Gotowa bibliografia na temat „3D woven organic composites”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „3D woven organic composites”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "3D woven organic composites"
Gigliotti, Marco, Yannick Pannier, Marie Christine Lafarie-Frenot i Jean Claude Grandidier. "Some Examples of “Multi-Physical” Fatigue of Organic Matrix Composites for Aircraft Applications". Applied Mechanics and Materials 828 (marzec 2016): 79–96. http://dx.doi.org/10.4028/www.scientific.net/amm.828.79.
Pełny tekst źródłaNeumann, S. Ephraim, Junpyo Kwon, Cornelius Gropp, Le Ma, Raynald Giovine, Tianqiong Ma, Nikita Hanikel i in. "The propensity for covalent organic frameworks to template polymer entanglement". Science 383, nr 6689 (22.03.2024): 1337–43. http://dx.doi.org/10.1126/science.adf2573.
Pełny tekst źródłaFan, Wei, Jingjing Dong, Bingxin Wei, Chao Zhi, Linjie Yu, Lili Xue, Wensheng Dang i Long Li. "Fast and accurate bending modulus prediction of 3D woven composites via experimental modal analysis". Polymer Testing 78 (wrzesień 2019): 105938. http://dx.doi.org/10.1016/j.polymertesting.2019.105938.
Pełny tekst źródłaFoti, Federico, Yannick Pannier, Salvador Orenes Balaciart, Jean-Claude Grandidier, Marco Gigliotti i Camille Guigon. "In-situ multi-axial testing of three-dimensional (3D) woven organic matrix composites for aeroengine applications". Composite Structures 273 (październik 2021): 114259. http://dx.doi.org/10.1016/j.compstruct.2021.114259.
Pełny tekst źródłaRuggles-Wrenn, M. B., i S. A. Alnatifat. "Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature". Polymer Testing 97 (maj 2021): 107179. http://dx.doi.org/10.1016/j.polymertesting.2021.107179.
Pełny tekst źródłaWang, Caizheng, Dandan Su, Zhifeng Xie, Ke Zhang, Ning Wu, Meiyue Han i Ming Zhou. "Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres". Polymer Testing 101 (wrzesień 2021): 107314. http://dx.doi.org/10.1016/j.polymertesting.2021.107314.
Pełny tekst źródłaGillet, Camille, Valérie Nassiet, Fabienne Poncin‐Epaillard, Bouchra Hassoune‐Rhabbour i Tatiana Tchalla. "Chemical Behavior of Water Absorption in a Carbon/Epoxy 3D Woven Composite". Macromolecular Symposia 405, nr 1 (październik 2022): 2100213. http://dx.doi.org/10.1002/masy.202100213.
Pełny tekst źródłaSafari, Hamid, Mehdi Karevan i Hassan Nahvi. "Mechanical characterization of natural nano-structured zeolite/polyurethane filled 3D woven glass fiber composite sandwich panels". Polymer Testing 67 (maj 2018): 284–94. http://dx.doi.org/10.1016/j.polymertesting.2018.03.018.
Pełny tekst źródłaTripathi, Lekhani, i B. K. Behera. "Review: 3D woven honeycomb composites". Journal of Materials Science 56, nr 28 (9.07.2021): 15609–52. http://dx.doi.org/10.1007/s10853-021-06302-5.
Pełny tekst źródłaBilisik, Kadir. "Multiaxis 3D Woven Preform and Properties of Multiaxis 3D Woven and 3D Orthogonal Woven Carbon/Epoxy Composites". Journal of Reinforced Plastics and Composites 29, nr 8 (27.05.2009): 1173–86. http://dx.doi.org/10.1177/0731684409103153.
Pełny tekst źródłaRozprawy doktorskie na temat "3D woven organic composites"
Orenes, Balaciart Salvador. "In Situ Characterization by Acoustic Emission and X-Ray μ-Computed-Tomography of the Effects of Temperature, Aging, and Multi-Axial Loads on Damage Onset in 3D Woven Organic Matrix Composites for Aeronautical Applications". Electronic Thesis or Diss., Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2024. http://www.theses.fr/2024ESMA0010.
Pełny tekst źródłaThe field of aeronautical engineering has seen considerable advancements over the past decades in materials science. Carbon fibre Three-Dimensional Woven Organic Matrix composites (3DOMC) are increasingly used as elements of structural parts close to aircraft engines and in aero-engine fan blades. These materials are therefore requested to operate in high-performance ranges subjected to multi-axial mechanical solicitations at different temperatures and exposed to cold/hot thermal cycling. Although there is substantial literature on the effects of such solicitations on the fracture behavior and ultimate damage mechanisms of 3DOMC, there is a limited study on the initial damage mechanisms. This gap is particularly critical since the onset of damage dictates the usability of such components; from operational standpoint, no damage is permissible in service in these parts. This work aims to develop a novel experimental methodology to characterize the onset of damage in 3DOMC for different multi-axial solicitations encountered in-service.To achieve this, an in situ test has been designed coupling μ-Computed Tomography (μ-CT) and Acoustic Emission (AE), successfully identifying multi-axial damage initiation during tensile test and Eccentric Compression Bending (ECB) in in-axis and off-axis specimens. The effect of temperature has been addressed via in situ test implementing the new developed methodology test at high (120ºC) and low (-30ºC) temperature; it has been found damage initiation mechanisms are strongly dependent on temperature.The effect of thermal cycling between 120ºC and -55ºC on damage onset has been characterized by AE and ex situ (μ-CT). Further, damage propagation up to 1000 cycles has been characterized in detail in the 3D woven meso-structure. Finally, thermal cycling degradation and ageing on damage onset is investigated in static in situ tensile test
Stig, Fredrik. "3D-woven Reinforcement in Composites". Doctoral thesis, KTH, Lättkonstruktioner, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-70438.
Pełny tekst źródłaQC 20120131
El, Said Bassam Sabry Fawzy. "Integrated multi-scale modelling of 3D woven composites". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.720811.
Pełny tekst źródłaKing, Robert Scott. "Damage tolerant 3D woven technical textiles in reinforced composites". Thesis, University of Ulster, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516537.
Pełny tekst źródłaDai, Shuo. "Mechanical characterisation and numerical modelling of 3D woven composites". Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/16221.
Pełny tekst źródłaArshad, Mubeen. "Damage tolerance of 3D woven composites with weft binders". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/damage-tolerance-of-3d-woven-composites-with-weft-binders(2b1435bc-fdb7-47c3-b555-ca5ea2883b4b).html.
Pełny tekst źródłaGreen, Steven Daniel. "Modelling preform consolidation and its effects in 3D woven composites". Thesis, University of Bristol, 2016. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.705451.
Pełny tekst źródłaStig, Fredrik. "An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composites". Licentiate thesis, Stockholm : Skolan för teknikvetenskap, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10235.
Pełny tekst źródłaManjunath, R. N. "Design and development of 3D woven complex hollow structures and their composites for energy absorbent structures". Thesis, IIT Delhi, 2019. http://eprint.iitd.ac.in:80//handle/2074/8059.
Pełny tekst źródłaBroderick, John. "Advancement of 3D woven composites through embedded in situ strain measurement". Thesis, University of Ulster, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546738.
Pełny tekst źródłaCzęści książek na temat "3D woven organic composites"
Seyam, Abdel-Fattah M. "3D Orthogonal Woven Fabric Formation, Structure, and Their Composites". W Advanced Weaving Technology, 361–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91515-5_10.
Pełny tekst źródłaCouégnat, G., E. Martin i J. Lamon. "3D Multiscale Modeling of the Mechanical Behavior of Woven Composite Materials". W Mechanical Properties and Performance of Engineering Ceramics and Composites V, 185–94. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944127.ch19.
Pełny tekst źródłaJudawisastra, H., J. Ivens i I. Verpoest. "Bending Fatigue Behaviour of PUR-Epoxy and Phenolic 3D Woven Sandwich Composites". W Mechanics of Sandwich Structures, 287–94. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-015-9091-4_34.
Pełny tekst źródłaKoutsonas, Spiridon, i Hasan Haroglu. "Computational Optimization of Voids on 3D Woven Composites Truss Structures During Infusion". W Lecture Notes in Networks and Systems, 326–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80119-9_18.
Pełny tekst źródłaAhmed, Sohail, Xitao Zheng, Tianchi Wu i Nadeem Ali Bhatti. "Meso-Scale Damage Modeling of Hybrid 3D Woven Orthogonal Composites Under Uni-Axial Compression". W Lecture Notes in Mechanical Engineering, 816–26. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8331-1_64.
Pełny tekst źródłaEberling-Fux, N., R. Pailler, A. Guette, Sebastien Bertrand i Eric Philippe. "Impregnation of 3D Woven Carbon Fibre Preforms by Electrophoretic Deposition of Single and Mix of Non Oxide Ceramic Nanoscale Powders, and Densification of the Composite Material". W Advanced Inorganic Fibrous Composites V, 91–96. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/3-908158-06-0.91.
Pełny tekst źródłaTong, Liyong, Adrian P. Mouritz i Michael K. Bannister. "3D Woven Composites". W 3D Fibre Reinforced Polymer Composites, 107–36. Elsevier, 2002. http://dx.doi.org/10.1016/b978-008043938-9/50017-x.
Pełny tekst źródłaHallett, Stephen R., Steve D. Green i Bassam S. F. El Said. "MODELLING 3D WOVEN COMPOSITE PREFORM DEFORMATIONS". W Woven Composites, 141–58. IMPERIAL COLLEGE PRESS, 2015. http://dx.doi.org/10.1142/9781783266180_0004.
Pełny tekst źródłaUllah, Tehseen, Yasir Nawab i Muhammad Umair. "3D woven natural fiber structures". W Multiscale Textile Preforms and Structures for Natural Fiber Composites, 241–78. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95329-0.00002-8.
Pełny tekst źródłaIvanov, Dmitry S., i Stepan V. Lomov. "Modeling of 2D and 3D woven composites". W Polymer Composites in the Aerospace Industry, 23–57. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102679-3.00002-2.
Pełny tekst źródłaStreszczenia konferencji na temat "3D woven organic composites"
Tayong, Rostand B., Martin J. Mienczakowski i Robert A. Smith. "3D ultrasound characterization of woven composites". W 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 37. Author(s), 2018. http://dx.doi.org/10.1063/1.5031603.
Pełny tekst źródłaGoering, Jon, i Harun Bayraktar. "3D Woven Composites for Energy Absorption Applications". W SAE 2016 World Congress and Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-01-0530.
Pełny tekst źródłaCHERUET, ANTHONY, i BOBBY COOK. "Material Simulation’s Advantage: An illustration with 3D Woven". W American Society for Composites 2018. Lancaster, PA: DEStech Publications, Inc., 2018. http://dx.doi.org/10.12783/asc33/25934.
Pełny tekst źródłaWeatherburn, Anna, Anne Reinarz, Stefano Giani i Stefan Szyniszewski. "Modelling Fracture Behaviour in Fibre-Hybrid 3D Woven Composites". W UK Association for Computational Mechanics Conference 2024. Durham University, 2024. http://dx.doi.org/10.62512/conf.ukacm2024.002.
Pełny tekst źródłaThuruthimattam, B., i N. Naik. "Mechanical characterization of hybridized 3D orthogonally woven composites". W 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-1809.
Pełny tekst źródłaYen, Chian-Fong, i Benjamin Boesl. "Progressive Failure Micromechanical Modeling of 3D Woven Composites". W 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1796.
Pełny tekst źródłaWANG, YOUQI, BINGHUI LIU, LUN LI, AARON TOMICH i CHIAN FONG YEN. "CAD/CAM Tool for 3D Woven Textile Fabric Design". W American Society for Composites 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/asc2017/15209.
Pełny tekst źródłaOddy, C., M. Ekh i M. Fagerstrom. "Phase-field Based Damage Modelling of 3D-Woven Composites". W VIII Conference on Mechanical Response of Composites. CIMNE, 2021. http://dx.doi.org/10.23967/composites.2021.084.
Pełny tekst źródłaPINEDA, EVAN J., BRETT A. BEDNARCYK, TRENT M. RICKS, BABAK FARROKH i WADE JACKSON. "Multiscale Failure Analysis of a 3D Woven Unit Cell Containing Defects". W American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34928.
Pełny tekst źródłaDRACH, BORYS. "Finite Element Analysis of 3D Woven Composites Using Consumer Graphical Processing Units". W American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34923.
Pełny tekst źródłaRaporty organizacyjne na temat "3D woven organic composites"
Yen, Chian-Fong, i Anthony A. Caiazzo. 3D Woven Composites for New and Innovative Impact and Penetration Resistant Systems. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada393077.
Pełny tekst źródła