Gotowa bibliografia na temat „3D foam electrodes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „3D foam electrodes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "3D foam electrodes"
Siwek, K. I., S. Eugénio, I. Aldama, J. M. Rojo, J. M. Amarilla, A. P. C. Ribeiro, T. M. Silva i M. F. Montemor. "Tailored 3D Foams Decorated with Nanostructured Manganese Oxide for Asymmetric Electrochemical Capacitors". Journal of The Electrochemical Society 169, nr 2 (1.02.2022): 020511. http://dx.doi.org/10.1149/1945-7111/ac4d66.
Pełny tekst źródłaVainoris, Modestas, Henrikas Cesiulis i Natalia Tsyntsaru. "Metal Foam Electrode as a Cathode for Copper Electrowinning". Coatings 10, nr 9 (25.08.2020): 822. http://dx.doi.org/10.3390/coatings10090822.
Pełny tekst źródłaOehm, Jonas, Marc Kamlah i Volker Knoblauch. "Ultra-Thick Cathodes for High-Energy Lithium-Ion Batteries Based on Aluminium Foams—Microstructural Evolution during Densification and Its Impact on the Electrochemical Properties". Batteries 9, nr 6 (31.05.2023): 303. http://dx.doi.org/10.3390/batteries9060303.
Pełny tekst źródłaAnsari, Sajid Ali, Hicham Mahfoz Kotb i Mohamad M. Ahmad. "Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam: A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications". Crystals 12, nr 6 (25.05.2022): 757. http://dx.doi.org/10.3390/cryst12060757.
Pełny tekst źródłaFerriday, Thomas B., Suhas Nuggehalli Sampathkumar, Peter Hugh Middleton, Jan Van Herle i Mohan Lal Kolhe. "How Acid Washing Nickel Foam Substrates Improves the Efficiency of the Alkaline Hydrogen Evolution Reaction". Energies 16, nr 5 (21.02.2023): 2083. http://dx.doi.org/10.3390/en16052083.
Pełny tekst źródłaArinova, Anar, i Arailym Nurpeissova. "Electrophoretic Deposition of Polyethylene Oxide-Based Gel-Polymer Electrolyte for 3D Lithium-Ion Batteries". ECS Meeting Abstracts MA2023-02, nr 23 (22.12.2023): 3280. http://dx.doi.org/10.1149/ma2023-02233280mtgabs.
Pełny tekst źródłaKim, Kookhan, Ji-Yong Eom, Jongmin Kim i Yang Soo Kim. "3D Lithium-Metal Anode for High-Energy Lithium-Metal Batteries". ECS Meeting Abstracts MA2024-02, nr 7 (22.11.2024): 947. https://doi.org/10.1149/ma2024-027947mtgabs.
Pełny tekst źródłaSliozberg, Kirill, Yauhen Aniskevich, Ugur Kayran, Justus Masa i Wolfgang Schuhmann. "CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction". Zeitschrift für Physikalische Chemie 234, nr 5 (26.05.2020): 995–1019. http://dx.doi.org/10.1515/zpch-2019-1466.
Pełny tekst źródłaNawaz, Bushra, Ghulam Ali, Muhammad Obaid Ullah, Sarish Rehman i Fazal Abbas. "Investigation of the Electrochemical Properties of Ni0.5Zn0.5Fe2O4 as Binder-Based and Binder-Free Electrodes of Supercapacitors". Energies 14, nr 11 (4.06.2021): 3297. http://dx.doi.org/10.3390/en14113297.
Pełny tekst źródłaCheng, Guanhua, Qingguo Bai, Conghui Si, Wanfeng Yang, Chaoqun Dong, Hao Wang, Yulai Gao i Zhonghua Zhang. "Nickel oxide nanopetal-decorated 3D nickel network with enhanced pseudocapacitive properties". RSC Advances 5, nr 20 (2015): 15042–51. http://dx.doi.org/10.1039/c4ra15556d.
Pełny tekst źródłaRozprawy doktorskie na temat "3D foam electrodes"
Adjez, Yanis. "Stimulation of Electrocatalytic Reduction of Nitrate by Immobilized Ionic Liquids". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS337.pdf.
Pełny tekst źródłaNitrate pollution in water represents a significant environmental challenge and is one of the top ten most common water quality violations worldwide. This challenge offers an opportunity for the circular economy as nitrate electrolysis has been suggested as a sustainable method for valorization of nitrate-contaminated effluents by simultaneous decentralized ammonia production (a commodity chemical). In particular, the electrochemical reduction of nitrate (ERN) is a promising and sustainable strategy for addressing the critical issue of nitrate pollution in water sources. Several earth abundant materials such as copper and tin have been suggested as suitable electrocatalytic materials for ERN. Mostly fundamental electrochemical studies under potentiostatic conditions are reported so far. In contrast, this study presents ERN evaluation under galvanostatic conditions for achieving more representative operational conditions for larger engineered systems. However, this provokes the appearance of the concomitant hydrogen evolution reaction (HER), which takes place at a similar thermodynamic potential than ERN. Thus, faradaic efficiency for ERN significantly diminishes under realistic galvanostatic conditions due to the competition with HER. This project addresses this fundamental challenge in electrocatalysis and proposes a novel strategy based on the immobilization of imidazolium-based ionic molecules on the surface of the cathode to selectively inhibit HER and enhance ERN. Notably, this research explores a range of hybrid cathode materials, including 2D plate and 3D foam carbon- and metal-based electrodes, which are recognized for their potential in real world applications for ERN. The success of the ionic organic layer immobilization onto the cathodes was confirmed through different physicochemical characterization techniques and subsequent electrocatalytic activity and selectivity evaluation, which demonstrated an enhanced selectivity and faradaic efficiency for ammonia production on hybrid cathodes twice as much as the bare electrode material for ERN under the same experimental conditions
Części książek na temat "3D foam electrodes"
Jena, Debdeep. "Electrons in the Quantum World". W Quantum Physics of Semiconductor Materials and Devices, 83–122. Oxford University PressOxford, 2022. http://dx.doi.org/10.1093/oso/9780198856849.003.0005.
Pełny tekst źródłaSchweitzer, George K., i Lester L. Pesterfield. "The V–Cr–Mn Group". W The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0016.
Pełny tekst źródłaKrishnan, Kannan M. "Transmission and Analytical Electron Microscopy". W Principles of Materials Characterization and Metrology, 552–692. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198830252.003.0009.
Pełny tekst źródłaSchweitzer, George K., i Lester L. Pesterfield. "The Fe–Co–Ni Group". W The Aqueous Chemistry of the Elements. Oxford University Press, 2010. http://dx.doi.org/10.1093/oso/9780195393354.003.0017.
Pełny tekst źródłaStreszczenia konferencji na temat "3D foam electrodes"
Dai, Rui, Beomjin Kwon i Qiong Nian. "A Novel Packing Hollow Dodecahedron Model to Study the Mechanical and Thermal Properties of Stocastic Metallic Foams". W ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-60520.
Pełny tekst źródłaChytanya Chinnam, Krishna, Seyed Sepehr Moeini, Simonetta Tuti i Giulia Lanzara. "Annealed Pyrolytic Graphitic Carbon Electrodes for Piezoelectric Acoustic Nanoweb". W ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-111178.
Pełny tekst źródłaBerhan, L., C. W. Wang i A. M. Sastry. "Damage Initiation in Bonded Particulate Networks: 3D Simulations". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/ad-25304.
Pełny tekst źródłaGunda, Naga Siva Kumar, i Sushanta K. Mitra. "Quantification of Microstructural and Transport Properties of Solid Oxide Fuel Cells From Three-Dimensional Physically Realistic Network Structures". W ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54929.
Pełny tekst źródłaFan, Jinsheng, Brittany Newell, Jose Garcia, Richard M. Voyles i Robert A. Nawrocki. "Contact-Poling Enhanced, Fully 3D Printed PVdF Pressure Sensors: Towards 3D Printed Functional Materials". W ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67832.
Pełny tekst źródłaHisted, Rebecca, Justin Ngo, Omar A. Hussain, Chantel Lapins, Kam K. Leang, Yiliang Liao i Matteo Aureli. "Ionic Polymer Metal Composite Sensors With Engineered Interfaces (eIPMCs): Compression Sensing Modeling and Experiments". W ASME 2020 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/dscc2020-3289.
Pełny tekst źródłaGoncharova, Olga V. "Quasi-Zero-Dimensional Media Formed by Thin-Film Technique: Microstructure, Subpicosecond Optical Nonlinearities, Applications". W International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.tue.40.
Pełny tekst źródłaEdgerton, Alex, Joseph Najem i Donald Leo. "A Hydrogel-Based Droplet Interface Lipid Bilayer Network". W ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7580.
Pełny tekst źródłaYafia, Mohamed, i Homayoun Najjaran. "The Effect of Changing the Gap Height on Droplet Deformation During Transport in Digital Microfluidics Systems". W ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21296.
Pełny tekst źródłaIshino, Yojiro, Naoki Hayashi, Yuta Ishiko, Ahmad Zaid Nazari, Kimihiro Nagase, Kazuma Kakimoto i Yu Saiki. "Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture". W ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7423.
Pełny tekst źródła