Artykuły w czasopismach na temat „3D device”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „3D device”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Kanai, Satoshi, Takayuki Shibata i Takahiro Kawashima. "Feature-Based 3D Process Planning for MEMS Fabrication". International Journal of Automation Technology 8, nr 3 (5.05.2014): 406–19. http://dx.doi.org/10.20965/ijat.2014.p0406.
Pełny tekst źródłaCheon, Jeonghyeon, i Seunghyun Kim. "Fabrication and Demonstration of a 3D-printing/PDMS Integrated Microfluidic Device". Recent Progress in Materials 4, nr 1 (21.10.2021): 1. http://dx.doi.org/10.21926/rpm.2201002.
Pełny tekst źródłaMatsuyama, So, Tomoaki Sugiyama, Toshiyuki Ikoma i Jeffrey S. Cross. "Fabrication of 3D Graphene and 3D Graphene Oxide Devices for Sensing VOCs". MRS Advances 1, nr 19 (2016): 1359–64. http://dx.doi.org/10.1557/adv.2016.151.
Pełny tekst źródłaEtxebarria-Elezgarai, Jaione, Maite Garcia-Hernando, Lourdes Basabe-Desmonts i Fernando Benito-Lopez. "Precise Integration of Polymeric Sensing Functional Materials within 3D Printed Microfluidic Devices". Chemosensors 11, nr 4 (19.04.2023): 253. http://dx.doi.org/10.3390/chemosensors11040253.
Pełny tekst źródłavan der Elst, Louis, Camila Faccini de Lima, Meve Gokce Kurtoglu, Veda Narayana Koraganji, Mengxin Zheng i Alexander Gumennik. "3D Printing in Fiber-Device Technology". Advanced Fiber Materials 3, nr 2 (8.02.2021): 59–75. http://dx.doi.org/10.1007/s42765-020-00056-6.
Pełny tekst źródłaSejor, Eric, Tarek Debs, Niccolo Petrucciani, Pauline Brige, Sophie Chopinet, Mylène Seux, Marjorie Piche i in. "Feasibility and Efficiency of Sutureless End Enterostomy by Means of a 3D-Printed Device in a Porcine Model". Surgical Innovation 27, nr 2 (15.01.2020): 203–10. http://dx.doi.org/10.1177/1553350619895631.
Pełny tekst źródłaVoráčová, Ivona, Jan Přikryl, Jakub Novotný, Vladimíra Datinská, Jaeyoung Yang, Yann Astier i František Foret. "3D printed device for epitachophoresis". Analytica Chimica Acta 1154 (kwiecień 2021): 338246. http://dx.doi.org/10.1016/j.aca.2021.338246.
Pełny tekst źródłaWang, L., R. Hu i X. Guo. "Backside Lithography in 3D Device". ECS Transactions 60, nr 1 (27.02.2014): 251–56. http://dx.doi.org/10.1149/06001.0251ecst.
Pełny tekst źródłaNatarajan, Govindarajan, i James N. Humenik. "3D Ceramic Microfluidic Device Manufacturing". Journal of Physics: Conference Series 34 (1.04.2006): 533–39. http://dx.doi.org/10.1088/1742-6596/34/1/088.
Pełny tekst źródłaKlein, Allan L., i Christine L. Jellis. "3D Imaging of Device Leads". JACC: Cardiovascular Imaging 7, nr 4 (kwiecień 2014): 348–50. http://dx.doi.org/10.1016/j.jcmg.2013.12.006.
Pełny tekst źródłaGaudestad, Jan, i Antonio Orozco. "Magnetic Field Imaging for 3D applications". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, DPC (1.01.2014): 001937–65. http://dx.doi.org/10.4071/2014dpc-tha13.
Pełny tekst źródłaFurubayashi, Yutaka, Takafumi Tanehira, Kei Yonemori, Nobuhide Seo i Shinichiro Kuroki. "3D Integration of Si-Based Peltier Device onto 4H-SiC Power Device". Materials Science Forum 858 (maj 2016): 1107–11. http://dx.doi.org/10.4028/www.scientific.net/msf.858.1107.
Pełny tekst źródłaMaile, S., S. Kobel, M. Munz, T. Engleder, J. M. Steinacker i F. Capanni. "3D-based visual physical activity assessment of children". Current Directions in Biomedical Engineering 1, nr 1 (1.09.2015): 462–65. http://dx.doi.org/10.1515/cdbme-2015-0111.
Pełny tekst źródłaGan, Yong, Jing Ru Zhong i Ning Sun. "Mechanical Structure Optimal Design of 3D Non-Destructive Measurement System". Advanced Materials Research 199-200 (luty 2011): 1378–82. http://dx.doi.org/10.4028/www.scientific.net/amr.199-200.1378.
Pełny tekst źródłaTian, Xiaoyong, Ming Yin i Dichen Li. "3D printing: a useful tool for the fabrication of artificial electromagnetic (EM) medium". Rapid Prototyping Journal 22, nr 2 (21.03.2016): 251–57. http://dx.doi.org/10.1108/rpj-09-2014-0122.
Pełny tekst źródłaZhang, Bing, Wei Chen, Yanjie Wu, Kang Ding i Rongqiang Li. "Review of 3D Printed Millimeter-Wave and Terahertz Passive Devices". International Journal of Antennas and Propagation 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/1297931.
Pełny tekst źródłaAnsari, Sameer, Cynthia B. Zevallos, Mudassir Farooqui, Andres Dajles, Sebastian Schafer, Darko Quispe-Orozco, Alan Mendez-Ruiz, Samir Abdelkarim, Sudeepta Dandapat i Santiago Ortega-Gutierrez. "Optimal Woven EndoBridge (WEB) Device Size Selection Using Automated Volumetric Software". Brain Sciences 11, nr 7 (8.07.2021): 901. http://dx.doi.org/10.3390/brainsci11070901.
Pełny tekst źródłaWang, Zhenzhen, i Yan Yang. "Application of 3D Printing in Implantable Medical Devices". BioMed Research International 2021 (12.01.2021): 1–13. http://dx.doi.org/10.1155/2021/6653967.
Pełny tekst źródłaNielsen, Anna V., Michael J. Beauchamp, Gregory P. Nordin i Adam T. Woolley. "3D Printed Microfluidics". Annual Review of Analytical Chemistry 13, nr 1 (12.06.2020): 45–65. http://dx.doi.org/10.1146/annurev-anchem-091619-102649.
Pełny tekst źródłaIshida, Yoshiki, Daisuke Miura, Taira Miyasaka i Akikazu Shinya. "Dimensional Accuracy of Dental Casting Patterns Fabricated Using Consumer 3D Printers". Polymers 12, nr 10 (29.09.2020): 2244. http://dx.doi.org/10.3390/polym12102244.
Pełny tekst źródłaFadzli, Fazliaty Edora, Muhammad Nur Affendy Nor’a i Ajune Wanis Ismail. "3D Display for 3D Telepresence: A Review". International Journal of Innovative Computing 12, nr 1 (16.11.2021): 1–7. http://dx.doi.org/10.11113/ijic.v12n1.318.
Pełny tekst źródłaMesser, Dolores, Michelle S. Svendsen, Anders Galatius, Morten T. Olsen, Vedrana A. Dahl, Knut Conradsen i Anders B. Dahl. "Measurement error using a SeeMaLab structured light 3D scanner against a Microscribe 3D digitizer". PeerJ 9 (20.08.2021): e11804. http://dx.doi.org/10.7717/peerj.11804.
Pełny tekst źródłaJung, Haejoon, i In-Ho Lee. "Performance Analysis of Three-Dimensional Clustered Device-to-Device Networks for Internet of Things". Wireless Communications and Mobile Computing 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/9628565.
Pełny tekst źródłaSilva, Raphaela K. S., Sakandar Rauf, Ming Dong, Liang Chen, Hakan Bagci i Khaled N. Salama. "3D Concentric Electrodes-Based Alternating Current Electrohydrodynamics: Design, Simulation, Fabrication, and Potential Applications for Bioassays". Biosensors 12, nr 4 (6.04.2022): 215. http://dx.doi.org/10.3390/bios12040215.
Pełny tekst źródłaLin, Haisong, Yichao Zhao, Shuyu Lin, Bo Wang, Christopher Yeung, Xuanbing Cheng, Zhaoqing Wang i in. "A rapid and low-cost fabrication and integration scheme to render 3D microfluidic architectures for wearable biofluid sampling, manipulation, and sensing". Lab on a Chip 19, nr 17 (2019): 2844–53. http://dx.doi.org/10.1039/c9lc00418a.
Pełny tekst źródłaIssartel, Paul, Florimond Guéniat, Tobias Isenberg i Mehdi Ammi. "Analysis of Locally Coupled 3D Manipulation Mappings Based on Mobile Device Motion". Presence: Teleoperators and Virtual Environments 26, nr 1 (1.02.2017): 66–95. http://dx.doi.org/10.1162/pres_a_00287.
Pełny tekst źródłaHaidekker, Mark A. "Building a 3D Computed Tomography Scanner From Surplus Parts". Biomedical Instrumentation & Technology 48, nr 2 (1.03.2014): 142–51. http://dx.doi.org/10.2345/0899-8205-48.2.142.
Pełny tekst źródłaKim, Ji Hwan, Hee Seung Yang, Seung Hyun Han, Byung Min Lee, Youn Kyung Lee, Woo Sob Sim, Gwan Su Park, Seul Bin Na Lee i Min Jo. "Application of a 3D-Printed Writing–Typing Assistive Device in Patients with Cervical Spinal Cord Injury". Applied Sciences 12, nr 18 (8.09.2022): 9037. http://dx.doi.org/10.3390/app12189037.
Pełny tekst źródłaGomez, Houari Cobas, Bianca Oliveira Agio, Jéssica Gonçalves da Silva, Natalia Neto Pereira Cerize, Adriano Marim de Oliveira, Kleber Lanigra Guimaraes, Marcio Rodrigues da Cunha, Antonio Carlos Seabra i Mario Ricardo Gongora-Rubio. "LTCC 3D MICROMIXERS FOR NON-MISCIBLE FLUIDS MICROEMULSION GENERATION". Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2016, CICMT (1.05.2016): 000096–102. http://dx.doi.org/10.4071/2016cicmt-wa15.
Pełny tekst źródłaNikić, Marta, Aleksandar Opančar, Florian Hartmann, Ludovico Migliaccio, Marie Jakešová, Eric Daniel Głowacki i Vedran Đerek. "Micropyramid structured photo capacitive interfaces". Nanotechnology 33, nr 24 (23.03.2022): 245302. http://dx.doi.org/10.1088/1361-6528/ac5927.
Pełny tekst źródłaMenon, Ankitha, Abdullah Khan, Neethu T. M. Balakrishnan, Prasanth Raghavan, Carlos A. Leon y Leon, Haris Ali Khan, M. J. Jabeen Fatima i Peter Samora Owuor. "Advances in 3D Printing for Electrochemical Energy Storage Systems". Journal of Material Science and Technology Research 8 (30.11.2021): 50–69. http://dx.doi.org/10.31875/2410-4701.2021.08.7.
Pełny tekst źródłaTaraev, A. Yu, i R. V. Ushakov. "Rationale for the use of a novel structure device for mandible fractures fixation". Stomatology for All / International Dental review, nr 1(98) (22.03.2022): 4–11. http://dx.doi.org/10.35556/idr-2021-1(98)4-11.
Pełny tekst źródłaTaraev, A. Yu, i R. V. Ushakov. "Rationale for the use of a novel structure device for mandible fractures fixation". Stomatology for All / International Dental review, nr 1(98) (22.03.2022): 4–11. http://dx.doi.org/10.35556/idr-2022-1(98)4-11.
Pełny tekst źródłaKamalasanan, V., Y. Feng i M. Sester. "IMPROVING 3D PEDESTRIAN DETECTION FOR WEARABLE SENSOR DATA WITH 2D HUMAN POSE". ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences V-4-2022 (18.05.2022): 219–26. http://dx.doi.org/10.5194/isprs-annals-v-4-2022-219-2022.
Pełny tekst źródłaAsgari, Reza. "Challenges in 3D Inspection of Micro Bumps Used in 3D Packaging". International Symposium on Microelectronics 2012, nr 1 (1.01.2012): 000542–47. http://dx.doi.org/10.4071/isom-2012-wa12.
Pełny tekst źródłaGalík, Ján, Daniel Varecha, Mário Drbúl, Rudolf Madaj i Viera Konstantová. "Design and optimization of the construction of a mobile disinfection chamber for small communication devices and small objects". Production Engineering Archives 29, nr 2 (26.04.2023): 201–15. http://dx.doi.org/10.30657/pea.2023.29.24.
Pełny tekst źródłaPrakash Khoja, Om, Yatendra Kumar Porwal, Sohan K. Sharma i Rajeev Bagarhatta. "OUTCOME OF ASD CLOSURE WITH DEVICE SIZE BASED ON PRE PROCEDURE 3D TRANSTHORACIC ECHOCARDIOGRAPHY MEASUREMENTS AND ITS COMPARISON WITH 2D TRANSTHORACIC AND 2D TRANSESOPHAGEAL ECHOCARDIOGRAPHY: AN OBSERVATIONAL ANALYSIS AT A TERTIARY CARE HOSPITAL IN JAIPUR". International Journal of Advanced Research 10, nr 01 (31.01.2022): 1079–88. http://dx.doi.org/10.21474/ijar01/14148.
Pełny tekst źródłaAbubakar, Adamu, Teddy Mantoro, Sardjoeni Moedjiono, Media Anugerah Ayu, Haruna Chiroma, Ahmad Waqas, Shafi’i Muhammad Abdulhamid, Mukhtar Fatihu Hamza i Abdulsalam Ya'u Gital. "A Support Vector Machine Classification of Computational Capabilities of 3D Map on Mobile Device for Navigation Aid". International Journal of Interactive Mobile Technologies (iJIM) 10, nr 3 (26.07.2016): 4. http://dx.doi.org/10.3991/ijim.v10i3.5056.
Pełny tekst źródłaJ O'Donnell, T., i K. D Mitchell. "3D docking device for molecular modelling". Journal of Molecular Graphics 5, nr 2 (czerwiec 1987): 75–78. http://dx.doi.org/10.1016/0263-7855(87)80003-6.
Pełny tekst źródłaRodriguez-Garcia, Aida, Jacqueline Oliva-Ramirez, Claudia Bautista-Flores i Samira Hosseini. "3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment". Advances in Polymer Technology 2020 (10.08.2020): 1–41. http://dx.doi.org/10.1155/2020/6187048.
Pełny tekst źródłaTejkl, Adam, i Petr Kavka. "Automated Low Investment Cost Evaporometers (ALICEs)". Applied Sciences 11, nr 11 (28.05.2021): 4986. http://dx.doi.org/10.3390/app11114986.
Pełny tekst źródłaMarco-Jiménez, Francisco, Ximo Garcia-Dominguez, Luís García-Valero i José S. Vicente. "A 3D-Printed Large Holding Capacity Device for Minimum Volume Cooling Vitrification of Embryos in Prolific Livestock Species". Animals 13, nr 5 (22.02.2023): 791. http://dx.doi.org/10.3390/ani13050791.
Pełny tekst źródłaChen, Jianwei, Hao Ding, Zheng Li i Shaoan Yan. "3D simulations of device performance for 3D-Trench electrode detector". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 796 (październik 2015): 34–37. http://dx.doi.org/10.1016/j.nima.2015.04.023.
Pełny tekst źródłaCourtemanche, Jean, Samson King i David Bouck. "Engineering Novel Lab Devices Using 3D Printing and Microcontrollers". SLAS TECHNOLOGY: Translating Life Sciences Innovation 23, nr 5 (19.03.2018): 448–55. http://dx.doi.org/10.1177/2472630318766858.
Pełny tekst źródłaWang, Qiong. "Design of 3D Animation Special Effects in Animation 3D Modeling Teaching Based on QFD Theory". International Journal of Emerging Technologies in Learning (iJET) 12, nr 07 (12.07.2017): 90. http://dx.doi.org/10.3991/ijet.v12i07.7218.
Pełny tekst źródłaShamloo, Amir, i Leyla Amirifar. "A microfluidic device for 2D to 3D and 3D to 3D cell navigation". Journal of Micromechanics and Microengineering 26, nr 1 (30.11.2015): 015003. http://dx.doi.org/10.1088/0960-1317/26/1/015003.
Pełny tekst źródłaZhou, Shuai, Kaixue Ma, Yugong Wu, Peng Liu, Xianghong Hu, Guojian Nie, Yan Ren i in. "Survey of Reliability Research on 3D Packaged Memory". Electronics 12, nr 12 (17.06.2023): 2709. http://dx.doi.org/10.3390/electronics12122709.
Pełny tekst źródłaChin, Seow Yong, Vishwesh Dikshit, Balasankar Meera Priyadarshini i Yi Zhang. "Powder-Based 3D Printing for the Fabrication of Device with Micro and Mesoscale Features". Micromachines 11, nr 7 (30.06.2020): 658. http://dx.doi.org/10.3390/mi11070658.
Pełny tekst źródłaHasler, O., S. Blaser i S. Nebiker. "IMPLEMENTATION AND FIRST EVALUATION OF AN INDOOR MAPPING APPLICATION USING SMARTPHONES AND AR FRAMEWORKS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W17 (29.11.2019): 135–41. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w17-135-2019.
Pełny tekst źródłaWang, Yong Quan, Jing Yuan Wang i Hua Ling Chen. "Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device". Applied Mechanics and Materials 526 (luty 2014): 242–49. http://dx.doi.org/10.4028/www.scientific.net/amm.526.242.
Pełny tekst źródła