183C−/− and their respective control. Importantly, we observed a significant reduction of serum anti-dsDNA autoantibodies in miR-183C−/− mice when compared to age-matched controls and the B6/lpr mice with miR-182 or miR-183C deficiency have significantly reduced IgG deposition in the kidneys. Meanwhile, there was reduced IFN production in ex vivo activated splenocytes from the knockout mice. Furthermore, we demonstrated that miR-182 and miR-183C regulated the inflammatory response in splenocytes via targeting forkhead box O1 (Foxo1). Together, our data suggest a potential therapeutic effect of targeting miR-183C in lupus.
Style APA, Harvard, Vancouver, ISO itp.
36

Gámiz Gordo, Antonio. "La Mezquita-Catedral de Córdoba. Fuentes gráficas hasta 1850". Al-Qanṭara 40, nr 1 (20.12.2019): 135. http://dx.doi.org/10.3989/alqantara.2019.005.

Pełny tekst źródła
Streszczenie:
La Mezquita-Catedral de Córdoba cuenta con un rico legado de imágenes hasta la llegada de la fotografía a mediados del XIX que constituyen una destacada fuente documental para la investigación. Tras una amplia labor de rastreo y localización de dichas imágenes, se aportan referencias sobre sus autores, contexto y técnicas, valorando su fiabilidad o precisión gráfica. Las primeras conocidas corresponden a tiempos cristianos, destacando dos panorámicas urbanas de la segunda mitad del XVI, una de ellas objeto de plagios con una notable difusión en Europa. Los primeros planos a escala del monumento conservados son del XVIII y las primeras vistas interiores de finales de ese siglo. En la primera mitad del XIX se produjeron abundantes imágenes de viajeros y artistas, algunas muy bellas y publicadas con gran éxito editorial. Los documentos gráficos reseñados se presentan agrupados según su autoría y orden cronológico: primeras imágenes simbólicas (desde 1360), Wyngaerde (1567), Civitatis (h. 1585-1617), copias del Civitatis (s. XVII-XVIII), Baldi (1668), óleo anónimo (1741), imágenes esquemáticas (s. XVIII), dibujo colección Vázquez Venegas (1752), planos Académicos (1767-1804), Swinburne (1775-1779), Karwinsky y Rillo (1811), Laborde (h. 1800-1812), Murphy (1802-1813), Bacler d’Able (h. 1820), Taylor (h. 1826-1832), Ford (1831), Lewis (1832-1836), Prangey (1832-1837), Gail (h. 1832-37), Roberts (1833-1839), Dauzats (h. 1836-1838), Chapuy (h. 1838-1842), Villaamil (h. 1838-1844), Bossuet (h. 1841-1855), Gerhardt (h. 1849-1851), Guesdon (1853), Parcerisa (1855) y Los Monumentos Arquitectónicos (h. 1852-1881).
Style APA, Harvard, Vancouver, ISO itp.
37

Wei, Shuanzeng, Zhanyong Bing, Yuan Yao, Stephen R. Master i Prabodh Gupta. "Higher Expression of miR-182 in Cytology Specimens of High-Grade Urothelial Cell Carcinoma: A Potential Diagnostic Marker". Acta Cytologica 59, nr 1 (2015): 109–12. http://dx.doi.org/10.1159/000371507.

Pełny tekst źródła
Streszczenie:
Objective: MicroRNAs (miRs) are short noncoding RNA molecules that posttranscriptionally modulate protein expression. There are distinct miR alterations characterizing urothelial cell carcinoma (UCC) of the urinary bladder. Study Design: In this study, we investigate the possibility of using miR as a noninvasive marker in the screening of UCC. The total RNA was extracted from 75 cytology specimens including bladder or renal washings and voided urines. Cases comprise UCC (21 high grade and 6 low grade), 25 normal controls and 23 cases with a history of UCC but negative at the time of testing (negative with a positive history). The expressions of miR-96, miR-182, miR-183, miR-200c, miR-21, miR-141 and miR-30b were determined using quantitative TaqMan real-time PCR. Results and Conclusion: This study shows that the level of miR-182 is higher in cytology specimens from high-grade UCC patients as compared to normal controls. Measuring miR-182 may provide a potential alternative or adjunct approach for screening high-grade UCC.
Style APA, Harvard, Vancouver, ISO itp.
38

Wurm, Alexander Arthur, Dennis Gerloff, Daniela Braeuer-Hartmann, Christiane Katzerke, Jens-Uwe Hartmann, Stephan Fricke, Nadja Hilger i in. "C/EBPα and MiR-182 Generate a Negative Feedback Loop Which Is Dysregulated in Acute Myeloid Leukemia". Blood 124, nr 21 (6.12.2014): 776. http://dx.doi.org/10.1182/blood.v124.21.776.776.

Pełny tekst źródła
Streszczenie:
Abstract The transcription factor CCAAT enhancer binding protein alpha (C/EBPα) is a master regulator of granulopoiesis and is silenced in approximately 50% of all acute myeloid leukemia (AML) cases. There are several mechanisms known how C/EBPα is inactivated in AML, including promoter hypermethylation, posttranslational modifications and mutations in the ORF of the CEBPA gene. MicroRNAs, a class of small non-coding RNAs, were identified as important regulators of normal hematopoiesis and leukemia development. We have already shown that microRNAs, such as miR-223, miR-34a and miR-30c, are essential elements in C/EBPα triggered granulocytic differentiation. But to our knowledge nothing is known about inactivation of C/EBPα by microRNAs in acute myeloid leukemia. In this study, we identified a novel network between C/EBPα and miR-182. In a next generation sequencing approach based on inducible K562-C/EBPα-ER cell line, we found miR-182 strongly downregulated by wildtype C/EBPα. We could further demonstrate an inverse correlation between C/EBPα protein amount and miR-182 expression level in several in vitro systems, including leukemic cell lines and G-CSF treated primary human CD34+progenitor cells. Additionally, C/EBPα and miR-182 showed reciprocal expression in sorted murine bone marrow subpopulations in vivo. To discover the mechanism how miR-182 is blocked by C/EBPα, we analyzed the minimal promoter region of miR-182 and performed chromatin immunoprecipitation (ChIP). Here, we could demonstrate a strong binding of C/EBPα to the miR-182 promoter, particularly to a conserved E2F binding site. Because E2F is a well known inhibitor of C/EBPα function, we tested whether E2F also effects miR-182 expression. An overexpression of E2F1 in U937 cells leads to an elevated miR-182 expression level. In addition, we measured the expression of miR-182 in bone marrow from AML patients regarding to their CEBPA mutation status. We could show that only patients with mutations in the C-terminal region of C/EBPα showed elevated miR-182 expression, while patients with N-terminal CEBPA mutations revealed no abnormal miR-182 expression compared to healthy donors or AML patients with no CEBPA mutation. The C-terminal domain of C/EBPα is necessary for E2F inhibition. These findings illustrate the importance of C/EBPα-E2F interaction during miR-182 regulation. Next, we found a highly conserved binding site of miR-182 in the 3’UTR of CEBPA itself, suggesting a possible negative feedback loop. To test this, we performed overexpression of miR-182 in U937 cells, umbilical cord blood mononuclear cells (UCB-MNCs) and primary blasts from AML patients. Here, we observed a strong reduction of C/EBPα protein after miR-182 overexpression in all cell types. Furthermore, we could demonstrate a direct binding of miR-182 to the 3’UTR of CEBPA via luciferase activity assay. Finally, we were interested in the functional impact of miR-182 in myeloid differentiation and leukemia development. We showed that enforced expression of miR-182 in U937 cells reduced the percentage of Mac-1 positive myeloid cells after treatment with all-trans retinoid acid (ATRA). Additionally, lentiviral overexpression of miR-182 induces a block of differentiation and hyperproliferation in G-CSF treated 32D cells and an enhanced replating capacity of primary mouse bone marrow mononuclear cells. Taken together, we identified miR-182 as novel oncogenic microRNA that directly blocks C/EBPα during myeloid differentiation and leukemia development. Thus, our data display a potential new strategy for therapeutics in C/EBPα dysregulated AML. Disclosures No relevant conflicts of interest to declare.
Style APA, Harvard, Vancouver, ISO itp.
39

Weinberg, MJ, MM Al-Qattan i J. Mahoney. "Blistering Distal Dactylitis: A Distinct Clinical Entity". Canadian Journal of Plastic Surgery 2, nr 4 (grudzień 1994): 181–82. http://dx.doi.org/10.1177/229255039400200402.

Pełny tekst źródła
Streszczenie:
MJ Weinberg, MM Al-Qattan, J Mahoney. Blistering distal dactylitis: A distinct clinical entity. Can J Plast Surg 1994;2(4):181-182. A rare case of blistering distal dactylitis in an adult is described. The differential diagnosis of this distinct clinical entity is also discussed.
Style APA, Harvard, Vancouver, ISO itp.
40

Fan, Jianguo, Li Jia, Yan Li, Seham Ebrahim, Helen May-Simera, Alynda Wood, Robert J. Morell i in. "Maturation arrest in early postnatal sensory receptors by deletion of the miR-183/96/182 cluster in mouse". Proceedings of the National Academy of Sciences 114, nr 21 (8.05.2017): E4271—E4280. http://dx.doi.org/10.1073/pnas.1619442114.

Pełny tekst źródła
Streszczenie:
The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.
Style APA, Harvard, Vancouver, ISO itp.
41

Dai, Rujuan, Bettina Heid, Deena Khan i S. Ansar Ahmed. "Altered miRNA expression in splenic lymphocytes in autoimmune-prone murine models with active lupus disease (167.9)". Journal of Immunology 186, nr 1_Supplement (1.04.2011): 167.9. http://dx.doi.org/10.4049/jimmunol.186.supp.167.9.

Pełny tekst źródła
Streszczenie:
Abstract There is markedly increased recognition of physiological and pathological roles of miRNAs in immune system that impacts health and disease. While numerous dysregulated miRNAs were identified in autoimmune diseases, the significance of most disease-related miRNAs remains elusive. We have recently reported that selective miRNAs including the miR-182-96-183 cluster were commonly dysregulated in splenocytes from MRL-lpr, C57BL/6-lpr and NZB/WF1 mice when compared to control mice. Also, we have shown that the dysregulation of these miRNAs was associated with lupus disease development. In current study, we investigated the potential pathogenic contribution of lupus-associated miRNAs. The previous reports have shown that miR-182 and miR-96 target Foxo1 and Foxo3a, which play critical roles in controlling T lymphocyte homeostasis and tolerance. Consistent with the upregulation of miR-182-96-183, we found that Foxo3a and Foxo1 protein levels were inhibited in splenocytes from MRL-lpr mice when compared to MRL mice. However, the Real-time RT-PCR revealed that only Foxo1 mRNA, but not Foxo3a mRNA level was decreased in splenocytes from MRL-lpr mice, suggesting a post-transcriptional regulation of Foxo3a in splenocytes from lpr mice. Together, our data suggested a potential pathogenic contribution of miR-182 to lupus by targeting Foxo1 and Foxo3a, which could conceivably lead to the abnormal lymphocytes activation and autoimmunity development.
Style APA, Harvard, Vancouver, ISO itp.
42

Salmerón-Bárcenas, Eric Genaro, Miguel Angel Mendoza-Catalan, Ángela Uray Ramírez-Bautista, Rafael Acxel Lozano-Santos, Francisco Israel Torres-Rojas, Pedro Antonio Ávila-López i Ana Elvira Zacapala-Gómez. "Identification of Mir-182-3p/FLI-1 Axis as a Key Signaling in Immune Response in Cervical Cancer: A Comprehensive Bioinformatic Analysis". International Journal of Molecular Sciences 24, nr 7 (23.03.2023): 6032. http://dx.doi.org/10.3390/ijms24076032.

Pełny tekst źródła
Streszczenie:
miRNAs modulate gene expression and play critical functions as oncomiRs or tumor suppressors. The miR-182-3p is important in chemoresistance and cancer progression in breast, lung, osteosarcoma, and ovarian cancer. However, the role of miR-182-3p in cervical cancer (CC) has not been elucidated. Aim: To analyze the role of miR-182-3p in CC through a comprehensive bioinformatic analysis. Methods: Gene Expression Omnibus (GEO) databases were used for the expression analysis. The mRNA targets of miR-182-3p were identified using miRDB, TargetScanHuman, and miRPathDB. The prediction of island CpG was performed using the MethPrimer program. The transcription factor binding sites in the FLI-1 promoter were identified using ConSite+, Alibaba2, and ALGGEN-PROMO. The protein–protein interaction (PPI) analysis was performed in STRING 11.5. Results: miR-182-3p was significantly overexpressed in CC patients and has potential as a diagnostic. We identified 330 targets of miR-182-3p including FLI-1, which downregulates its expression in CC. Additionally, the aberrant methylation of the FLI-1 promoter and Ap2a transcription factor could be involved in downregulating FLI1 expression. Finally, we found that FLI-1 is a possible key gene in the immune response in CC. Conclusions: The miR-182-3p/FLI-1 axis plays a critical role in immune response in CC.
Style APA, Harvard, Vancouver, ISO itp.
43

Babadagli, Ege, Jiheon Song, Jessica Chan, Elisabeth Cisa-Paré, Julie Renaud, Katelyn Balchin, Linda Bunch i in. "182: Staff Stress at a Canadian Cancer Centre". Radiotherapy and Oncology 174 (wrzesień 2022): S75. http://dx.doi.org/10.1016/s0167-8140(22)04462-0.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Taylor, J., A. Moody, C. Avery i J. D. Langdon. "A retrospective analysis of 182 salivary gland tumours". British Journal of Oral and Maxillofacial Surgery 35, nr 3 (czerwiec 1997): 212. http://dx.doi.org/10.1016/s0266-4356(97)90628-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Dogra, Sunil, Davinder Parsad, Sanjeev Handa i Amrinder Jit Kanwar. "Late onset vitiligo: A study of 182 patients". International Journal of Dermatology 44, nr 3 (marzec 2005): 193–96. http://dx.doi.org/10.1111/j.1365-4632.2004.01948.x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Li, X. L., T. Hara, Y. Choi, M. Subramanian, P. Francis, S. Bilke, R. L. Walker i in. "A p21-ZEB1 Complex Inhibits Epithelial-Mesenchymal Transition through the MicroRNA 183-96-182 Cluster". Molecular and Cellular Biology 34, nr 3 (25.11.2013): 533–50. http://dx.doi.org/10.1128/mcb.01043-13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Souza, Marilesia Ferreira, Ilce Mara Syllos Cólus, Aline Simoneti Fonseca, Valquíria Casanova Antunes, Deepak Kumar i Luciane Regina Cavalli. "MiR-182-5p Modulates Prostate Cancer Aggressive Phenotypes by Targeting EMT Associated Pathways". Biomolecules 12, nr 2 (22.01.2022): 187. http://dx.doi.org/10.3390/biom12020187.

Pełny tekst źródła
Streszczenie:
Prostate cancer (PCa) is a clinically heterogeneous disease, where deregulation of epigenetic events, such as miRNA expression alterations, are determinants for its development and progression. MiR-182-5p, a member of the miR-183 family, when overexpressed has been associated with PCa tumor progression and decreased patients’ survival rates. In this study, we determined the regulatory role of miR-182-5p in modulating aggressive tumor phenotypes in androgen-refractory PCa cell lines (PC3 and DU-145). The transient transfection of the cell lines with miR-182-5p inhibitor and mimic systems, significantly affected cell proliferation, adhesion, migration, and the viability of the cells to the chemotherapeutic agents, docetaxel, and abiraterone. It also affected the protein expression levels of the tumor progression marker pAKT. These changes, however, were differentially observed in the cell lines studied. A comprehensive biological and functional enrichment analysis and miRNA/mRNA interaction revealed its strong involvement in the epithelial-mesenchymal transition (EMT) process; expression analysis of EMT markers in the PCa transfected cells directly or indirectly modulated the analyzed tumor phenotypes. In conclusion, miR-182-5p differentially impacts tumorigenesis in androgen-refractory PCa cells, in a compatible oncomiR mode of action by targeting EMT-associated pathways.
Style APA, Harvard, Vancouver, ISO itp.
48

Islam, Nighat, Sameer Srivastava, Rahul Mehrotra, Arif Mustaqueem i Poppy Bala. "Ruptured sinus of Valsalva aneurysm: A Case Report". Cardiovascular Journal 15, nr 2 (26.04.2023): 182–84. http://dx.doi.org/10.3329/cardio.v15i2.65635.

Pełny tekst źródła
Streszczenie:
One of the rare cardiac anomaly is Sinus of Valsalva aneurysm (SVA) that can rupture spontaneously into other cardiac chambers or the pericardial space.1 Here, we report a rare case of a right coronary sinus of Valsalva aneurysm with rupture into the Left ventricular outflow tract (LVOT). Cardiovasc j 2023; 15(2): 182-184
Style APA, Harvard, Vancouver, ISO itp.
49

Tarui, M., M. Doi, T. Ishida, M. Inoue, S. Nakaike i K. Kitamura. "DNA-binding characterization of a novel anti-tumour benzo[a]phenazine derivative NC-182: spectroscopic and viscometric studies". Biochemical Journal 304, nr 1 (15.11.1994): 271–79. http://dx.doi.org/10.1042/bj3040271.

Pełny tekst źródła
Streszczenie:
NC-182 is a novel anti-tumour compound having a benzo[a]phenazine ring. Fluorescence, absorption and c.d. spectroscopy, as well as viscometric titrations, were systematically performed to investigate the interaction mode of this drug with DNA and its effect on DNA conformation, based on comparative measurements with distamycin (DNA minor-groove binder) and daunomycin (DNA-base intercalator). NC-182 was found to be a potent intercalator of DNA, especially the B-form DNA, although no specificity was observed against the base-pair. The binding of NC-182 to B-DNA behaves biphasically, depending on the molar ratio (r) of drug to DNA: NC-182 acts to render the B-form structure rigid at relatively low r value and to promote the transformation of B- to non-B forms at high r values. It was also shown that NC-182 promotes the unwinding of Z-form DNA to B-form. Viscometric, u.v. ‘melting’ and c.d. experiments further showed that (1) the DNA duplex structure is thermally stabilized by intercalation with NC-182 and (2) the intercalation of NC-182 into a poly(dA).2poly(dT) DNA structure thermally stabilizes the triplex structure, resulting in a melting point close to that of the duplex structure; the melting curves of triplex and duplex structures coincide at r > 0.06. These observations make a significant contribution to our understanding of the biological properties of this novel benzo[a]phenazine derivative, a new anti-tumour tumour agent against multidrug-resistant and sensitive tumours.
Style APA, Harvard, Vancouver, ISO itp.
50

O’HARA, JAMES E., PIERFILIPPO CERRETTI, THOMAS PAPE i NEAL L. EVENHUIS. "Nomenclatural Studies Toward a World List of Diptera Genus-Group Names. Part II: Camillo Rondani". Zootaxa 3141, nr 1 (23.12.2011): 1. http://dx.doi.org/10.11646/zootaxa.3141.1.1.

Pełny tekst źródła
Streszczenie:
The Diptera genus-group names of Camillo Rondani are reviewed and annotated. A total of 601 nomenclaturally available genus-group names in 82 families of Diptera are listed alphabetically. For each name the following are given: author, year and page of original publication, originally included species [and first included species if none were originally included], type species and method of fixation, current status of the name, family placement, and a list of any emendations of it that have been found in the literature. Remarks are given to clarify nomenclatural or taxonomic information. In addition, an index is provided to all the species-group names of Diptera proposed by Rondani (1,236, of which 1,183 are available) with bibliographic reference to each original citation. Appended to this study is a full bibliography of Rondani’s works and a list with explanations for all new synonymies arising from revised emendations. Corrected or clarified type-species and/or corrected or clarified type-species designations are given for the following genus-group names: Anoplomerus Rondani, 1856 [Dolichopodidae]; Biomya Rondani, 1856 [Tachinidae]; Bremia Rondani, 1861 [Cecidomyiidae]; Deximorpha Rondani, 1856 [Tachinidae]; Elasmocera Rondani, 1845 [Asilidae]; Enteromyza Rondani, 1857 [Oestridae]; Exogaster Rondani, 1856 [Tachinidae]; Istocheta Rondani, 1859 [Tachinidae]; Istoglossa Rondani, 1856 [Tachinidae]; Lejogaster Rondani, 1857 [Syrphidae]; Lignodesia Rondani, 1868 [Phaeomyiidae]; Medorilla Rondani, 1856 [Tachinidae]; Meroplius Rondani, 1874 [Sepsidae]; Nodicornis Rondani, 1843 [Dolichopodidae]; Omalostoma Rondani, 1862 [Tachinidae]; Opegiocera Rondani, 1845 [Asilidae]; Petagnia Rondani, 1856 [Tachinidae]; Phaniosoma Rondani, 1856 [Tachinidae]; Proboscina Rondani, 1856 [Tachinidae]; Pyragrura Rondani, 1861 [Tachinidae]; Stemonocera Rondani, 1870 [Tephritidae]; Telejoneura Rondani, 1863 [Asilidae]; Tricoliga Rondani, 1856 [Tachinidae]. The following genus-group names previously treated as available were found to be unavailable: Bombyliosoma Verrall, 1882, n. stat. [Bombyliidae]; Bombylosoma Marschall, 1873, n. stat. [Bombyliidae]; Brachynevra Agassiz, 1846, n. stat. [Cecidomyiidae]; Calliprobola Rondani, 1856, n. stat. [Syrphidae]; Camponeura Verrall, 1882, n. stat. [Syrphidae]; Chlorosoma Verrall, 1882, n. stat. [Stratiomyidae]; Engyzops Verrall, 1882, n. stat. [Calliphoridae]; Exodonta Verrall, 1882, n. stat. [Stratiomyidae]; Histochaeta Verrall, 1882, n. stat. [Tachinidae]; Histoglossa Verrall, 1882, n. stat. [Tachinidae]; Homalostoma Verrall, 1882, n. stat. [Tachinidae]; Hoplacantha Verrall, 1882, n. stat. [Stratiomyidae]; Hoplodonta Verrall, 1882, n. stat. [Stratiomyidae]; Liota Verrall, 1882, n. stat. [Syrphidae]; Lomatacantha Verrall, 1882, n. stat. [Tachinidae]; Machaera Mik, 1890, n. stat. [Tachinidae]; Machaira Brauer & Bergenstamm, 1889, n. stat. [Tachinidae]; Myiatropa Verrall, 1882, n. stat. [Syrphidae]; Oplacantha Verrall, 1882, n. stat. [Stratiomyidae]. Previous First Reviser actions for multiple original spellings missed by previous authors include: Genus-group names—Achanthipodus Rondani, 1856 [Dolichopodidae]; Argyrospila Rondani, 1856 [Bombyliidae]; Botria Rondani, 1856 [Tachinidae]; Chetoliga Rondani, 1856 [Tachinidae]; Chrysoclamys Rondani, 1856 [Syrphidae]; Cyrtophloeba Rondani, 1856 [Tachinidae]; Istocheta Rondani, 1859 [Tachinidae]; Macherea Rondani, 1859 [Tachinidae]; Macronychia Rondani, 1859 [Sarcophagidae]; Pachylomera Rondani, 1856 [Psilidae]; Peratochetus Rondani, 1856 [Clusiidae]; Phytophaga Rondani, 1840 [Cecidomyiidae]; Spylosia Rondani, 1856 [Tachinidae]; Thlipsogaster Rondani, 1863 [Bombyliidae]; Tricogena Rondani, 1856 [Rhinophoridae]; Tricoliga Rondani, 1856 [Tachinidae]; Viviania Rondani, 1861 [Tachinidae]. Species-group name—Sphixapata albifrons Rondani, 1859 [Sarcophagidae]. Acting as First Reviser, the following correct original spellings for multiple original spellings are selected by us: Bellardia Rondani, 1863 [Tabanidae]; Chetoptilia Rondani, 1862 [Tachinidae]; Chetylia Rondani, 1861 [Tachinidae]; Clytiomyia Rondani, 1862 [Tachinidae]; Cryptopalpus Rondani, 1850 [Tachinidae]; Diatomineura Rondani, 1863 [Tabanidae]; Enteromyza Rondani, 1857 [Oestridae]; Esenbeckia Rondani, 1863 [Tabanidae]; Hammomyia Rondani, 1877 [Anthomyiidae]; Hydrothaea Rondani, 1856 [Muscidae]; Hyrmophlaeba Rondani, 1863 [Nemestrinidae]; Limnomya Rondani, 1861 [Limoniidae]; Lyoneura Rondani, 1856 [Psychodidae]; Micetoica Rondani, 1861 [Anisopodidae]; Miennis Rondani, 1869 [Ulidiidae]; Mycetomiza Rondani, 1861 [Mycetophilidae]; Mycosia Rondani, 1861 [Mycetophilidae]; Mycozetaea Rondani, 1861 [Mycetophilidae]; Piotepalpus Rondani, 1856 [Mycetophilidae]; Prothechus Rondani, 1856 [Pipunculidae]; Spyloptera Rondani, 1856 [Limoniidae]; Teremya Rondani, 1875 [Lonchaeidae]; Thricogena Rondani, 1859 [Tachinidae]; Trichopalpus Rondani, 1856 [Scathophagidae]; Trichopeza Rondani, 1856 [Brachystomatidae]; Tricophthicus Rondani, 1861 [Muscidae]; Triphleba Rondani, 1856 [Phoridae]; Xiloteja Rondani, 1863 [Syrphidae]. The following names are new synonymies of their respective senior synonyms: Genus-group names—Acanthipodus Bigot, 1890 of Poecilobothrus Mik, 1878, n. syn. [Dolichopodidae]; Acanthiptera Rondani, 1877 of Achanthiptera Rondani, 1856, n. syn. [Muscidae]; Achantiptera Schiner, 1864 of Achanthiptera Rondani, 1856, n. syn. [Muscidae]; Acydia Rondani, 1870 of Acidia Robineau-Desvoidy, 1830, n. syn. [Tephritidae]; Acyura Rondani, 1863 of Aciura Robineau-Desvoidy, 1830, n. syn. [Tephritidae]; Agaromyia Marschall, 1873 of Agaromya Rondani, 1861, n. syn. [Mycetophilidae]; Ammomyia Mik, 1883 of Leucophora Robineau-Desvoidy, 1830, n. syn. [Anthomyiidae]; Anomoja Rondani, 1871 of Anomoia Walker, 1835, n. syn. [Tephritidae]; Anthracomyia Rondani, 1868 of Morinia Robineau-Desvoidy, 1830, n. syn. [Calliphoridae]; Antracomya Lioy, 1864 of Morinia Robineau-Desvoidy, 1830, n. syn. [Calliphoridae]; Anthoeca Bezzi, 1906 of Solieria Robineau-Desvoidy, 1849, n. syn. [Tachinidae]; Antomyza Rondani, 1866 of Anthomyza Fallén, 1810, n. syn. [Anthomyzidae]; Antracia Rondani, 1862 of Nyctia Robineau-Desvoidy, 1830, n. syn. [Sarcophagidae]; Aporomyia Schiner, 1861 of Lypha Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Asphondilia Rondani, 1861 of Asphondylia Loew, 1850, n. syn. [Cecidomyiidae]; Asteja Rondani, 1856 of Asteia Meigen, 1830, n. syn. [Asteiidae]; Astenia Rondani, 1856 of Blepharicera Macquart, 1843, n. syn. [Blephariceridae]; Astilium Costa, 1866 of Senobasis Macquart, 1838, n. syn. [Asilidae]; Ateleneura Agassiz, 1846 of Atelenevra Macquart, 1834, n. syn. [Pipunculidae]; Athomogaster Rondani, 1866 of Azelia Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Axista Rondani, 1856 of Axysta Haliday, 1839, n. syn. [Ephydridae]; Bigonichaeta Schiner, 1864 of Triarthria Stephens, 1829, n. syn. [Tachinidae]; Billea Rondani, 1862 of Billaea Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Biomyia Schiner, 1868 of Biomya Rondani, 1856, n. syn. [Tachinidae]; Bombilius Dufour, 1833 of Bombylius Linnaeus, 1758, n. syn. [Bombyliidae]; Bombylosoma Loew, 1862 of Bombylisoma Rondani, 1856, n. syn. [Bombyliidae]; Brachipalpus Rondani, 1845 of Brachypalpus Macquart, 1834, n. syn. [Syrphidae]; Brachipalpus Rondani, 1863 of Palpibracus Rondani, 1863, n. syn. [Muscidae]; Brachistoma Rondani, 1856 of Brachystoma Meigen, 1822, n. syn. [Brachystomatidae]; Brachychaeta Brauer & Bergenstamm, 1889 of Brachicheta Rondani, 1861, n. syn. [Tachinidae]; Brachyglossum Bigot, 1858 of Leopoldius Rondani, 1843, n. syn. [Conopidae]; Brachyneura Oken, 1844 of Brachineura Rondani, 1840, n. syn. [Cecidomyiidae]; Caelomya Rondani, 1866 of Fannia Robineau-Desvoidy, 1830, n. syn. [Fanniidae]; Caelomyia Rondani, 1877 of Fannia Robineau-Desvoidy, 1830, n. syn. [Fanniidae]; Caenosia Westwood, 1840 of Coenosia Meigen, 1826, n. syn. [Muscidae]; Campilomiza Rondani, 1840 of Campylomyza Meigen, 1818, n. syn. [Cecidomyiidae]; Campylochaeta Bezzi & Stein, 1907 of Campylocheta Rondani, 1859, n. syn. [Tachinidae]; Caricoea Rondani, 1856 of Coenosia Meigen, 1826, n. syn. [Muscidae]; Carpomyia Loew, 1862 of Carpomya Rondani, 1856, n. syn. [Tephritidae]; Cassidemya Rondani, 1861 of Cassidaemyia Macquart, 1835, n. syn. [Rhinophoridae]; Ceratoxia Costa, 1866 of Otites Latreille, 1804, n. syn. [Ulidiidae]; Ceratoxys Rondani, 1861 of Otites Latreille, 1804, n. syn. [Ulidiidae]; Chaetogena Bezzi & Stein, 1907 of Chetogena Rondani, 1856, n. syn. [Tachinidae]; Chamemyia Rondani, 1875 of Chamaemyia Meigen, 1803, n. syn. [Chamaemyiidae]; Chaetoptilia Bezzi & Stein, 1907 of Chetoptilia Rondani, 1862, n. syn. [Tachinidae]; Chatolyga Bigot, 1892 of Carcelia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Chersodromya Rondani, 1856 of Chersodromia Haliday, 1851, n. syn. [Hybotidae]; Chetilya Rondani, 1861 of Chetina Rondani, 1856, n. syn. [Tachinidae]; Chilopogon Bezzi, 1902 of Dasypogon Meigen, 1803, n. syn. [Asilidae]; Chiromya Agassiz, 1846 of Chyromya Robineau-Desvoidy, 1830, n. syn. [Chyromyidae]; Chlorisoma Rondani, 1861 of Microchrysa Loew, 1855, n. syn. [Stratiomyidae]; Chorthophila Rondani, 1856 of Phorbia Robineau-Desvoidy, 1830, n. syn. [Anthomyiidae]; Chortofila Rondani, 1843 of Phorbia Robineau-Desvoidy, 1830, n. syn. [Anthomyiidae]; Chriorhyna Rondani, 1845 of Criorhina Meigen, 1822, n. syn. [Syrphidae]; Chrisogaster Rondani, 1868 of Chrysogaster Meigen, 1803, n. syn. [Syrphidae]; Chryorhina Rondani, 1856 of Criorhina Meigen, 1822, n. syn. [Syrphidae]; Chryorhyna Rondani, 1857 of Criorhina Meigen, 1822, n. syn. [Syrphidae]; Chrysoclamys Rondani, 1856 of Ferdinandea Rondani, 1844, n. syn. [Syrphidae]; Chrysomya Rondani, 1856 of Microchrysa Loew, 1855, n. syn. [Stratiomyidae]; Chrysopila Rondani, 1844 of Chrysopilus Macquart, 1826, n. syn. [Rhagionidae]; Chyrosia Rondani, 1866 of Chirosia Rondani, 1856, n. syn. [Anthomyiidae]; Clytiomyia Rondani, 1862 of Clytiomya Rondani, 1861, n. syn. [Tachinidae]; Conopoejus Bigot, 1892 of Conops Linnaeus, 1758, n. syn. [Conopidae]; Criorhyna Rondani, 1865 of Criorhina Meigen, 1822, n. syn. [Syrphidae]; Criptopalpus Rondani, 1863 of Cryptopalpus Rondani, 1850, n. syn. [Tachinidae]; Crysogaster Rondani, 1865 of Chrysogaster Meigen, 1803, n. syn. [Syrphidae]; Crysops Rondani, 1844 of Chrysops Meigen, 1803, n. syn. [Tabanidae]; Cyrthoneura Rondani, 1863 of Graphomya Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Cyrthoplaeba Rondani, 1857 of Cyrtophloeba Rondani, 1856, n. syn. [Tachinidae]; Cyrthosia Rondani, 1863 of Cyrtosia Perris, 1839, n. syn. [Mythicomyiidae]; Cystogaster Walker, 1856 of Cistogaster Latreille, 1829, n. syn. [Tachinidae]; Cyterea Rondani, 1856 of Cytherea Fabricius, 1794, n. syn. [Bombyliidae]; Dactyliscus Bigot, 1857 of Habropogon Loew, 1847, n. syn. [Asilidae]; Dasiphora Rondani, 1856 of Dasyphora Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Dasipogon Dufour, 1833 of Dasypogon Meigen, 1803, n. syn. [Asilidae]; Dasyneura Oken, 1844 of Dasineura Rondani, 1840, n. syn. [Cecidomyiidae]; Dexiomorpha Mik, 1887 of Estheria Robineau-Desvoidy, n. syn. [Tachinidae]; Dichaetophora Becker, 1905 of Dichetophora Rondani, 1868, n. syn. [Sciomyzidae]; Dicheta Rondani, 1856 of Dichaeta Meigen, 1830, n. syn. [Ephydridae]; Dictia Rondani, 1856 of Dictya Meigen, 1803, n. syn. [Sciomyzidae]; Dionea Rondani, 1861 of Dionaea Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Ditricha Rondani, 1871 of Dithryca Rondani, 1856, n. syn. [Tephritidae]; Dolicopeza Rondani, 1856 of Dolichopeza Meigen, 1830, n. syn. [Tipulidae]; Doricera Rondani, 1856 of Dorycera Meigen, 1830, n. syn. [Ulidiidae]; Drimeia Rondani, 1877 of Drymeia Meigen, 1826, n. syn. [Muscidae]; Drimeja Rondani, 1856 of Drymeia Meigen, 1826, n. syn. [Muscidae]; Driomyza Rondani, 1844 of Dryomyza Fallén, 1820, n. syn. [Dryomyzidae]; Driope Rondani, 1868 of Dryope Robineau-Desvoidy, 1830, n. syn. [Dryomyzidae]; Dryomiza Rondani, 1869 of Dryomyza Fallén, 1820, n. syn. [Dryomyzidae]; Dynera Rondani, 1861 of Dinera Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Dytricha Rondani, 1870 of Dithryca Rondani, 1856, n. syn. [Tephritidae]; Elachysoma Rye, 1881 of Elachisoma Rondani, 1880, n. syn. [Sphaeroceridae]; Elaeophila Marschall, 1873 of Eloeophila Rondani, 1856, n. syn. [Limoniidae]; Emerodromya Rondani, 1856 of Hemerodromia Meigen, 1822, n. syn. [Empididae]; Engyzops Bezzi & Stein, 1907 of Eggisops Rondani, 1862, n. syn. [Calliphoridae]; Entomybia Rondani, 1879 of Braula Nitzsch, 1818, n. syn. [Braulidae]; Epidesmya Rondani, 1861 of Acidia Robineau-Desvoidy, 1830, n. syn. [Tephritidae]; Erinnia Rondani, 1856 of Erynnia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Eristalomyia Kittel & Kreichbaumer, 1872 of Eristalomya Rondani, 1857, n. syn. [Syrphidae]; Esteria Rondani, 1862 of Estheria Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Exatoma Rondani, 1856 of Hexatoma Meigen, 1803, n. syn. [Tabanidae]; Exochila Mik, 1885 of Hammerschmidtia Schummel, 1834, n. syn. [Syrphidae]; Fisceria Rondani, 1856 of Fischeria Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Gedia Rondani, 1856 of Gaedia Meigen, 1838, n. syn. [Tachinidae]; Gimnocheta Rondani, 1859 of Gymnocheta Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Gimnosoma Rondani, 1862 of Gymnosoma Meigen, 1803, n. syn. [Tachinidae]; Gonirhinchus Lioy, 1864 of Myopa Fabricius, 1775, n. syn. [Conopidae]; Gonirhynchus Marschall, 1873 of Myopa Fabricius, 1775, n. syn. [Conopidae]; Gononeura Oldenberg, 1904 of Gonioneura Rondani, 1880, n. syn. [Sphaeroceridae]; Graphomia Rondani, 1862 of Graphomya Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Gymnopha Rondani, 1856 of Mosillus Latreille, 1804, n. syn. [Ephydridae]; Hammobates Rondani, 1857 of Tachytrechus Haliday, 1851, n. syn. [Dolichopodidae]; Harrysia Rondani, 1865 of Lydina Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Hemathobia Rondani, 1862 of Haematobia Le Peletier & Serville, 1828, n. syn. [Muscidae]; Hemerodromya Rondani, 1856 of Hemerodromia Meigen, 1822, n. syn. [Empididae]; Heryngia Rondani, 1857 of Heringia Rondani, 1856, n. syn. [Syrphidae]; Hidropota Lioy, 1864 of Hydrellia Robineau-Desvoidy, 1830, n. syn. [Ephydridae]; Hipostena Rondani, 1861 of Phyllomya Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Hirmophloeba Marschall, 1873 of Hyrmophlaeba Rondani, 1863, n. syn. [Nemestrinidae]; Histricia Rondani, 1863 of Hystricia Macquart, 1843, n. syn. [Tachinidae]; Hoemotobia Rondani, 1856 of Haematobia Le Peletier & Serville, 1828, n. syn. [Muscidae]; Homalomya Rondani, 1866 of Fannia Robineau-Desvoidy, 1830, n. syn. [Fanniidae]; Homalostoma Bezzi & Stein, 1907 of Billaea Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Hoplisa Brauer & Bergenstamm, 1889 of Oplisa Rondani, 1862, n. syn. [Rhinophoridae]; Hydrothaea Rondani, 1856 of Hydrotaea Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Hylara Rondani, 1856 of Hilara Meigen, 1822, n. syn. [Empididae]; Hyrmoneura Rondani, 1863 of Hirmoneura Meigen, 1820, n. syn. [Nemestrinidae]; Ilisomyia Osten Sacken, 1869 of Ormosia Rondani, 1856, n. syn. [Limoniidae]; Istochaeta Marschall, 1873 of Istocheta Rondani, 1859, n. syn. [Tachinidae]; Lamnea Rondani, 1861 of Erioptera Meigen, 1803, n. syn. [Limoniidae]; Lasiophthicus Rondani, 1856 of Scaeva Fabricius, 1805, n. syn. [Syrphidae]; Lestremya Rondani, 1856 of Lestremia Macquart, 1826, n. syn. [Cecidomyiidae]; Lidella De Galdo, 1856 of Lydella Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Lomacantha Lioy, 1864 of Lomachantha Rondani, 1859, n. syn. [Tachinidae]; Lomachanta Schiner, 1864 of Lomachantha Rondani, 1859, n. syn. [Tachinidae]; Loncoptera Rondani, 1856 of Lonchoptera Meigen, 1803, n. syn. [Lonchopteridae]; Lymnophora Blanchard, 1845 of Limnophora Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Macherium Rondani, 1856 of Machaerium Haliday, 1832, n. syn. [Dolichopodidae]; Macrochaetum Bezzi, 1894 of Elachiptera Macquart, 1825, n. syn. [Chloropidae]; Macrochoetum Bezzi, 1892 of Elachiptera Macquart, 1825, n. syn. [Chloropidae]; Macroneura Rondani, 1856 of Diadocidia Ruthe, 1831, n. syn. [Diadocidiidae]; Marshamya Rondani, 1850 of Linnaemya Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Marsilia Bezzi & Stein, 1907 of Tricoliga Rondani, 1859, n. syn. [Tachinidae]; Megachetum Rondani, 1856 of Dasyna Robineau-Desvoidy, 1830, n. syn. [Psilidae]; Megaloglossa Bezzi, 1907 of Platystoma Meigen, 1803, n. syn. [Platystomatidae]; Megera Rondani, 1859 of Senotainia Macquart, 1846, n. syn. [Sarcophagidae]; Melanomyia Rondani, 1868 of Melanomya Rondani, 1856, n. syn. [Calliphoridae]; Melizoneura Bezzi & Stein, 1907 of Melisoneura Rondani, 1861, n. syn. [Tachinidae]; Mesomelaena Bezzi & Stein, 1907 of Mesomelena Rondani, 1859, n. syn. [Sarcophagidae]; Micetina Rondani, 1861 of Mycetophila Meigen, 1803, n. syn. [Mycetophilidae]; Micetobia Rondani, 1861 of Mycetobia Meigen, 1818, n. syn. [Anisopodidae]; Micromyia Oken, 1844 of Micromya Rondani, 1840, n. syn. [Cecidomyiidae]; Miennis Rondani, 1869 of Myennis Robineau-Desvoidy, 1830, n. syn. [Ulidiidae]; Miopina Rondani, 1866 of Myopina Robineau-Desvoidy, 1830, n. syn. [Anthomyiidae]; Morjnia Rondani, 1862 of Morinia Robineau-Desvoidy, 1830, n. syn. [Calliphoridae]; Morphomyia Rondani, 1862 of Stomina Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Myatropa Rondani, 1857 of Myathropa Rondani, 1845, n. syn. [Syrphidae]; Mycetomiza Rondani, 1861 of Mycosia Rondani, 1861, n. syn. [Mycetophilidae]; Myiantha Rondani, 1877 of Fannia Robineau-Desvoidy, 1830, n. syn. [Fanniidae]; Myiathropa Rondani, 1868 of Myathropa Rondani, 1845, n. syn. [Syrphidae]; Myiocera Rondani, 1868 of Dinera Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Myiolepta Rondani, 1868 of Myolepta Newman, 1838, n. syn. [Syrphidae]; Myiospila Rondani, 1868 of Myospila Rondani, 1856, n. syn. [Muscidae]; Myltogramma Rondani, 1868 of Miltogramma Meigen, 1803, n. syn. [Sarcophagidae]; Myntho Rondani, 1845 of Mintho Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Myospyla Rondani, 1862 of Myospila Rondani, 1856, n. syn. [Muscidae]; Napoea Rondani, 1856 of Parydra Stenhammar, 1844, n. syn. [Ephydridae]; Neera Rondani, 1861 of Neaera Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Nemestrina Blanchard, 1845 of Nemestrinus Latreille, 1802, n. syn. [Nemestrinidae]; Nemorea Macquart, 1834 of Nemoraea Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Nevrolyga Agassiz, 1846 of Neurolyga Rondani, 1840, n. syn. [Cecidomyiidae]; Nictia Rondani, 1862 of Nyctia Robineau-Desvoidy, 1830, n. syn. [Sarcophagidae]; Noteromyia Marschall, 1873 of Camilla Haliday, 1838, n. syn. [Camillidae]; Ociptera Rondani, 1862 of Cylindromyia Meigen, 1803, n. syn. [Tachinidae]; Onodonta Rondani, 1866 of Hydrotaea Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Opegiocera Rondani, 1845 of Ancylorhynchus Berthold, 1827, n. syn. [Asilidae]; Ophira Rondani, 1844 of Hydrotaea Robineau-Desvoidy, 1830, n. syn. [Muscidae]; Ornithoeca Kirby, 1880 of Ornithoica Rondani, 1878, n. syn. [Hippoboscidae]; Ornithomyia Macquart, 1835 of Ornithomya Latreille, 1804, n. syn. [Hippoboscidae]; Orthochile Blanchard, 1845 of Ortochile Latreille, 1809, n. syn. [Dolichopodidae]; Oxicera Rondani, 1856 of Oxycera Meigen, 1803, n. syn. [Stratiomyidae]; Oxina Rondani, 1856 of Oxyna Robineau-Desvoidy, 1830, n. syn. [Tephritidae]; Ozyrhinchus Rondani, 1861 of Ozirhincus Rondani, 1840, n. syn. [Cecidomyiidae]; Oxyrhyncus Rondani, 1856 of Ozirhincus Rondani, 1840, n. syn. [Cecidomyiidae]; Pachigaster Rondani, 1856 of Pachygaster Meigen, 1803, n. syn. [Stratiomyidae]; Pachimeria Rondani, 1856 of Pachymeria Stephens, 1829, n. syn. [Empididae]; Pachipalpus Rondani, 1856 of Cordyla Meigen, 1803, n. syn. [Mycetophilidae]; Pachirhyna Rondani, 1845 of Nephrotoma Meigen, 1803, n. syn. [Tipulidae]; Pachirina Rondani, 1840 of Nephrotoma Meigen, 1803, n. syn. [Tipulidae]; Pachistomus Rondani, 1856 of Xylophagus Meigen, 1803, n. syn. [Xylophagidae]; Pangonia Macquart, 1834 of Pangonius Latreille, 1802, n. syn. [Tabanidae]; Pentetria Rondani, 1856 of Penthetria Meigen, 1803, n. syn. [Bibionidae]; Perichaeta Herting, 1984 of Policheta Rondani, 1856, n. syn. [Tachinidae]; Perichoeta Bezzi, 1894 of Policheta Rondani, 1856, n. syn. [Tachinidae]; Phalacromyia Costa, 1866 of Copestylum Macquart, 1846, n. syn. [Syrphidae]; Phicodromia Rondani, 1866 of Malacomyia Westwood, 1840, n. syn. [Coelopidae]; Phillophaga Lioy, 1864 of Asphondylia Loew, 1850, n. syn. [Cecidomyiidae]; Phito Rondani, 1861 of Phyto Robineau-Desvoidy, 1830, n. syn. [Rhinophoridae]; Phitomyptera Lioy, 1864 of Phytomyptera Rondani, 1845, n. syn. [Tachinidae]; Phitophaga Lioy, 1864 of Cecidomyia Meigen, 1803, n. syn. [Cecidomyiidae]; Phloebotomus Rondani, 1856 of Phlebotomus Rondani & Berté, 1840, n. syn. [Psychodidae]; Phorichaeta Brauer & Bergenstamm, 1889 of Periscepsia Gistel, 1848, n. syn. [Tachinidae]; Phrino Rondani, 1861 of Phryno Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Phrixe Rondani, 1862 of Phryxe Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Phthyria Rondani, 1856 of Phthiria Meigen, 1803, n. syn. [Bombyliidae]; Phtyria Rondani, 1863 of Phthiria Meigen, 1803, n. syn. [Bombyliidae]; Phyllodromya Rondani, 1856 of Phyllodromia Zetterstedt, 1837, n. syn. [Empididae]; Phytofaga Rondani, 1843 of Cecidomyia Meigen, 1803, n. syn. [Cecidomyiidae]; Phytomyzoptera Bezzi, 1906 of Phytomyptera Rondani, 1845, n. syn. [Tachinidae]; Platiparea Rondani, 1870 of Platyparea Loew, 1862, n. syn. [Tephritidae]; Platistoma Lioy, 1864 of Platystoma Meigen, 1803, n. syn. [Platystomatidae]; Platychyra Rondani, 1859 of Panzeria Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Platynochetus Rondani, 1845 of Platynochaetus Wiedemann, 1830, n. syn. [Syrphidae]; Polychaeta Schiner, 1868 of Policheta Rondani, 1856, n. syn. [Tachinidae]; Polycheta Schiner, 1861 of Policheta Rondani, 1856, n. syn. [Tachinidae]; Porrhocondyla Agassiz, 1846 of Porricondyla Rondani, 1840, n. syn. [Cecidomyiidae]; Porrycondyla Walker, 1874 of Porricondyla Rondani, 1840, n. syn. [Cecidomyiidae]; Prosopaea Brauer & Bergenstamm, 1889 of Prosopea Rondani, 1861, n. syn. [Tachinidae]; Psicoda Rondani, 1840 of Psychoda Latreille, 1797, n. syn. [Psychodidae]; Psylopus Rondani, 1850 of Sciapus Zeller, 1842, n. syn. [Dolichopodidae]; Pteropectria Rondani, 1869 of Herina Robineau-Desvoidy, 1830, n. syn. [Ulidiidae]; Pterospylus Bigot, 1857 of Syneches Walker, 1852, n. syn. [Hybotidae]; Pticoptera Rondani, 1856 of Ptychoptera Meigen, 1803, n. syn. [Ptychopteridae]; Ptilocheta Rondani, 1857 of Zeuxia Meigen, 1826, n. syn. [Tachinidae]; Ptilochoeta Bezzi, 1894 of Zeuxia Meigen, 1826, n. syn. [Tachinidae]; Ptylocera Rondani, 1861 of Zeuxia Meigen, 1826, n. syn. [Tachinidae]; Ptylops Rondani, 1859 of Macquartia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Pyragrura Rondani, 1861 of Labigastera Macquart, 1834, n. syn. [Tachinidae]; Pyrrhosia Bezzi & Stein, 1907 of Leskia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Ragio Scopoli, 1777 of Rhagio Fabricius, 1775, n. syn. [Rhagionidae]; Raimondia Rondani, 1879 of Raymondia Frauenfeld, 1855, n. syn. [Hippoboscidae]; Ramphina Rondani, 1856 of Rhamphina Macquart, 1835, n. syn. [Tachinidae]; Ramphomya Rondani, 1845 of Rhamphomyia Meigen, 1822, n. syn. [Empididae]; Raphium Latreille, 1829 of Rhaphium Meigen, 1803, n. syn. [Dolichopodidae]; Rhynchomyia Macquart, 1835 of Rhyncomya Robineau-Desvoidy, 1830, n. syn. [Rhiniidae]; Rhyncosia Rondani, 1861 of Aphria Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Rhynophora Rondani, 1861 of Rhinophora Robineau-Desvoidy, 1830, n. syn. [Rhinophoridae]; Riphus Rondani, 1845 of Rhyphus Latreille, 1804, n. syn. [Anisopodidae]; Ripidia Rondani, 1856 of Rhipidia Meigen, 1818, n. syn. [Limoniidae]; Sarcopaga Rondani, 1856 of Sarcophaga Meigen, 1826, n. syn. [Sarcophagidae]; Scatomiza Rondani, 1866 of Scathophaga Meigen, 1803, n. syn. [Scathophagidae]; Schaenomyza Rondani, 1866 of Schoenomyza Haliday, 1833, n. syn. [Muscidae]; Sciomiza Rondani, 1856 of Sciomyza Fallén, 1820, n. syn. [Sciomyzidae]; Sciopila Rondani, 1856 of Sciophila Meigen, 1818, n. syn. [Mycetophilidae]; Serromya Rondani, 1856 of Serromyia Meigen, 1818, n. syn. [Ceratopogonidae]; Seseromyia Costa, 1866 of Cosmina Robineau-Desvoidy, 1830, n. syn. [Rhiniidae]; Sibistroma Rondani, 1856 of Sybistroma Meigen, 1824, n. syn. [Dolichopodidae]; Simplecta Rondani, 1856 of Symplecta Meigen, 1830, n. syn. [Limoniidae]; Sinapha Rondani, 1856 of Synapha Meigen, 1818, n. syn. [Mycetophilidae]; Siritta Rondani, 1844 of Syritta Le Peletier & Serville, 1828, n. syn. [Syrphidae]; Somatolia Bezzi & Stein, 1907 of Lydina Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Somomia Rondani, 1862 of Calliphora Robineau-Desvoidy, 1830, n. syn. [Calliphoridae]; Somomyia Rondani, 1868 of Calliphora Robineau-Desvoidy, 1830, n. syn. [Calliphoridae]; Sphixaea Rondani, 1856 of Milesia Latreille, 1804, n. syn. [Syrphidae]; Sphyxaea Rondani, 1856 of Milesia Latreille, 1804, n. syn. [Syrphidae]; Sphyxapata Bigot, 1881 of Senotainia Macquart, 1846, n. syn. [Sarcophagidae]; Sphyximorpha Rondani, 1856 of Sphiximorpha Rondani, 1850, n. syn. [Syrphidae]; Spilomya Rondani, 1857 of Spilomyia Meigen, 1803, n. syn. [Syrphidae]; Spiximorpha Rondani, 1857 of Sphiximorpha Rondani, 1850, n. syn. [Syrphidae]; Spixosoma Rondani, 1857 of Conops Linnaeus, 1758, n. syn. [Conopidae]; Spylographa Rondani, 1871 of Trypeta Meigen, 1803, n. syn. [Tephritidae]; Stenopterix Millet de la Turtaudière, 1849 of Craterina Olfers, 1816, n. syn. [Hippoboscidae]; Stomorhyna Rondani, 1862 of Stomorhina Rondani, 1861, n. syn. [Rhiniidae]; Stomoxis Latreille, 1797 of Stomoxys Geoffroy, 1762, n. syn. [Muscidae]; Syphona Rondani, 1844 of Siphona Meigen, 1803, n. syn. [Tachinidae]; Tachidromya Rondani, 1856 of Tachydromia Meigen, 1803, n. syn. [Hybotidae]; Tachipeza Rondani, 1856 of Tachypeza Meigen, 1830, n. syn. [Hybotidae]; Tanipeza Rondani, 1850 of Tanypeza Fallén, 1820, n. syn. [Tanypezidae]; Teicomyza Rondani, 1856 of Teichomyza Macquart, 1835, n. syn. [Ephydridae]; Telaira Rondani, 1862 of Thelaira Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Teremya Rondani, 1875 of Lonchaea Fallén, 1820, n. syn. [Lonchaeidae]; Thecomya Rondani, 1848 of Thecomyia Perty, 1833, n. syn. [Sciomyzidae]; Thlypsigaster Marschall, 1873 of Amictus Wiedemann, 1817, n. syn. [Bombyliidae]; Thlypsomyza Rondani, 1863 of Amictus Wiedemann, 1817, n. syn. [Bombyliidae]; Thrichogena Bezzi, 1894 of Loewia Egger, 1856, n. syn. [Tachinidae]; Thricogena Rondani, 1859 of Loewia Egger, 1856, n. syn. [Tachinidae]; Thricophticus Rondani, 1866 of Thricops Rondani, 1856, n. syn. [Muscidae]; Thriptocheta Lioy, 1864 of Campichoeta Macquart, 1835, n. syn. [Diastatidae]; Thryptochoeta Bezzi, 1891 of Campichoeta Macquart, 1835, n. syn. [Diastatidae]; Thyreodonta Marschall, 1873 of Stratiomys Geoffroy, 1762, n. syn. [Stratiomyidae]; Toxopora Rondani, 1856 of Toxophora Meigen, 1803, n. syn. [Bombyliidae]; Tricholiga Rondani, 1873 of Tricoliga Rondani, 1856, n. syn. [Tachinidae]; Trichophticus Rondani, 1871 of Thricops Rondani, 1856, n. syn. [Muscidae]; Tricocera Rondani, 1856 of Trichocera Meigen, 1803, n. syn. [Trichoceridae]; Tricolyga Schiner, 1861 of Tricoliga Rondani, 1856, n. syn. [Tachinidae]; Trigliphus Rondani, 1856 of Triglyphus Loew, 1840, n. syn. [Syrphidae]; Tripeta Rondani, 1856 of Trypeta Meigen, 1803, n. syn. [Tephritidae]; Triphera Rondani, 1861 of Tryphera Meigen, 1838, n. syn. [Tachinidae]; Triptocera Lioy, 1864 of Actia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Tryptocera Macquart, 1844 of Actia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Uromya Rondani, 1856 of Phania Meigen, 1824, n. syn. [Tachinidae]; Winthemya Rondani, 1859 of Winthemia Robineau-Desvoidy, 1830, n. syn. [Tachinidae]; Xiloteja Rondani, 1863 of Myolepta Newman, 1838, n. syn. [Syrphidae]; Xylomyia Marschall, 1873 of Xylomya Rondani, 1861, n. syn. [Xylomyidae]; Xyloteja Rondani, 1856 of Myolepta Newman, 1838, n. syn. [Syrphidae]; Xyphidicera Rondani, 1845 of Xiphidicera Macquart, 1834, n. syn. [Hybotidae]; Xyphocera Rondani, 1845 of Ancylorhynchus Berthold, 1827, n. syn. [Asilidae]; Zigoneura Rondani, 1840 of Zygoneura Meigen, 1830, n. syn. [Sciaridae]; Zophomya Rondani, 1859 of Zophomyia Macquart, 1835, n. syn. [Tachinidae]. Species-group name—Psalida leucostoma Rondani, 1856 of Ocyptera simplex Fallén, 1815, n. syn. [Tachinidae]. Mycosia Rondani, 1861 is treated here as nomen dubium [Mycetophilidae]; Habropogon heteroneurus Timon-David, 1951 is resurrected from junior synonymy with Asilus striatus Fabricius, 1794, new stat. [Asilidae]. Reversal of precedence is invoked for three cases of subjective synonymy to promote stability in nomenclature: Macquartia monticola Egger, 1856, nomen protectum and Proboscina longipes Rondani, 1856, nomen oblitum [in Tachinidae]; Loewia Egger, 1856, nomen protectum and Thrychogena Rondani, 1856, nomen oblitum [in Tachinidae]; Zygomyia Winnertz, 1863, nomen protectum and Bolithomyza Rondani, 1856, nomen oblitum [in Mycetophilidae].
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii