Gotowa bibliografia na temat „3d Transition Metal Oxides”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „3d Transition Metal Oxides”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "3d Transition Metal Oxides"

1

Seike, Tetsuya, i Junichi Nagai. "Electrochromism of 3d transition metal oxides". Solar Energy Materials 22, nr 2-3 (lipiec 1991): 107–17. http://dx.doi.org/10.1016/0165-1633(91)90010-i.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Krivanek, Ondrej L., i James H. Paterson. "Elnes of 3d transition-metal oxides". Ultramicroscopy 32, nr 4 (maj 1990): 313–18. http://dx.doi.org/10.1016/0304-3991(90)90077-y.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Paterson, James H., i Ondrej L. Krivanek. "Elnes of 3d transition-metal oxides". Ultramicroscopy 32, nr 4 (maj 1990): 319–25. http://dx.doi.org/10.1016/0304-3991(90)90078-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Tokura, Y. "Metal-insulator phenomena in 3d transition metal oxides". Physica C: Superconductivity 235-240 (grudzień 1994): 138–41. http://dx.doi.org/10.1016/0921-4534(94)91332-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Merer, A. J. "Spectroscopy of the Diatomic 3d Transition Metal Oxides". Annual Review of Physical Chemistry 40, nr 1 (październik 1989): 407–38. http://dx.doi.org/10.1146/annurev.pc.40.100189.002203.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Zimmermann, R., P. Steiner, R. Claessen, F. Reinert i S. Hüfner. "Electronic structure systematics of 3d transition metal oxides". Journal of Electron Spectroscopy and Related Phenomena 96, nr 1-3 (listopad 1998): 179–86. http://dx.doi.org/10.1016/s0368-2048(98)00234-5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Terauchi, Masami. "Information of valence charge of 3d transition metal elements observed in L-emission spectra". Microscopy 68, nr 4 (14.05.2019): 330–37. http://dx.doi.org/10.1093/jmicro/dfz020.

Pełny tekst źródła
Streszczenie:
Abstract L-emission spectra of 3d transition metal elements from Sc to Zn and some oxides were measured to examine the relation between L-emission intensities of Lα, Lβ, Lℓ, and Lη and valences of those elements by using a soft X-ray emission spectrometer attached to a scanning electron microscope. Lα,β emission intensity due to transitions from valence bands to core 2p levels compared with Lℓ,η emission intensity due to transitions from core 3 s to deeper 2p levels, Lα,β/Lℓ,η was found to be a key parameter. A linear relation was found between the number of 3d electrons and the intensity ratio of Lα,β/(Lα,β+ Lℓ,η) from Sc to Ni, except for Cr. It takes into account not only a change in N3d but also a change of transition probability due to a change in N3d In the case of 3d metal oxides, the evaluation based on the equation showed an overestimation of the calculated number of 3d electrons, which could be due to a charge transfer from ligand oxygen atoms to the transition metal element, resulting from a core-hole effect in the intermediate state.
Style APA, Harvard, Vancouver, ISO itp.
8

SEIKE, Tetsuya, i Junichi NAGAI. "Electrochromism in thin films of 3d transition metal oxides." Hyomen Kagaku 10, nr 5 (1989): 314–19. http://dx.doi.org/10.1380/jsssj.10.314.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Eisaki, H., T. Ido, K. Magoshi, M. Mochizuki, H. Yamatsu, T. Ito i S. Uchida. "Metal-insulator transition in 3d transition-metal oxides with ABO3 and A2BO4 type structures". Physica C: Superconductivity 185-189 (grudzień 1991): 1295–96. http://dx.doi.org/10.1016/0921-4534(91)91871-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Azuma, Masaki, Yuki Sakai, Takumi Nishikubo, Masaichiro Mizumaki, Tetsu Watanuki, Takashi Mizokawa, Kengo Oka, Hajime Hojo i Makoto Naka. "Systematic charge distribution changes in Bi- and Pb-3d transition metal perovskites". Dalton Transactions 47, nr 5 (2018): 1371–77. http://dx.doi.org/10.1039/c7dt03244g.

Pełny tekst źródła
Streszczenie:
Charge distribution changes in Bi- and Pb-3d transition metal perovskite type oxides were examined. The change in the depth of the d level of the transition metal causes the intermetallic charge transfer.
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "3d Transition Metal Oxides"

1

Kumagai, Yu. "Relationship between atomic arrangements and electronic structures of selected 3d transition-metal oxides by first principles calculations". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120814.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Fürsich, Katrin [Verfasser], i Bernhard [Akademischer Betreuer] Keimer. "X-ray and Raman scattering studies of novel phases in 3d and 4d transition metal oxides / Katrin Fürsich ; Betreuer: Bernhard Keimer". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2020. http://d-nb.info/1223928926/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Rahman, Mohammad Mahbubur. "Solar selective characteristics and local electronic bonding states of 3d transition metal oxide and metal nitride based thin film coatings". Thesis, Rahman, Mohammad Mahbubur ORCID: 0000-0002-6778-7931 (2016) Solar selective characteristics and local electronic bonding states of 3d transition metal oxide and metal nitride based thin film coatings. PhD thesis, Murdoch University, 2016. https://researchrepository.murdoch.edu.au/id/eprint/30910/.

Pełny tekst źródła
Streszczenie:
The present study focused on the development of transition metal oxide and metal nitride based thin film coatings to be utilized as a cost-effective solar selective surface that constitute a new approach in maximizing the power conversion efficiency. Despite many developments on transition metal oxide and metal nitride based selective solar absorbers, these materials are yet to be commercialized for solar thermal conversion applications. Numerous studies on CuCoO and graphene oxide based thin films are dedicated for their optical applications and light harvesting purposes. However to the best of our knowledge, utilization of mixed metal oxide/graphene oxide thin films as solar selective surface is yet to be explored. Both CuCoO and graphene oxide (GO) have generated significant research interest and have widespread applications in clean energy devices due to the good combinations of many important properties. Therefore, in this work we focus on the introduction of GO to the 3d transition metal-based CuCoO coatings and develop the new types optical thin films via dip-coating sol-gel technology to be used as solar selective surfaces. It is believed that use of graphene oxide in wet chemistry based sol-gel derived thin films will explore the new platform of producing highly efficient selective solar surfaces. Generally, 3d transition metal nitride based thin film coatings are studied for structural, mechanical, and electrical applications. However, a very limited number of investigations are directed in search of their optical and solar selective behaviors. With the increasing demand for clean energy alternatives, and economically viable energy devices our endeavor might bring some fruitful breakthroughs in development of 3d transition metal oxide and metal nitride based thin film coatings. Due to its flexibility and numerous technical advantages, the soft chemical sol-gel approach has been adopted to synthesize the metal oxides based thin film coatings. Unbalanced magnetron sputtered technique has been used for the development of transition metal nitride based thin film coatings for their spectral selective and local electronic structure studies. Sol-gel derived cobalt-copper oxide based coatings, transition metal nitride based sputtered TiMNx (M = Al or AlSi) and Cr1-xMxN (M = Al, Si and/or Ni, with doping concentration, x varying from 14.3 to 28.5 at.%) coatings were extensively studied in search of their spectrally selective behavior, mechanical properties, thermal stability, surface morphology and surface electronic properties. We discuss the spectral selective features of these coatings with their crystal structure, electronic and chemical bonding states. In order to realize the correlation between crystal structure and surface morphology, bonding states, local bonding structures and structure-property relationships of these nanostructured coatings for their solar selective and local electronic behaviors, characterizations were carried out using XRD, synchrotron radiation X-ray powder diffraction, SEM, EDX, XPS, NEXAFS, UV-Vis and FTIR tests, and nanoindentation measurements. In the case of CuCoO coatings, a high solar absorptance of 83.40% and a low thermal emittance of 5.70% were recorded which gives a solar selectivity of 14.63 (the ratio of the maximum absorption in visible and the minimum emission in infra-red to far infra-red region; a/e. With the incorporation of 1.5 wt.% of graphene oxide to the copper-cobalt oxide coatings, a high solar selectivity of 29.01 was achieved. Optical studies showed that the solar absorptance, in the visible range, of the TiN coatings improved significantly from 51% to 81% with AlSi-doping. However, an increase of solar absorptance of up to 66% was recorded from coatings doped with Al-content. Meanwhile, the Al doping can reduce the thermal emittance in the infrared range from 6.06% to 5.11%, whereas doping with AlSi reduces the emittance to ca 3.58%. The highest solar selectivity of 22.63 was achieved with TiAlSiN coatings. The high temperature investigations of the sputtered TiAlSiN coatings show the highest solar selectivity of 24.63 at 600 °C. Sputtered Cr1-xMxN coatings were investigated to realize the surface and inner structural properties of the materials through the structural evolution of CrNx matrix with addition of doping (Al, Si or Ni) elements. Investigations on the local bonding states and grain boundaries of these coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings. These findings help improve our understanding of local bonding structures, which could potentially lead to improved coating designs for mechanical applications.
Style APA, Harvard, Vancouver, ISO itp.
4

Qi, Tongfei. "MAGNETIC AND ORBITAL ORDERS COUPLED TO NEGATIVE THERMAL EXPANSION IN MOTT INSULATORS, CA2RU1-XMXO4 (M = 3D TRANSITION METAL ION)". UKnowledge, 2012. http://uknowledge.uky.edu/physastron_etds/6.

Pełny tekst źródła
Streszczenie:
Ca2RuO4 is a structurally-driven Mott insulator with a metal-insulator (MI) transition at TMI = 357K, followed by a well-separated antiferromagnetic order at TN = 110 K. Slightly substituting Ru with a 3d transition metal ion M effectively shifts TMI and induces exotic magnetic behavior below TN. Moreover, M doping for Ru produces negative thermal expansion in Ca2Ru1-xMxO4 (M = Cr, Mn, Fe or Cu); the lattice volume expands on cooling with a total volume expansion ratio reaching as high as 1%. The onset of the negative thermal expansion closely tracks TMI and TN, sharply contrasting classic negative thermal expansion that shows no relevance to electronic properties. In addition, the observed negative thermal expansion occurs near room temperature and extends over a wide temperature interval. These findings underscores new physics driven by a complex interplay between orbital, spin and lattice degrees of freedom. These materials constitute a new class of Negative Thermal Expansion (NTE) materials with novel electronic and magnetic functions.
Style APA, Harvard, Vancouver, ISO itp.
5

Schrön, Andreas [Verfasser], Friedhelm [Akademischer Betreuer] Bechstedt, Peter [Akademischer Betreuer] Kratzer i Diema [Akademischer Betreuer] Ködderitzsch. "Ab-initio studies of the magnetic properties of the 3d transition-metal oxides and their surfaces = Ab-initio-Untersuchungen der magnetischen Eigenschaften der 3d-Übergansmetalloxide und deren Oberflächen / Andreas Schrön. Gutachter: Friedhelm Bechstedt ; Peter Kratzer ; Diema Ködderitzsch". Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2015. http://d-nb.info/1075492815/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Bergmann, Arno [Verfasser], Peter [Akademischer Betreuer] Strasser i Christina [Gutachter] Roth. "On the catalytically active state and structure-activity correlations of 3d transition metal oxide catalysts for electrochemical water splitting / Arno Bergmann ; Gutachter: Christina Roth ; Betreuer: Peter Strasser". Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156012627/34.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hossain, A. "Synthesis, crystal structure and properties of complex oxides with the perovskite structure based on neodymium, alkaline earth and 3d-transition metals : dissertation for the degree of candidate of chemical sciences : 02.00.04". Thesis, б. и, 2019. http://hdl.handle.net/10995/82032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Mete, Ersen. "Electronic Properties Of Transition Metal Oxides". Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1069699/index.pdf.

Pełny tekst źródła
Streszczenie:
Transition metal oxides constitute a large class of materials with variety of very interesting properties and important technological utility. A subset with perovskite structure has been the subject matter of the current theoretical investigation with an emphasis on their electronic and structural behavior. An analytical and a computational method are used to calculate physical entities like lattice parameters, bulk moduli, band structures, density of electronic states and charge density distributions for various topologies. Results are discussed and compared with the available experimental findings.
Style APA, Harvard, Vancouver, ISO itp.
9

Bogdanov, Nikolay. "Anisotropic interactions in transition metal oxides". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-234886.

Pełny tekst źródła
Streszczenie:
This thesis covers different problems that arise due to crystal and pseudospin anisotropy present in 3d and 5d transition metal oxides. We demonstrate that the methods of computational quantum chemistry can be fruitfully used for quantitative studies of such problems. In Chapter 2, Chapter 3, and Chapter 7 we show that it is possible to reliably calculate local multiplet splittings fully ab initio, and therefore help to assign peaks in experimental spectra to corresponding electronic states. In a situation of large number of peaks due to low local symmetry such assignment using semi-empirical methods can be very tedious and non-unique. Moreover, in Chapter 4 we present a computational scheme for calculating intensities as observed in the resonant inelastic X-ray scattering and X-ray absorption experiments. In our scheme highly-excited core-hole states are calculated explicitly taking into account corresponding orbital relaxation and electron polarization. Computed Cu L-edge spectra for the Li2CuO2 compound reproduce all features present in experiment. Unbiased ab initio calculations allow us to unravel a delicate interplay between the distortion of the local ligand cage around the transition metal ions and the anisotropic electrostatic interactions due to second and farther coordination shells. As shown in Chapter 5 and Chapter 6 this interplay can lead to the counter intuitive multiplet structure, single-ion anisotropy, and magnetic g factors. The effect is quite general and may occur in compounds with large difference between charges of metal ions that form anisotropic environment around the transition metal, like Ir 4+ in plane versus Sr 2+ out of plane in the case of Sr2IrO4. An important aspect of the presented study is the mapping of the quantum chemistry results onto simpler physical models, namely extended Heisenberg model, providing an ab initio parametrization. In Chapter 5 we employ the effective Hamiltonian technique for extracting parameters of the anisotropic Heisenberg model with single-ion anisotropy in the case of quenched orbital moment and second-order spin-orbit coupling. Calculated strong easy-axis anisotropy of the same order of magnitude as the symmetric exchange is consistent with experimentally-observer all-in/all-out magnetic order. In Chapter 6 we introduce new flavour of the mapping procedure applicable to systems with first-order spin-orbit coupling, such as 5d 5 iridates based on analysis of the wavefunction and interaction with magnetic field. In Chapter 6 and Chapter 7 we use this new procedure to obtain parameters of the pseudospin anisotropic Heisenberg model. We find large antisymmetric exchange leading to the canted antiferromagnetic state in Sr2IrO4 and nearly ideal one-dimensional Heisenberg behaviour of the CaIrO3, both agree very well with experimental findings.
Style APA, Harvard, Vancouver, ISO itp.
10

Sadoc, Aymeric Gaël Jocelyn. "Charge disproportionation in transition metal oxides". [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2008. http://irs.ub.rug.nl/ppn/.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "3d Transition Metal Oxides"

1

1940-, Raveau B., red. Transition metal oxides. New York: VCH, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Rao, C. N. R. Transition metal oxides. New York: VCH, 1995.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Maekawa, Sadamichi, Takami Tohyama, Stewart E. Barnes, Sumio Ishihara, Wataru Koshibae i Giniyat Khaliullin. Physics of Transition Metal Oxides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-09298-9.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Maekawa, Sadamichi. Physics of Transition Metal Oxides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

1946-, Maekawa S., red. Physics of transition metal oxides. Berlin: Springer, 2004.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Rao, C. N. R. Transition metal oxides: Structure, properties, and synthesis of ceramic oxides. Wyd. 2. New York: Wiley-VCH, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Fukuyama, Hidetoshi, i Naoto Nagaosa, red. Physics and Chemistry of Transition Metal Oxides. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60041-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Transition metal oxides: Surface chemistry and catalysis. Amsterdam, The Netherlands: Elsevier, 1989.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

1927-, Müller K. A., i Kool Tom W, red. Properties of perovskites and other oxides. New Jersey: World Scientific, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Müller, K. A. Properties of perovskites and other oxides. New Jersey: World Scientific, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "3d Transition Metal Oxides"

1

Arima, T., i Y. Tokura. "Systematics of Optical Gaps in Perovskite-Type 3d Transition Metal Oxides". W Spectroscopy of Mott Insulators and Correlated Metals, 150–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_13.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Fujimori, A. "Electronic Structure of Electron- and Hole-Doped 3d Transition-Metal Oxides". W Springer Series in Solid-State Sciences, 307–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84718-9_28.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Johnston, D. C., T. Ami, F. Borsa, M. K. Crawford, J. A. Fernandez-Baca, K. H. Kim, R. L. Harlow i in. "Superconductivity, Magnetism and Metal-Insulator Transitions in Some Ternary and Pseudoternary 3d-, 4d-, and 5d-Metal Oxides". W Spectroscopy of Mott Insulators and Correlated Metals, 241–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_22.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Fitzpatrick, Brian J. "Transition Metal Oxides". W Inorganic Reactions and Methods, 236–37. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch164.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Wang, Chen, Zhongfang Li, Likai Wang, Xueliang Niu, Shenzhi Zhang i Yuepeng Liu. "CHAPTER 6. 3D GBM-supported Transition Metal Oxide Nanocatalysts and Heteroatom-doped 3D Graphene Electrocatalysts for Potential Application in Fuel Cells". W Chemistry in the Environment, 139–78. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162480-00139.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Guzman, G. "Thermochromic Transition-Metal Oxides". W Sol-Gel Technologies for Glass Producers and Users, 271–76. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_35.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Inoue, Isao H., i Akihito Sawa. "Resistive Switchings in Transition-Metal Oxides". W Functional Metal Oxides, 443–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch16.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Patel, Anupam, i Rajendra K. Singh. "3D-Printed Metal Oxides for Batteries". W 3D Printing, 161–76. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003296676-11.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Mandal, Tapas Kumar, i Martha Greenblatt. "Transition Metal Oxides: Magnetoresistance and Half-Metallicity". W Functional Oxides, 257–93. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470686072.ch5.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Tyagi, Alekha, Soma Banerjee, Jayesh Cherusseri i Kamal K. Kar. "Characteristics of Transition Metal Oxides". W Handbook of Nanocomposite Supercapacitor Materials I, 91–123. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2_3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "3d Transition Metal Oxides"

1

Kanai, Masaki, i Tomoji Kawai. "Scanning tunneling spectroscopy of 3d transition metal oxides and superconductivity of Bi-Sr-Ca-Cu-O artificial lattices". W Photonics West '96, redaktorzy Ivan Bozovic i Davor Pavuna. SPIE, 1996. http://dx.doi.org/10.1117/12.250243.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

AMRI, AMUN, BOGDAN DLUGOGORSKI, M. MAHBUBUR, MOHAMMEDNOOR ALTARAWNEH, NICHOLAS MONDINOS i ZHONG TAO JIANG. "3d Transition Metal Oxide based Sol gel Derived Coatings for Photothermal Applications". W Third International Conference on Advances in Applied Science and Environmental Engineering - ASEE 2015. Institute of Research Engineers and Doctors, 2015. http://dx.doi.org/10.15224/978-1-63248-055-2-74.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Fei, Haosheng, Xicheng Ai, Li Han, Ruijuan Nie i Zhenhua Hu. "Surface Effect On The Nonlinear Optical Properties Of Transition Metal-Oxode Microcrystallites". W Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.we15.

Pełny tekst źródła
Streszczenie:
The size dependent modifications of the optical and electronic properties of microcrystallites have attracted considerable attention recently[1-4]. As the diameter of the microcrystallite approaches its corresponding exciton Bohr diameter, its electronic and optical properties start to change because of the quantum confinement effect, dielectric effect and the effect of the surface[5]. For microcrystallites in such a small size regime, a large percentage of the atomes is on or near the surfaces. The existence of this vast interface between the microcrystallite and the surrounding medium can have a profound effect on the nonlinear optical properties of the microcrystallites. For the first time, we studied the nonlinear optical properties of translation metal-oxide microcrystallites by coating the surface with a layer of organic polar molecule(DBS etc.), and found that the change of the surface environment could alter the optical properties greatly. For Fe2O3 as example, (1) the absorption incresed toward the high energy side, (2) the laser induced luminescence intensity decreased by 2 orders in magnitude, and on the contrary, the Raman signal of the surface was enhanced greatly, (3) the saturable absorption phenomenon disappeared, (4) larger third order susceptibility and faster excited state relaxation were obtained compared with uncoated Fe2O3 microcrystallite. These phenomena are the results of the change of the electronic structure caused by the quantum confinement effect and the effect of the surface, unlike semiconductor microcrystallites in which the delocalized Wannier excitons can be influenced greatly by the quantum confinement effect (such as PbS microcrystallite). Transition metal oxide microcrystallite has more complicated electronic structure in which localized d electrons influence its electronic and optical properties greatly[6], and the small diameter Frenkel exciton in such material was effected little by the quantum confinement effect, therefore, the exciton structure could not be abserved in the absorption spectrum. But the size of the transition metal oxide microcrystallites influence their electronic structure strongly. For Fe2O3 as example, the energy structure can be quantitatively shown as the Figure (at the end of the paper), in which a is d-d transition, b represents charge transfer, c is orbital promotion and d is interband transitions. As the size of the microcrystallite decreases, the 3d and 4sp state couples increasingly, and the 3d-4sp (orbital promotion) state contribution increases correspondingly. To some extend, the d electrons and the Frenkel exciton will be delocalized, and the excited electron-hole pair can be ionized and scattered to the surface rapidly. In particular, when the surface was coated with a layer of organic polar molecule, the 3d-4sp state interaction was enhanced greatly under the strong polar interaction of the surface, and some 3d-4sp hydride state will exist, thus the d electrons and the Frenkel exciton will became more delocalization, and the laser induced electron-hole pairs interect and scatter to the surface very fast, so the surface delocalization state generate, accumulate and relax very rapidly and the electron-electron coherence effect[7] is enhanced greatly. Such changes not only increased the nonlinear response, but also resulted in shorter lifetime and stronger nonraditive process.
Style APA, Harvard, Vancouver, ISO itp.
4

Alvarez, Gonzalo, Adriana Moreo i Elbio Dagotto. "Complexity in transition metal oxides". W Optics & Photonics 2005, redaktorzy Ivan Bozovic i Davor Pavuna. SPIE, 2005. http://dx.doi.org/10.1117/12.624870.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Schuller, Ivan K., Ali C. Basaran, Jose de la Venta, Juan Gabriel Ramirez, Thomas Saerbeck, Ilya Valmianski i Siming Wang. "Simple transition metal oxides (Conference Presentation)". W Spintronics IX, redaktorzy Henri-Jean Drouhin, Jean-Eric Wegrowe i Manijeh Razeghi. SPIE, 2016. http://dx.doi.org/10.1117/12.2239919.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Moreo, Adriana. "Phase Competition in Transition Metal Oxides". W EFFECTIVE MODELS FOR LOW-DIMENSIONAL STRONGLY CORRELATED SYSTEMS. AIP, 2006. http://dx.doi.org/10.1063/1.2178040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Stehr, Jan Eric, Mattias Jansson, Stephen J. Pearton, Weimin M. Chen i Irina Bouianova. "Electronic and optical properties of 3d-transition metals in β-Ga2O3". W Oxide-based Materials and Devices XIV, redaktorzy Ferechteh H. Teherani i David J. Rogers. SPIE, 2023. http://dx.doi.org/10.1117/12.2662368.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hoch, Michael J. R., H. B. Senin i N. H. Idris. "The Intriguing Properties of Transition Metal Oxides". W SOLID STATE SCIENCE AND TECHNOLOGY: The 2nd International Conference on Solid State Science and Technology 2006. AIP, 2011. http://dx.doi.org/10.1063/1.2739818.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Terasaki, I. "Thermoelectric materials in layered transition-metal oxides". W ICT 2005. 24th International Conference on Thermoelectrics, 2005. IEEE, 2005. http://dx.doi.org/10.1109/ict.2005.1519946.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Merchan-Merchan, W., A. V. Saveliev i Aaron Taylor. "Flame Synthesis of Nanostructured Transition Metal Oxides". W ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68987.

Pełny tekst źródła
Streszczenie:
Various transition metal oxide nanostructures are synthesized using a novel probe-flame interaction method. An opposed flow flame of methane and oxygen enriched air provides a high-temperature reacting environment forming various metal oxide structures directly on the surface of pure metal probes. The unique thermal profile and chemical composition of the generated flame tends to convert almost pure bulk (99.9%) metallic materials into 1-D and 3-D structures of different chemical compositions and unique morphologies. The synthesized molybdenum, tungsten, and iron oxide structures exhibit unique morphological characteristics. The application of Mo probes results in the formation of micron size hollow and non-hollow Mo-oxide channels and elongated structures with cylindrical shapes. The use of W probes results in the synthesis of 1-D carbon-oxide nanowires, 3-D structures with rectangular shapes, and thin oxide plates with large surface areas. The formation of elongated iron-oxide nanorods is observed on iron probes. The iron nanorods’ diameters range from ten nanometers to one hundred nanometers with lengths of a few micrometers. Flame position, probe diameter, and flame exposure time tend to play an important role for material shape and selectivity.
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "3d Transition Metal Oxides"

1

Bishop, Alan. A Lattice Litany for Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), marzec 2021. http://dx.doi.org/10.2172/1772375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Dr. Henry Bass i Dr. J. R. Gladden. Resonant Ultrasound Studies of Complex Transition Metal Oxides. Office of Scientific and Technical Information (OSTI), sierpień 2008. http://dx.doi.org/10.2172/936503.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Suib, Steven. CATALYTIC SELECTIVE OXIDATIONS WITH POROUS TRANSITION METAL OXIDES. Office of Scientific and Technical Information (OSTI), grudzień 2022. http://dx.doi.org/10.2172/1907074.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Teng, Xiaowei. Transition Metal Oxides Nanomaterials for Aqueous Electrochemical Energy Storage. Office of Scientific and Technical Information (OSTI), sierpień 2019. http://dx.doi.org/10.2172/1546597.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Author, Not Given. Metal alkoxides: Models for metal oxides: Alkoxide ligands in early transition metal organometallic chemistry. Office of Scientific and Technical Information (OSTI), styczeń 1990. http://dx.doi.org/10.2172/7151593.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Armentrout, Peter. THERMOCHEMISTRY AND REACTIVITY OF TRANSITION METAL CLUSTERS AND THEIR OXIDES. Office of Scientific and Technical Information (OSTI), czerwiec 2014. http://dx.doi.org/10.2172/1135682.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Neumeier, J. J., M. F. Hundley, A. L. Cornelius i K. Andres. Volume-based considerations for the metal-insulator transition of CMR oxides. Office of Scientific and Technical Information (OSTI), marzec 1998. http://dx.doi.org/10.2172/658143.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kellar, S. A. High-resolution structural studies of ultra-thin magnetic, transition metal overlayers and two-dimensional transition metal oxides using synchrotron radiation. Office of Scientific and Technical Information (OSTI), maj 1997. http://dx.doi.org/10.2172/335184.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Dai, Pengcheng. Study Magnetic Excitations in Doped Transition Metal Oxides Using Inelastic Neutron Scattering. Office of Scientific and Technical Information (OSTI), luty 2014. http://dx.doi.org/10.2172/1120539.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Boffa, Alexander Bowman. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis. Office of Scientific and Technical Information (OSTI), lipiec 1994. http://dx.doi.org/10.2172/10186279.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii