Gotowa bibliografia na temat „6 degrees of freedom”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „6 degrees of freedom”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "6 degrees of freedom"
Knapp, W., i S. Weikert. "Testing the Contouring Performance in 6 Degrees of Freedom". CIRP Annals 48, nr 1 (1999): 433–36. http://dx.doi.org/10.1016/s0007-8506(07)63220-x.
Pełny tekst źródłaFossen, Thor I., i Ola-Erik Fjellstad. "Nonlinear modelling of marine vehicles in 6 degrees of freedom". Mathematical Modelling of Systems 1, nr 1 (styczeń 1995): 17–27. http://dx.doi.org/10.1080/13873959508837004.
Pełny tekst źródłaReddy, B. Nithin. "Mechanical Design and Analysis of Six-Degree-of-Freedom (6-DOF) SCARA Robot for Industrial Applications". International Journal for Research in Applied Science and Engineering Technology 12, nr 4 (30.04.2024): 6080–87. http://dx.doi.org/10.22214/ijraset.2024.59008.
Pełny tekst źródłaBabarit, Aurélien, i Moran Charlou. "A Method for Forcing a Number of Motions or Rotations in 6 Degrees of Freedom Ship Simulators". Journal of Sailing Technology 8, nr 01 (31.12.2023): 255–75. http://dx.doi.org/10.5957/jst/2023.8.13.255.
Pełny tekst źródłavon Clarmann, T., i U. Grabowski. "Elimination of hidden a priori information from remotely sensed profile data". Atmospheric Chemistry and Physics Discussions 6, nr 4 (18.07.2006): 6723–51. http://dx.doi.org/10.5194/acpd-6-6723-2006.
Pełny tekst źródłaKhurtasenko, A. V., K. V. Chuev i L. A. Rybak. "Dynamic model of a robotic platform with 6 degrees of freedom". Journal of Physics: Conference Series 2176, nr 1 (1.06.2022): 012024. http://dx.doi.org/10.1088/1742-6596/2176/1/012024.
Pełny tekst źródłaCsiszar, Akos, i Cornel Brisan. "Workspace Analysis of the 6 Degrees of Freedom PARTNER Parallel Robot". Solid State Phenomena 166-167 (wrzesień 2010): 155–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.166-167.155.
Pełny tekst źródłaJeong, Sang-Ki, Hyeung-Sik Choi, Jung-Min Seo, Ngoc Huy Tran i Joon-Young Kim. "Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV". Journal of Institute of Control, Robotics and Systems 19, nr 9 (1.09.2013): 797–804. http://dx.doi.org/10.5302/j.icros.2013.13.9025.
Pełny tekst źródłaZhu, Dequan, Tao Mei i Lei Sun. "Fuzzy Immune PID Control for 6-Degrees of Freedom Parallel Platform". Advanced Science Letters 6, nr 1 (15.03.2012): 836–40. http://dx.doi.org/10.1166/asl.2012.2293.
Pełny tekst źródłaSindersberger, Dirk, Andreas Diermeier, Nina Prem i Gareth J. Monkman. "Printing of hybrid magneto active polymers with 6 degrees of freedom". Materials Today Communications 15 (czerwiec 2018): 269–74. http://dx.doi.org/10.1016/j.mtcomm.2018.02.032.
Pełny tekst źródłaRozprawy doktorskie na temat "6 degrees of freedom"
Chinneck, Robert. "An automated welding system with 6 degrees of freedom". Thesis, University of Liverpool, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397385.
Pełny tekst źródłaMoreu, Gamazo Jaime. "A kinematic coupling based 6 degrees of freedom dynamometer". Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/55278.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 130-131).
A new 6-degree of freedom dynamometer is presented. Six load cells measure the normal forces at the contact points of a three groove kinematic coupling. Three toggle clamps are used to preload the machine, so that it does not come apart. The device was designed, analyzed, built and tested. The error will mainly depend on frictional forces, load cells error and the toggle clamps. Frictional forces affect hysteresis, absorption and settlement of the coupling. Different solutions have been designed and tested to reduce friction. First, we tried direct contact between three stainless-steel rods and the stainless-steel load cells. The results were fully distorted due to the high friction of hard steel. We also tried three stainless-steels rods with flexures to contact the steel button cells. The results were much better and more repeatable, but absorption was not good enough. Finally, we tried using Teflon. Teflon is stuck to a steel plate that touches the contact points, leaving Teflon free of high stresses and allowing it to reduce friction between the contacts. The outcome was acceptable. In this case, hysteresis will be reasonably low, absorption is moderate and settlement-based problems are small for small preloads. Fortunately, settlement ability will be improved thanks to vibrations. Future investigations shall look towards low friction solutions, since the sturdiest and most user-friendly design will be the one that minimizes friction during the settlement process.
by Jaime Moreu Gamazo.
S.M.
Sepp, Wolfgang. "Visual servoing of textured free-form objects in 6 degrees of freedom". kostenfrei, 2008. http://mediatum2.ub.tum.de/node?id=646233.
Pełny tekst źródłaSnyder, Mark. "NONLINEAR STABILIZATION AND CONTROL OF MEDIUM RANGE SURFACE TO AIR INTERCEPTOR MISSILES". Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4081.
Pełny tekst źródłaM.S.E.E.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering MSEE
Baker, Antoin Lenard. "Analysis of three degree of freedom 6 x 6 tensegrity platform". [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0010499.
Pełny tekst źródłaFERNANDEZ, MANUEL EDUARDO LOAIZA. "IMPLEMENTATION OF AN OPTICAL TRACKING DEVICE WITH 6 DEGREES OF FREEDOM FOR INTERACTING WITH VIRTUAL REALITY APPLICATIONS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=6664@1.
Pełny tekst źródłaOs sistemas de rastreamento são uma das tecnologias cruciais para os sistemas de realidade virtual. Eles permitem detectar continuamente a posição e orientação de marcadores ou objetos específicos que o usuário utiliza para interagir com o sistema. Uma das tecnologias mais utilizadas para implementar este tipo de sistema é o rastreamento óptico, a qual permite ao usuário ter maior liberdade em seus movimentos porque não precisa de cabos ou elementos mecânicos que possam restringir ou atrapalhar a sensação de imersão que se tenta criar na interação com ambientes de realidade virtual. Este trabalho apresenta a construção e implementação de um dispositivo de entrada, baseado em rastreamento óptico, que é utilizado para interação com aplicações de realidade virtual do tipo semi-imersivas em um ambiente desktop comum. O dispositivo tem a capacidade de recuperar seis graus de liberdade dos movimentos feitos por um conjunto de marcadores que são controlados pela mão do usuário. A partir da recuperação dos seis graus de liberdade, o dispositivo é complementado com a capacidade de emissão de eventos que permitem a interação do usuário com a aplicação. No final apresenta-se uma aplicação que demonstra a adaptação dos eventos gerados e o desempenho do dispositivo implementado.
Tracking systems are a fundamental technology in virtual reality systems. They provide a continuous detection of the position and orientation of markers or specific objects that the user employs to interact with the system. One of the technologies most commonly used to implement these types of systems is the optical tracking, which allows the users to have more freedom in their movements because it does not need cables or mechanical elements that can restrict or hinder the immersion sensation that is tried to create in the interaction with virtual reality environments. This work presents the construction and implementation of an input device that is based on optical tracking that is used for interaction with semiimmersive virtual reality applications on ordinary desktop environments. This device has the capability to get the six degrees of freedom of the movements made by a set of markers that are controlled by the user hand. Based on the six degrees of freedom recovered, the device is complemented with the ability to emit events that allow the interaction of the user with the application. Finally, an application is presented for demonstrating the use of the generated events and the performance of our device.
Lin, Christie. "Linear regression analysis of 2D projection image data of 6 degrees-of-freedom transformed 3D image sets for stereotactic radiation therapy". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/76969.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (p. 104-106).
Patient positioning is crucial to accurate dose delivery during radiation therapy to ensure the proper localization of dose to the target tumor volume. In patient positioning for stereotactic radiation therapy treatment, classical image registration methods are computationally costly and imprecise. We developed an automatic, fast, and robust 2D-3D registration method to improve accuracy and speed of identifying 6 degrees-of-freedom (DoF) transformations during patient positioning for stereotactic radiotherapy by creating a model of characteristic shape distributions to determine the linear relationship between two real-time orthogonal 2D projection images and the 3D volume image. We defined a preprocessed sparse base set of shape distributions that characterize 2D digitally reconstructed radiograph (DRR) images from a range of independent transformations of the volume. The algorithm calculates the 6-DoF transformation of the patient based upon two orthogonal real-time 2D images by correlating the images against the base set The algorithm has positioning accuracy to at least 1 pixel, equivalent to 0.5098 mm accuracy given this image resolution. The shape distribution of each 2D image is created in MATLAB in an average of 0.017 s. The online algorithm allows for rapid and accurate position matching of the images, providing the transformation needed to align the patient on average in 0.5276 s. The shape distribution algorithm affords speed, robustness, and accuracy of patient positioning during stereotactic radiotherapy treatment for small-order 6-DoF transformations as compared with existing techniques for the quantification of patient setup where both linear and rotational deviations occur. This algorithm also indicates the potential for rapid, high precision patient positioning from the interpolation and extrapolation of the linear relationships based upon shape distributions. Key words: shape distribution, image registration, patient positioning, radiation therapy
by Christie Lin.
S.M.and S.B.
Gu, Jie. "Development of a 6-degree-of-freedom magnetically levitated instrument with nanometer precision". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969/118.
Pełny tekst źródłaÖgren, Jim. "Simulation of a Self-bearing Cone-shaped Lorentz-type Electrical Machine". Thesis, Uppsala universitet, Elektricitetslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-202443.
Pełny tekst źródłaCalhoun, Sean M. "Six Degree-of-Freedom Modeling of an Uninhabited Aerial Vehicle". Ohio University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1149543622.
Pełny tekst źródłaKsiążki na temat "6 degrees of freedom"
Reed, Stephen Charles. The clinical application of a 6-degree of freedom electrogoniometer (instrumented spatial linkage device). Ottawa: National Library of Canada, 1990.
Znajdź pełny tekst źródłaUniversity of Alberta. Strategic Planning Task Force. Degrees of freedom. Edmonton, Alta: University of Alberta, 1993.
Znajdź pełny tekst źródłaMorden, Simon. Degrees of freedom. New York: Orbit, 2011.
Znajdź pełny tekst źródłaMorden, Simon. Degrees of freedom. London: Orbit, 2011.
Znajdź pełny tekst źródłaUniversity of Alberta. Strategic Planning Task Force. Degrees of freedom: Supplement. Edmonton, Alta: University of Alberta, 1993.
Znajdź pełny tekst źródłaGeorge, Nick. Nick George: Degrees of freedom. Columbus, Ohio: Angela Meleca Gallery, 2015.
Znajdź pełny tekst źródłaOktay, Baysal, i United States. National Aeronautics and Space Administration., red. 3-D unstructured method for flows past bodies in 6-DOF relative motion: Preprint from proceedings of 6th International Symposium of Computational Fluid Dynamics, Japan Society of Computational Fluid Dynamics, September 4-8, 1995, Lake Tahoe, Nevada. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaOktay, Baysal, i United States. National Aeronautics and Space Administration., red. 3-D unstructured method for flows past bodies in 6-DOF relative motion: Preprint from proceedings of 6th International Symposium of Computational Fluid Dynamics, Japan Society of Computational Fluid Dynamics, September 4-8, 1995, Lake Tahoe, Nevada. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaSingh, K. P. 3-D unstructured method for flows past bodies in 6-DOF relative motion: Preprint from proceedings of 6th International Symposium of Computational Fluid Dynamics, Japan Society of Computational Fluid Dynamics, September 4-8, 1995, Lake Tahoe, Nevada. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Znajdź pełny tekst źródłaBeth, Mintz, i Rothblum Esther D, red. Lesbians in academia: Degrees of freedom. New York: Routledge, 1997.
Znajdź pełny tekst źródłaCzęści książek na temat "6 degrees of freedom"
Li, Ming. "Vibrations with Multiple Degrees-of-Freedom". W Fractional Vibrations with Applications to Euler-Bernoulli Beams, 92–125. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003460947-6.
Pełny tekst źródłaSugano, S., i I. Kato. "Finger-Arm Coordination Control Method for Multiple Degrees of Freedom Robot". W RoManSy 6, 311–21. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6915-8_30.
Pełny tekst źródłaMukhopadhyay, Madhujit. "Free Vibration of Multiple Degrees of Freedom System". W Vibrations, Dynamics and Structural Systems 2nd edition, 174–245. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003421580-6.
Pełny tekst źródłaHerman, Michel R. "Examples of Compact Hypersurfaces in R2P, 2P ≥ 6, With No Periodic Orbits". W Hamiltonian Systems with Three or More Degrees of Freedom, 126. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4673-9_11.
Pełny tekst źródłaSestieri, A., W. D’Ambrogio, R. Brincker, A. Skafte i A. Culla. "Estimation of Rotational Degrees of Freedom by EMA and FEM Mode Shapes". W Special Topics in Structural Dynamics, Volume 6, 355–65. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6546-1_38.
Pełny tekst źródłaKhambra, Sourabh, Chandan Kumar, Dipankar Chatterjee i Bittagopal Mondal. "Predicting the Flight Behaviour of a Guided Projectile Through a Six Degrees of Freedom Trajectory Model". W Fluid Mechanics and Fluid Power, Volume 6, 515–29. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-5755-2_49.
Pełny tekst źródłaGeike, Thomas, i John Mcphee. "Inverse Dynamic Analysis of Parallel Manipulators with 3 or 6 Degrees of Freedom". W Romansy 14, 49–58. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-2552-6_8.
Pełny tekst źródłaPopișter, Florin, Alexandru Oarcea, Sergiu-Dan Stan i Costan-Vlăduț Trifan. "Workspace Analysis of a Novel Parallel Kinematic Machine with 6 Degrees of Freedom". W Lecture Notes in Mechanical Engineering, 50–63. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-00805-4_5.
Pełny tekst źródłaMiller, Logan E., Jillian E. Urban i Joel D. Stitzel. "Estimation of 6 Degrees-of-Freedom Accelerations from Head Impact Telemetry System Outputs for Computational Modeling". W Lecture Notes in Computational Vision and Biomechanics, 121–30. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23073-9_8.
Pełny tekst źródłaChicoma, Max Uriarte, Diego Serrano Escobar i Leonardo Vinces. "Large-Scale FDM 3D Printing in 6 Degrees of Freedom on One ARM KUKA KR 60". W Proceedings of the 7th Brazilian Technology Symposium (BTSym’21), 545–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-08545-1_53.
Pełny tekst źródłaStreszczenia konferencji na temat "6 degrees of freedom"
Zhang, Zhengming, Weiiun Wang, Wei Sun, Shujian Liu, Yunfei Liu, Jiyong Fan, Huarui Liu, Yangzhou Zhao, Qinghui Wang i Xingyu Cui. "Design for Collaborative Robot with 6 Degree of Freedom(DOF)". W 2024 10th International Conference on Electrical Engineering, Control and Robotics (EECR), 56–62. IEEE, 2024. http://dx.doi.org/10.1109/eecr60807.2024.10607241.
Pełny tekst źródłaGalipon, Josephine, Aymeric Bordier, Maxime Duby, Moses Gladson Selvamuthu, Makishi Imaizumi, Riichiro Tadakuma i Kenjiro Tadakuma. "A transparent spherical microscope stage to realize tracking and omni-directional imaging with 6 degrees of freedom*". W 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), 777–84. IEEE, 2024. http://dx.doi.org/10.1109/aim55361.2024.10637240.
Pełny tekst źródłaPollack, Gilad, i Ofer Kfir. "Measuring Bell Inequalities via Diffraction". W CLEO: Fundamental Science, FM4R.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.fm4r.6.
Pełny tekst źródłaKim, Jehyeok, i Clément Gosselin. "A Backdrivable Axisymmetric Kinematically Redundant (6+3)-Degree-of-Freedom Hybrid Parallel Manipulator". W 2024 IEEE International Conference on Robotics and Automation (ICRA), 8835–41. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610821.
Pełny tekst źródłaSaint-Aime, Sebastien, Brigitte Le-Pevedicz i Dominique Duhaut. "Building emotions with 6 degrees of freedom". W 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icsmc.2007.4413700.
Pełny tekst źródłaBaker, Antoin, i Carl D. Crane. "Analysis of Three Degree of Freedom 6×6 Tensegrity Platform". W ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/detc2006-99041.
Pełny tekst źródłaGiberti, Hermes, Francesco La Mura, Marco Tarabini i Mattia Camnasio. "Characterization of a 6 Degrees of Freedom Parallel Robot". W 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT). IEEE, 2021. http://dx.doi.org/10.1109/metroind4.0iot51437.2021.9488446.
Pełny tekst źródłaTan, Kuan Meng, Amir Anvar i Tien-Fu Lu. "6 Degrees of freedom (DOF) maritime robotic simulation framework". W Vision (ICARCV 2010). IEEE, 2010. http://dx.doi.org/10.1109/icarcv.2010.5707368.
Pełny tekst źródłaKokegei, Matthew, Fangpo He i Karl Sammut. "Fully coupled 6 degrees-of-freedom control of Autonomous Underwater Vehicles". W OCEANS 2008. IEEE, 2008. http://dx.doi.org/10.1109/oceans.2008.5152090.
Pełny tekst źródłaMarvel, Jeremy A., Joe Falco i Tsai Hong. "Ground truth for evaluating 6 degrees of freedom pose estimation systems". W the Workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2393091.2393106.
Pełny tekst źródłaRaporty organizacyjne na temat "6 degrees of freedom"
Lai, Chin-Ta, i Joel Conte. Dynamic Modeling of the UC San Diego NHERI Six-Degree-of-Freedom Large High-Performance Outdoor Shake Table. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, sierpień 2024. http://dx.doi.org/10.55461/jsds5228.
Pełny tekst źródłaLichtenberg, Allan J. Stochastic Motion in Many Degrees of Freedom. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 1997. http://dx.doi.org/10.21236/ada327244.
Pełny tekst źródłaDawid, Richard. Holographic cosmology and its relevant degrees of freedom. Office of Scientific and Technical Information (OSTI), lipiec 1999. http://dx.doi.org/10.2172/840216.
Pełny tekst źródłaFoias, C. The asymptotic degrees of freedom of fluid flows. Office of Scientific and Technical Information (OSTI), wrzesień 1990. http://dx.doi.org/10.2172/6283198.
Pełny tekst źródłaChristie, Benjamin, Cameron Alred, Michael Paquette i Garry Glaspell. Increasing the degrees of freedom on a robot arm. Engineer Research and Development Center (U.S.), listopad 2023. http://dx.doi.org/10.21079/11681/47846.
Pełny tekst źródłaWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg i Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), czerwiec 2021. http://dx.doi.org/10.21079/11681/40883.
Pełny tekst źródłaYeh, Peter Derek. Six Degrees of Freedom (6DOF) Simulations of Supersonic Fragment Trajectories. Office of Scientific and Technical Information (OSTI), styczeń 2020. http://dx.doi.org/10.2172/1597202.
Pełny tekst źródłaMartens, Agnieszka. Affine Models of Internal Degrees of Freedom and their Quantization. GIQ, 2015. http://dx.doi.org/10.7546/giq-16-2015-207-218.
Pełny tekst źródłaR. Lourie i G. A. Warren. Polarization degrees of freedom in electronuclear reactions. Final technical report. Office of Scientific and Technical Information (OSTI), grudzień 1998. http://dx.doi.org/10.2172/760097.
Pełny tekst źródłaKott, Phillip S. The Degrees of Freedom of a Variance Estimator in a Probability Sample. RTI Press, sierpień 2020. http://dx.doi.org/10.3768/rtipress.2020.mr.0043.2008.
Pełny tekst źródła