Gotowa bibliografia na temat „3D device”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „3D device”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "3D device"
Kanai, Satoshi, Takayuki Shibata i Takahiro Kawashima. "Feature-Based 3D Process Planning for MEMS Fabrication". International Journal of Automation Technology 8, nr 3 (5.05.2014): 406–19. http://dx.doi.org/10.20965/ijat.2014.p0406.
Pełny tekst źródłaCheon, Jeonghyeon, i Seunghyun Kim. "Fabrication and Demonstration of a 3D-printing/PDMS Integrated Microfluidic Device". Recent Progress in Materials 4, nr 1 (21.10.2021): 1. http://dx.doi.org/10.21926/rpm.2201002.
Pełny tekst źródłaMatsuyama, So, Tomoaki Sugiyama, Toshiyuki Ikoma i Jeffrey S. Cross. "Fabrication of 3D Graphene and 3D Graphene Oxide Devices for Sensing VOCs". MRS Advances 1, nr 19 (2016): 1359–64. http://dx.doi.org/10.1557/adv.2016.151.
Pełny tekst źródłaEtxebarria-Elezgarai, Jaione, Maite Garcia-Hernando, Lourdes Basabe-Desmonts i Fernando Benito-Lopez. "Precise Integration of Polymeric Sensing Functional Materials within 3D Printed Microfluidic Devices". Chemosensors 11, nr 4 (19.04.2023): 253. http://dx.doi.org/10.3390/chemosensors11040253.
Pełny tekst źródłavan der Elst, Louis, Camila Faccini de Lima, Meve Gokce Kurtoglu, Veda Narayana Koraganji, Mengxin Zheng i Alexander Gumennik. "3D Printing in Fiber-Device Technology". Advanced Fiber Materials 3, nr 2 (8.02.2021): 59–75. http://dx.doi.org/10.1007/s42765-020-00056-6.
Pełny tekst źródłaSejor, Eric, Tarek Debs, Niccolo Petrucciani, Pauline Brige, Sophie Chopinet, Mylène Seux, Marjorie Piche i in. "Feasibility and Efficiency of Sutureless End Enterostomy by Means of a 3D-Printed Device in a Porcine Model". Surgical Innovation 27, nr 2 (15.01.2020): 203–10. http://dx.doi.org/10.1177/1553350619895631.
Pełny tekst źródłaVoráčová, Ivona, Jan Přikryl, Jakub Novotný, Vladimíra Datinská, Jaeyoung Yang, Yann Astier i František Foret. "3D printed device for epitachophoresis". Analytica Chimica Acta 1154 (kwiecień 2021): 338246. http://dx.doi.org/10.1016/j.aca.2021.338246.
Pełny tekst źródłaWang, L., R. Hu i X. Guo. "Backside Lithography in 3D Device". ECS Transactions 60, nr 1 (27.02.2014): 251–56. http://dx.doi.org/10.1149/06001.0251ecst.
Pełny tekst źródłaNatarajan, Govindarajan, i James N. Humenik. "3D Ceramic Microfluidic Device Manufacturing". Journal of Physics: Conference Series 34 (1.04.2006): 533–39. http://dx.doi.org/10.1088/1742-6596/34/1/088.
Pełny tekst źródłaKlein, Allan L., i Christine L. Jellis. "3D Imaging of Device Leads". JACC: Cardiovascular Imaging 7, nr 4 (kwiecień 2014): 348–50. http://dx.doi.org/10.1016/j.jcmg.2013.12.006.
Pełny tekst źródłaRozprawy doktorskie na temat "3D device"
Varga, Tomáš. "3D zobrazovací jednotka". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2012. http://www.nusl.cz/ntk/nusl-219713.
Pełny tekst źródłaAnsari, Anees. "Direct 3D Interaction Using A 2D Locator Device". [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000046.
Pełny tekst źródłaBalakrishnan, Ravin. "The evolution and evaluation of a 3D input device". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0026/MQ51587.pdf.
Pełny tekst źródłaWilliams, Cary. "TZee: a tangible device for 3d interactions on tabletop computers". Association for Computing Machinery, 2011. http://hdl.handle.net/1993/5219.
Pełny tekst źródłaPavlyuk, M. O. "3D printers and printing". Thesis, Sumy State University, 2014. http://essuir.sumdu.edu.ua/handle/123456789/45447.
Pełny tekst źródłaGràcia, Julià Alvar. "Laser cooking system applied to a 3D food printing device". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667255.
Pełny tekst źródłaAn innovative cooking system based on infrared radiation (IR) using a CO2 laser (CO2 IR Laser) has been developed considering that water absorbance of electromagnetic infrared radiation at CO2 laser wavelength is very high. The new cooking system has been adapted into a 3D food printer and has been designed with the following requirements: 1) ability to cook in a delimited area; 2) control of the cooking temperature; 3) physical dimensions that fit inside the 3D Food Printer; 4) energy consumption below the power supply limits; 5) software-controlled system; 6) versatility to cook while printing the food or to cook once the food is printed. In the present study, two CO2 IR Laser cooking systems have been used and tested. The first CO2 IR Laser cooking system studied was a laser engraver and cutter equipment in which specific conditions were applied to cook beef burgers, mashed potatoes bites and pizza dough. After, a new cooking system adapted to the 3D food printer was developed, consisting of a CO2 laser lamp, a system of galvo mirrors that direct the laser beam to the cooking area, and a software that allowed controlling the position and the frequency of movement of galvanometers. With this new system, a chosen area could be homogenously cooked, due to the rapid movement of the galvo mirrors. The food products cooked inside the 3D food printer were: beef burgers; vegetarian patties prepared with legumes, vegetables and egg as main ingredients; and pizza dough. To demonstrate that cooking had been achieved, food products were cooked with the CO2 IR laser systems and different traditional cooking systems (flat and barbeque grills; IR, convection, desk and microwave ovens). Microbiological, physico-chemical and sensory characteristics of the cooked foods were evaluated. The formation of polycyclic aromatic hydrocarbons was analyzed in beef burgers and pizzas to evaluate toxicological safety, and the thermal effect in the count reduction or survival of Salmonella Typhimurium, Salmonella Senftenberg and Escherichia coli O157:H7 inoculated in beef burgers and vegetarian patties was studied. Microbiological and toxicological analyses showed that food products cooked with the new CO2 IR Laser system were as safe as food cooked with traditional methods. Sensory analyses showed that consumers had the same, or even higher, level of preference for foods cooked with CO2 IR laser system in comparison with foods cooked with traditional methods. In addition, a numerical model based on computational fluid dynamics was developed to simulate the cooking process of beef burgers and vegetarian patties, and it was validated with experimental data of temperature evolution during the cooking process. The numerical results for temperature evolution given by the model coincide with the experimental data, except for the first minutes of cooking. The numerical simulation model is a powerful tool to optimize the cooking process of the CO2 IR Laser system. Based on the results obtained, future work will be carried out including cooking experimental studies with foods containing a significantly different composition; the simulation of the cooking process with different parametric conditions; and nutritional studies.
Plevniak, Kimberly. "3D printed microfluidic device for point-of-care anemia diagnosis". Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32875.
Pełny tekst źródłaDepartment of Biological & Agricultural Engineering
Mei He
Anemia affects about 25% of the world’s population and causes roughly 8% of all disability cases. The development of an affordable point-of-care (POC) device for detecting anemia could be a significant for individuals in underdeveloped countries trying to manage their anemia. The objective of this study was to design and fabricate a 3D printed, low cost microfluidic mixing chip that could be used for the diagnosis of anemia. Microfluidic mixing chips use capillary flow to move fluids without the aid of external power. With new developments in 3D printing technology, microfluidic devices can be fabricated quickly and inexpensively. This study designed and demonstrated a passive microfluidic mixing chip that used capillary force to mix blood and a hemoglobin detecting assay. A 3D computational fluid dynamic simulation model of the chip design showed 96% efficiency when mixing two fluids. The mixing chip was fabricated using a desktop 3D printer in one hour for less than $0.50. Blood samples used for the clinical validation were provided by The University of Kansas Medical Center Biospecimen Repository. During clinical validation, RGB (red, green, blue) values of the hemoglobin detection assay color change within the chip showed consistent and repeatable results, indicating the chip design works efficiently as a passive mixing device. The anemia detection assay tended to overestimate hemoglobin levels at lower values while underestimating them in higher values, showing the assay needs to go through more troubleshooting.
Walden, Alice. "The Driving Factors : Evaluating intuitive interaction with a 3D-device in a car racing game". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139579.
Pełny tekst źródłaBENETTO, SIMONE. "Fabrication and characterization of a microfluidic device for 3D cells analysis". Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2667167.
Pełny tekst źródłaMachwirth, Mattias. "A Haptic Device Interface for Medical Simulations using OpenCL". Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-29980.
Pełny tekst źródłaProjektet går ut på att utvärdera hur väl en haptisk utrustning går att använda för att interagera med en visualisering av volumetrisk data. Eftersom haptikutrustningen krävde explicit beskrivna ytor, krävdes först en triangelgenerering utifrån den volymetriska datan. Algoritmen som används till detta är marching cubes. Trianglarna som producerades med hjälp av marching cubes skickas sedan vidare till den haptiska utrustningen för att kunna få gensvar i form av krafter för att utnyttja sig av känsel och inte bara syn. Eftersom marching cubes lämpas för en parallelisering användes OpenCL för att snabba upp algoritmen. Grafer i projektet visar hur denna algoritm exekveras upp emot 70 gånger snabbare när algoritmen körs som en kernel i OpenCL istället för ekvensiellt på CPUn. Tanken är att när vidareutveckling av projektet har gjorts i god mån, kan detta användas av läkarstuderande där övning av svåra snitt kan ske i en verklighetstrogen simulering innan samma ingrepp utförs på en individ.
Książki na temat "3D device"
(Firm), Fred'k Leadbeater, red. Leadbeater's improved furnace or air-feeding device: Patented in U.S. July 17th, 1888, in Canada October 3d, 1888 ... [S.l: s.n., 1986.
Znajdź pełny tekst źródłaLyang, Viktor. CAD programming: Spatial modeling of the air cooling device in the Autodesk Inventor environment. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/991757.
Pełny tekst źródłaZatt, Bruno, Muhammad Shafique, Sergio Bampi i Jörg Henkel. 3D Video Coding for Embedded Devices. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6759-5.
Pełny tekst źródłaFranke, Jörg, red. Three-Dimensional Molded Interconnect Devices (3D-MID). München: Carl Hanser Verlag GmbH & Co. KG, 2014. http://dx.doi.org/10.3139/9781569905524.
Pełny tekst źródłaWu, Yung-Chun, i Yi-Ruei Jhan. 3D TCAD Simulation for CMOS Nanoeletronic Devices. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-3066-6.
Pełny tekst źródłaLi, Simon, i Yue Fu. 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0481-1.
Pełny tekst źródłaauthor, Samuel Kumudini, Suriya Women's Development Centre (Batticaloa, Sri Lanka) i International Centre for Ethnic Studies, red. 3D things: Devices, technologies, and women's organising in Sri Lanka. Batticaloa, Sri Lanka: Suriya Women's Development Centre & International Centre for Ethnic Studies, 2015.
Znajdź pełny tekst źródłaZatt, Bruno. 3D Video Coding for Embedded Devices: Energy Efficient Algorithms and Architectures. New York, NY: Springer New York, 2013.
Znajdź pełny tekst źródłaElectrical modeling and design for 3D integration: 3D integrated circuits and packaging signal integrity, power integrity, and EMC. Hoboken, N.J: Wiley-IEEE Press, 2011.
Znajdź pełny tekst źródłaSusanna, Orlic, Meerholz Klaus i SPIE (Society), red. Organic 3D photonics materials and devices: 28 August, 2007, San Diego, California, USA. Bellingham, Wash: SPIE, 2007.
Znajdź pełny tekst źródłaCzęści książek na temat "3D device"
Zhang, David, i Guangming Lu. "3D Fingerprint Acquisition Device". W 3D Biometrics, 171–94. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7400-5_10.
Pełny tekst źródłaMcCurdy, Boyd, Peter Greer i James Bedford. "Electronic Portal Imaging Device Dosimetry". W Clinical 3D Dosimetry in Modern Radiation Therapy, 169–98. Boca Raton : Taylor & Francis, 2017. | Series: Imaging in medical diagnosis and therapy ; 28: CRC Press, 2017. http://dx.doi.org/10.1201/9781315118826-7.
Pełny tekst źródłaFriedman, Avner. "3D modeling of a smart power device". W Mathematics in Industrial Problems, 214–24. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4613-8383-3_22.
Pełny tekst źródłaLiu, Wankui, Yuan Fu, Yi Yang, Zhonghong Shen i Yue Liu. "A Novel Interactive Device for 3D Display". W Communications in Computer and Information Science, 543–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22456-0_78.
Pełny tekst źródłaChang, Kangwei, Penghui Ding, Shixun Luan, Kaikai Han i Jianyong Shi. "Design of a Portable 3D Scanning Device". W Advances in Intelligent Systems and Computing, 485–91. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1843-7_56.
Pełny tekst źródłaLi, Simon, i Yue Fu. "Advanced Theory of TCAD Device Simulation". W 3D TCAD Simulation for Semiconductor Processes, Devices and Optoelectronics, 41–80. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0481-1_3.
Pełny tekst źródłaLiu, Zheng. "3D Modeling Environment Development for Micro Device Design". W Lecture Notes in Computer Science, 518–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38715-9_62.
Pełny tekst źródłaMartinez, A., A. Asenov i M. Pala. "NEGF for 3D Device Simulation of Nanometric Inhomogenities". W Nanoscale CMOS, 335–80. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118621523.ch10.
Pełny tekst źródłaQodseya, Mahmoud, Marta Sanzari, Valsamis Ntouskos i Fiora Pirri. "A3D: A Device for Studying Gaze in 3D". W Lecture Notes in Computer Science, 572–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46604-0_41.
Pełny tekst źródłaBellandi, Valerio. "Automatic 3D Facial Fitting for Tracking in Video Sequence". W Multimedia Techniques for Device and Ambient Intelligence, 73–111. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-88777-7_4.
Pełny tekst źródłaStreszczenia konferencji na temat "3D device"
Bauer, Charles E., i Herbert J. Neuhaus. "3D device integration". W 2009 11th Electronics Packaging Technology Conference (EPTC). IEEE, 2009. http://dx.doi.org/10.1109/eptc.2009.5416508.
Pełny tekst źródłaMoghadam, Peyman. "3D medical thermography device". W SPIE Sensing Technology + Applications, redaktorzy Sheng-Jen (Tony) Hsieh i Joseph N. Zalameda. SPIE, 2015. http://dx.doi.org/10.1117/12.2177880.
Pełny tekst źródłaCastellani, Stefania, Jean-Luc Meunier i Frederic Roulland. "Mobile 3D Representations for Device Troubleshooting". W ASME 2011 World Conference on Innovative Virtual Reality. ASMEDC, 2011. http://dx.doi.org/10.1115/winvr2011-5529.
Pełny tekst źródłaHarris, H. R., H. Adhikari, C. E. Smith, G. Smith, J. W. Yang, P. Majhi i R. Jammy. "Adjusting to 3D devices in a 2D device world". W 2008 IEEE International SOI Conference. IEEE, 2008. http://dx.doi.org/10.1109/soi.2008.4656321.
Pełny tekst źródłaKoglbauer, Andreas, Stefan Wolf, Otto Märten i Reinhard Kramer. "A compact beam diagnostic device for 3D additive manufacturing systems". W Laser 3D Manufacturing V, redaktorzy Henry Helvajian, Alberto Piqué i Bo Gu. SPIE, 2018. http://dx.doi.org/10.1117/12.2286838.
Pełny tekst źródłaStodle, Daniel, Olga Troyanskaya, Kai Li i Otto J. Anshus. "Tech-note: Device-free interaction spaces". W 2009 IEEE Symposium on 3D User Interfaces. IEEE, 2009. http://dx.doi.org/10.1109/3dui.2009.4811203.
Pełny tekst źródłaNguyen, Anh, i Amy Banic. "3DTouch: A wearable 3D input device for 3D applications". W 2015 IEEE Virtual Reality (VR). IEEE, 2015. http://dx.doi.org/10.1109/vr.2015.7223324.
Pełny tekst źródłaNguyen, Anh, i Amy Banic. "3DTouch: A wearable 3D input device for 3D applications". W 2015 IEEE Virtual Reality (VR). IEEE, 2015. http://dx.doi.org/10.1109/vr.2015.7223451.
Pełny tekst źródłaAriyaeeinia, Aladdin M. "Analysis of 3D TV systems". W Electronic Imaging Device Engineering, redaktorzy Christopher T. Bartlett i Matthew D. Cowan. SPIE, 1993. http://dx.doi.org/10.1117/12.164711.
Pełny tekst źródłaSchneider, Carl T. "3D measurement by digital photogrammetry". W Electronic Imaging Device Engineering, redaktor Donald W. Braggins. SPIE, 1993. http://dx.doi.org/10.1117/12.164882.
Pełny tekst źródłaRaporty organizacyjne na temat "3D device"
Porambo, Albert V., Lee Bronfman, Steve Worrell, Kevin Woods i Michael Liebman. Computer Assisted Cancer Device - 3D Imaging. Fort Belvoir, VA: Defense Technical Information Center, październik 2006. http://dx.doi.org/10.21236/ada462126.
Pełny tekst źródłaAppelo, D., J. DuBois, F. Garcia, N. Petersson, Y. Rosen i X. Wu. Lindblad characterization of a 3D transmon device. Office of Scientific and Technical Information (OSTI), wrzesień 2020. http://dx.doi.org/10.2172/1661025.
Pełny tekst źródłaSeidametova, Zarema S., Zinnur S. Abduramanov i Girey S. Seydametov. Using augmented reality for architecture artifacts visualizations. [б. в.], lipiec 2021. http://dx.doi.org/10.31812/123456789/4626.
Pełny tekst źródłaBarkatov, Igor V., Volodymyr S. Farafonov, Valeriy O. Tiurin, Serhiy S. Honcharuk, Vitaliy I. Barkatov i Hennadiy M. Kravtsov. New effective aid for teaching technology subjects: 3D spherical panoramas joined with virtual reality. [б. в.], listopad 2020. http://dx.doi.org/10.31812/123456789/4407.
Pełny tekst źródłaKennedy, Alan, Andrew McQueen, Mark Ballentine, Brianna Fernando, Lauren May, Jonna Boyda, Christopher Williams i Michael Bortner. Sustainable harmful algal bloom mitigation by 3D printed photocatalytic oxidation devices (3D-PODs). Engineer Research and Development Center (U.S.), kwiecień 2022. http://dx.doi.org/10.21079/11681/43980.
Pełny tekst źródłaLiang, S. 3D Printing Catalytic Electrodes for Solar-Hydrogen Devices. Office of Scientific and Technical Information (OSTI), październik 2019. http://dx.doi.org/10.2172/1573452.
Pełny tekst źródłaBlanche, Pierre-Alexandre, i Arkady Bablumyan. Updateable 3D Display Using Large Area Photorefractive Polymer Devices. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2013. http://dx.doi.org/10.21236/ada578040.
Pełny tekst źródłaClem, Paul Gilbert, Weng Wah Dr Chow, .), Ganapathi Subramanian Subramania, James Grant Fleming, Joel Robert Wendt i Ihab Fathy El-Kady. 3D Active photonic crystal devices for integrated photonics and silicon photonics. Office of Scientific and Technical Information (OSTI), listopad 2005. http://dx.doi.org/10.2172/882052.
Pełny tekst źródłaHam, Michael I., Christopher Oshman, Dustin Demoin, Garrett Kenyon i Harald O. Dogliani. 3D Background Oriented Schlieren Imaging to Detect Aerial Improvised Explosive Devices. Office of Scientific and Technical Information (OSTI), maj 2013. http://dx.doi.org/10.2172/1079568.
Pełny tekst źródłaHam, Michael I., Garrett Kenyon, Harald O. Dogliani, Dustin Demoin i Christopher Oshman. 3D Background Oriented Schlieren Imaging to Detect Aerial Improvised Explosive Devices. Office of Scientific and Technical Information (OSTI), czerwiec 2013. http://dx.doi.org/10.2172/1086760.
Pełny tekst źródła