Gotowa bibliografia na temat „3D powder printing”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „3D powder printing”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "3D powder printing"
Whyte, Daniel, Benjamin J. Allardyce, Abbas Z. Kouzani, Xungai Wang i Rangam Rajkhowa. "Understanding Morphology, Bulk Properties, and Binding of Silk Particles for 3D Printing". Powders 1, nr 2 (18.06.2022): 111–28. http://dx.doi.org/10.3390/powders1020009.
Pełny tekst źródłaGoulas, Athanasios, i Ross J. Friel. "3D printing with moondust". Rapid Prototyping Journal 22, nr 6 (17.10.2016): 864–70. http://dx.doi.org/10.1108/rpj-02-2015-0022.
Pełny tekst źródłaZhang, Qingfa, Hongzhen Cai, Andong Zhang, Xiaona Lin, Weiming Yi i Jibing Zhang. "Effects of Lubricant and Toughening Agent on the Fluidity and Toughness of Poplar Powder-Reinforced Polylactic Acid 3D Printing Materials". Polymers 10, nr 9 (21.08.2018): 932. http://dx.doi.org/10.3390/polym10090932.
Pełny tekst źródłaBoyle, Bret M., Panupoan T. Xiong, Tara E. Mensch, Timothy J. Werder i Garret M. Miyake. "3D printing using powder melt extrusion". Additive Manufacturing 29 (październik 2019): 100811. http://dx.doi.org/10.1016/j.addma.2019.100811.
Pełny tekst źródłaChugunov, Svyatoslav, Andrey Smirnov, Anastasia Kholodkova, Andrey Tikhonov, Oleg Dubinin i Igor Shishkovsky. "Evaluation of Stereolithography-Based Additive Manufacturing Technology for BaTiO3 Ceramics at 465 nm". Applied Sciences 12, nr 1 (1.01.2022): 412. http://dx.doi.org/10.3390/app12010412.
Pełny tekst źródłaShi, Jing Min, Jian Wei Wang i Wei Xiao. "Research Progress of Preparation Technology of Nano Copper Powder for 3D Printing". Key Engineering Materials 777 (sierpień 2018): 150–57. http://dx.doi.org/10.4028/www.scientific.net/kem.777.150.
Pełny tekst źródłaGaisin, Al F., R. R. Kayumov, А. I. Kuputdinova i R. R. Mardanov. "Plasma-liquid recycling of metal powder for 3D printing". Physics and Chemistry of Materials Treatment 1 (2023): 37–44. http://dx.doi.org/10.30791/0015-3214-2023-1-37-44.
Pełny tekst źródłaZhang, Yajuan, Xiaoyan Song, Haibin Wang i Zuoren Nie. "A novel method of preparing Ti powder for 3D printing". Rapid Prototyping Journal 24, nr 6 (13.08.2018): 1034–39. http://dx.doi.org/10.1108/rpj-07-2017-0151.
Pełny tekst źródłaBai, D. Y., Y. D. Yao, J. P. Liu, S. Xu, L. M. Kang, D. B. Liu, Y. M. Luo i Y. Li. "Study on the safety of modified aluminum powder in 3D printing process". Journal of Physics: Conference Series 2478, nr 3 (1.06.2023): 032081. http://dx.doi.org/10.1088/1742-6596/2478/3/032081.
Pełny tekst źródłaMokshina, N. Ya, V. V. Khripushin i M. S. Shcherbakova. "Colorometric study of polyamide-12 powder aging". Industrial laboratory. Diagnostics of materials 86, nr 10 (14.10.2020): 31–35. http://dx.doi.org/10.26896/1028-6861-2020-86-10-31-35.
Pełny tekst źródłaRozprawy doktorskie na temat "3D powder printing"
Touma, Rikard, i Nathalie Pettersson. "3D-printing med träEn möjlighet för framtiden?" Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-92364.
Pełny tekst źródła3D printers have many uses and they have become common in many industries. Today, thistechnology is seen as a possible route to more sustainable construction. The technology isconsidered promising in construction engineering, among other things because it has beenshown that it can reduce material waste and provide shorter production times. To someextent, the technology is already being used for building construction, but then mainly withconcrete.The aim of this study is to describe current knowledge regarding 3D printing with woodbasedpulp and to investigate the possibility of using a wood-based pulp consisting ofsawdust, water and lignin for 3D printing.In order to reach the goal, a combination of literature search and laboratory experiments wasused. The literature search was used both to investigate previously conducted studiesregarding wood-pulp based materials in 3D printing and as inspiration for the ingredients andproportions used in the laboratory experiments.Only studies on wood-based 3D printing were studied. The test objects produced in thelaboratory experiments were evaluated in strength, dimensional stability and adhesion. Theresults of the laboratory work indicate that the produced material can be extruded, but that ithas low tensile strength. The layers bonded well for all tests, while the compressive strengthresults varied. The highest compressive strength was given by the mixture with the highestproportion of lignin and the longest drying time.The conclusion is that the material might be useful, but that the correct area of use should bedetermined, as the material cannot withstand excessive loads.Keywords:
Nur, Hassan Mohammed. "Fabrication of advanced ceramics and selective metallization of non-conductive substrates by inkjet printing". Thesis, Brunel University, 2002. http://bura.brunel.ac.uk/handle/2438/4823.
Pełny tekst źródłaGoss, Cullen. "SLM 125 Single Track and Density Cube Characterization for 316L Stainless Steel". DigitalCommons@CalPoly, 2019. https://digitalcommons.calpoly.edu/theses/2050.
Pełny tekst źródłaFitzgerald, Shawn. "A pneumatic conveying powder delivery system for continuously heterogeneous material deposition in solid freeform fabrication". Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/46072.
Pełny tekst źródłaGreat improvements are continuously being made in the solid free form fabrication (SFF) industry in terms of processes and materials. Fully functional parts are being created directly with little, if any, finishing. Parts are being directly fabricated with engineering materials such as ceramics and metals. This thesis aims to facilitate a substantial advance in rapid prototyping capabilities, namely that of fabricating parts with continuously heterogeneous material compositions. Because SFF is an additive building process, building parts layer-by-layer or even point-by-point, adjusting material composition throughout the entire part, in all three dimensions, is feasible. The use of fine powders as its build material provides the potential for the Selective Laser Sintering (SLS), ThreeDimensional Printing (3DP), and Freeform Powder Molding (FPM) processes to be altered to create continuously heterogeneous material composition. The current roller distribution system needs to be replaced with a new means of delivering the powder that facilitates selective heterogeneous material compositions. This thesis explores a dense phase pneumatic conveying system that has the potential to deliver the powder in a controlled manner and allow for adjustment of material composition throughout the layer.
Master of Science
Westbeld, Julius. "Investigation of support structures of a polymer powder bed fusion process by use of Design of Experiment (DoE)". Thesis, KTH, Lättkonstruktioner, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-243867.
Pełny tekst źródłaI detta examensarbete undersöks stödstrukturer för en polymer-pulverbaserad process kallad XXXXXXXX. Dessa strukturer är väsentliga för de flesta aditiv tillverkning. Med hjälp av metoden "Design of Experiment" (DoE) undersöks effekten av flera faktorer på fem industriellt viktiga egenskaper för stödstrukturer. DoE beskriver både planeringen och analysen av experiment. Experimenten planeras i en fraktionerad faktoriell 211-5 design med 64 provexemplar vilket resulterar i en upplösning av IV. Dataanalysen genomförs med hjälp av ANOVA-metoden, med vilken signifikansen av effekter och interaktionseffekter kan undersökas.
Clark, Jared A. "The Effects of Build Orientation on Residual Stresses in AlSi10Mg Laser Powder Bed Fusion Parts". Youngstown State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1578819644598848.
Pełny tekst źródłaMiller, Jacob T. "Sulfuric Acid Corrosion to Simulate Microbial Influenced Corrosion on Stainless Steel 316L". Youngstown State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ysu151621775594905.
Pełny tekst źródłaFan, Zongyue. "A Lagrangian Meshfree Simulation Framework for Additive Manufacturing of Metals". Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619737226226133.
Pełny tekst źródłaGROPPO, RICCARDO. "Sviluppo e Industrializzazione di una macchina LPF e validazione attraverso l'ottimizzazione dei parametri di processo di Ottone CuZn42 e Acciaio Armonico C67". Doctoral thesis, Università degli studi di Modena e Reggio Emilia, 2021. http://hdl.handle.net/11380/1245517.
Pełny tekst źródłaThe additive manufacturing technologies, from their birth to the first industrial applications, made a big jump in terms of hardware and material development. The continuing research for new markets along with a growing demand have made sure that the costs of such technologies have become more accessible. From the using of polymers to do prototypes to metal powders to do real mechanical parts the concepts are always the same, building the part layer by layer. In terms of money from the eighties to present days the 3D printing process maintain a positive trend with much more increases for the future. In terms of monetary and energy flows during the production of complex parts, the additive manufacturing technologies can have positive increments. Thus the adoption of Additive Manufacturing also simplifies measurement of the manufacturing energy consumption for life cycle inventory assessments. In many traditional supply chains, where reliable estimates of cumulative energy consumption may be unavailable, the adoption of AM allows producers to provide their customers with reliable data on the energy embedded into products or component during the manufacturing stage. It has been shown that selecting the minimum cost configuration in Additive Manufacturing is likely to lead to the secondary effect of minimizing process energy consumption. My PhD thesis will discuss a specific additive manufacturing technology, based on the powder bed fusion process using a LASER as a melting source. The main construction components present in the prototype machine will be analyzed, looking for the main critical issues (filtering and powder recovery system, black powder abatement system, in-chamber gas flow, measurement of load losses in the characteristic sections of the plant, powder collection system, distribution and powder deposition system on the printing plate) and, if these cause a crash or an irregularity in the quality in the printed component, a radical modification or replacement of this component will develop. Once the mechanical stability of the entire machine has been verified, the mechanical properties of the samples obtained with stainless steel X2CrNiMo17-12-2 - AISI316L, CuZn42 brass powder and C67 steel - Tempered steel will be analyzed. The main mechanical properties required for a component built for additive manufacturing are in terms of mechanical strength porosity, density, hardness, ultimate tensile strength, and yield tension. Measurements of the density of the specimen will be carried out by measuring the relative volumetric density by Archimedes method. Subsequently, the quality of surface roughness will be measured through the acquisition of maps by means of an optical microscope and through an image analysis software the average surface roughness will then be measured. The same sample will then be used to measure the average hardness of the material by means of a durometer. To test the ultimate tensile strength and the yield strength, samples with circular section will be produced to which an analog extensometer will be mounted. Data processing software processes the strain -strain curve.
Ramírez, Jiménez Guillermo. "Electric sustainability analysis for concrete 3D printing machine". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-258928.
Pełny tekst źródłaNumera blir tillverkningstekniken alltmer medveten om effektivitet och hållbarhet. En av dem är den så kallade 3Dutskriften. Medan 3Dutskrift ofta är kopplad till plast, är verkligheten att det finns många andra material som testas, vilket kan ha flera förbättringar över plast.Ett av dessa alternativ är sten eller betong, vilket är mer lämpligt inom arkitektur och konstnärliga fält. På grund av sin natur inbegriper denna nya teknik användningen av nya tekniker jämfört med de vanligare 3Dskrivarna. Detta innebär att det kan vara intressant att veta hur mycket mer energieffektiva dessa tekniker är och hur de kan förbättras i framtida revisioner.Denna avhandling är ett försök att studera och analysera de olika enheter som utgör en av dessa skrivare och med denna information, bygga en modell som exakt beskriver dess beteende.För detta ändamål mäts effekten på många punkter och senare analyseras och anpassas den till en fördefinierad funktion. Efter anpassning har gjorts beräknas felet för att visa hur exakt modellen är jämfört med originaldata.Det visade sig att många av dessa enheter producerar spänningsspikar på grund av dess olinjära beteende. Detta beteende är vanligtvis relaterat till omkoppling och kan undvikas med olika enheter.Slutligen ges några råd om framtida forskning och revideringar, vilket kan vara till hjälp för säkerhet, effektivitet och kvalitet.
Książki na temat "3D powder printing"
Kellner, Imke Nora. Materialsysteme für das pulverbettbasierte 3D-Drucken. München: Herbert Utz Verlag, 2012.
Znajdź pełny tekst źródłaDepartment of Defense. Navy Additive Manufacturing: Adding Parts, Subtracting Steps - 3D Printing, Tooling, Aerospace, Binder Jetting, Directed Energy Deposition, Material Extrusion, Powder Fusion, Photopolymerization. Independently Published, 2017.
Znajdź pełny tekst źródłaNarayan, Roger J., red. Additive Manufacturing in Biomedical Applications. ASM International, 2022. http://dx.doi.org/10.31399/asm.hb.v23a.9781627083928.
Pełny tekst źródłaCraig, John. Python for 3D Printing: Using Python to Enhance the Power of OpenSCAD for 3D Modeling. Independently Published, 2019.
Znajdź pełny tekst źródłaSharma, Sarah, i Rianka Singh, red. Re-Understanding Media. Duke University Press, 2022. http://dx.doi.org/10.1215/9781478022497.
Pełny tekst źródłaCzęści książek na temat "3D powder printing"
Zhu, Yanli, Ahmet Okyay, Mihaela Vlasea, Kaan Erkorkmaz i Mark Kirby. "The Additive Journey from Powder to Part". W Women in 3D Printing, 135–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70736-1_11.
Pełny tekst źródłaFina, Fabrizio, Simon Gaisford i Abdul W. Basit. "Powder Bed Fusion: The Working Process, Current Applications and Opportunities". W 3D Printing of Pharmaceuticals, 81–105. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90755-0_5.
Pełny tekst źródłaDourandish, M., Dirk Godlinski i Abdolreza Simchi. "3D Printing of Biocompatible PM-Materials". W Progress in Powder Metallurgy, 453–56. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-419-7.453.
Pełny tekst źródłaAwari, G. K., C. S. Thorat, Vishwjeet Ambade i D. P. Kothari. "Powder-Based Additive Manufacturing Systems". W Additive Manufacturing and 3D Printing Technology, 89–106. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis Group, LLC, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003013853-5.
Pełny tekst źródłaSriram, Vadlamannati, Vipin Shukla i Soumitra Biswas. "Metal Powder Based Additive Manufacturing Technologies—Business Forecast". W 3D Printing and Additive Manufacturing Technologies, 105–18. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0305-0_10.
Pełny tekst źródłaBadini, C., i E. Padovano. "Powder Bed Fusion". W High Resolution Manufacturing from 2D to 3D/4D Printing, 81–103. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13779-2_4.
Pełny tekst źródłaChen, Chen, Lei Wang, Xiaochun Wang, Taotao Xiong i Guangxue Chen. "Printing Time Optimization of Large-Size Powder-Based 3D Printing". W Advances in Graphic Communication, Printing and Packaging Technology and Materials, 346–51. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0503-1_51.
Pełny tekst źródłaVerma, R., i G. Kaushal. "State of the Art of Powder Bed Fusion Additive Manufacturing: A Review". W 3D Printing and Additive Manufacturing Technologies, 269–79. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0305-0_23.
Pełny tekst źródłaKooijman, Wessel, i Julian Quodbach. "Powder Bed Fusion 3D Printing in Drug Delivery". W AAPS Introductions in the Pharmaceutical Sciences, 233–56. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34119-9_11.
Pełny tekst źródłaGupta, Priya, Anshul Yadav, Arvind Kumar i Niraj Sinha. "Modelling of Heat Transfer in Powder Bed Based Additive Manufacturing Process Using Lattice Boltzmann Method". W 3D Printing and Additive Manufacturing Technologies, 83–94. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0305-0_8.
Pełny tekst źródłaStreszczenia konferencji na temat "3D powder printing"
Lyckfeldt, Ola. "Metal Powder Characterization for 3D Printing". W Proceedings of the 4M/ICOMM2015 Conference. Singapore: Research Publishing Services, 2015. http://dx.doi.org/10.3850/978-981-09-4609-8_142.
Pełny tekst źródłaZhang, J. S., Y. T. Yang, Z. K. Qin, J. J. Luo, W. Gao i S. L. Wei. "Research Progress of the Modified Wood Powder for 3D printing". W 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmme-16.2016.217.
Pełny tekst źródłaChao, Tzu-Han, i Chuan-Chieh Liao. "Degassing of Medical Powder Plastics in Fused Deposition 3D Printing". W IEEE ICEIB 2023. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/engproc2023038069.
Pełny tekst źródłaLiao, Chao-Yaug, Po-Lun Wu i Chao-Yu Lee. "Customized PEEK Implants With Microporous and Surface Modification Using 3D Printing". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97117.
Pełny tekst źródłaCabezas, L., C. Berger, E. Jiménez-Piqué, J. Pötschke i L. Llanes. "Influence Of Printing Direction On The Mechanical Properties At Different Length Scales For WC-Co Samples Consolidated By Binder Jetting 3D Printing". W World Powder Metallurgy 2022 Congress & Exhibition. EPMA, 2022. http://dx.doi.org/10.59499/wp225371462.
Pełny tekst źródłaLai, Ling-Feng, Deng-Maw Lu, Kuei-Shu Hsu i Jian-Ming Lu. "A Study of Nanoscale Vanadium Powder Applied on 3D Printing Process". W 2019 IEEE 2nd International Conference on Knowledge Innovation and Invention (ICKII). IEEE, 2019. http://dx.doi.org/10.1109/ickii46306.2019.9042646.
Pełny tekst źródłaSun, Kan, Yongjia Wu, Huan Qi, Zhiwei Wu i Lei Zuo. "Direct Energy Deposition 3D Printing of Thermoelectric Materials: Simulation and Experiments". W ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98396.
Pełny tekst źródłaManiewski, Pawel, Clarissa M. Harvey, Taras Oriekhov, Korbinian Mühlberger, Martin Brunzell, Fredik Laurell i Michael Fokine. "Laser fabricated optical fibers with 3D printed cores". W CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_si.2022.sth4p.4.
Pełny tekst źródłaMalkawi, Ameen, Satya Ganti, Zahra Aleid, Hussain Sharrofna, Naeem Minhas i Nicholas Barta. "Considerations and challenges of qualifying a metal powder bed fusion 3D printing process". W Abu Dhabi International Petroleum Exhibition & Conference. SPE, 2021. http://dx.doi.org/10.2118/207628-ms.
Pełny tekst źródłaMartin, John D. "Exploring Additive Manufacturing Processes for Direct 3D Printing of Copper Induction Coils". W ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71685.
Pełny tekst źródłaRaporty organizacyjne na temat "3D powder printing"
Ovalle, Samuel, E. Viamontes i Tony Thomas. Optimization of DLP 3D Printed Ceramic Parts. Florida International University, październik 2021. http://dx.doi.org/10.25148/mmeurs.009776.
Pełny tekst źródłaKennedy, Alan, Mark Ballentine, Andrew McQueen, Christopher Griggs, Arit Das i Michael Bortner. Environmental applications of 3D printing polymer composites for dredging operations. Engineer Research and Development Center (U.S.), styczeń 2021. http://dx.doi.org/10.21079/11681/39341.
Pełny tekst źródła3D printing with metal powders: health and safety questions to ask. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, marzec 2020. http://dx.doi.org/10.26616/nioshpub2020114.
Pełny tekst źródła