Artykuły w czasopismach na temat „22-nm technology node”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 49 najlepszych artykułów w czasopismach naukowych na temat „22-nm technology node”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Li, Zongru, Christopher Jarrett Elash, Chen Jin, et al. "Comparison of Total Ionizing Dose Effects in 22-nm and 28-nm FD SOI Technologies." Electronics 11, no. 11 (2022): 1757. http://dx.doi.org/10.3390/electronics11111757.
Pełny tekst źródłaXu, Peng, Yinghua Piao, Liang Ge, et al. "Investigation of Novel Junctionless MOSFETs for Technology Node Beyond 22 nm." ECS Transactions 44, no. 1 (2019): 33–39. http://dx.doi.org/10.1149/1.3694293.
Pełny tekst źródłaHolmes, Steven. "22-nm-node technology active-layer patterning for planar transistor devices." Journal of Micro/Nanolithography, MEMS, and MOEMS 9, no. 1 (2010): 013001. http://dx.doi.org/10.1117/1.3302125.
Pełny tekst źródłaBaklanov, Mikhail R., Evgeny A. Smirnov, and Larry Zhao. "Ultra Low Dielectric Constant Materials for 22 nm Technology Node and Beyond." ECS Transactions 35, no. 4 (2019): 717–28. http://dx.doi.org/10.1149/1.3572315.
Pełny tekst źródłaSaxena, Shubhangi, and Kamsali Manjunathachari. "Novel Nanoelectronic Materials and Devices: For Future Technology Node." ECS Transactions 107, no. 1 (2022): 15701–11. http://dx.doi.org/10.1149/10701.15701ecst.
Pełny tekst źródłaHuang, Zhengfeng, Yan Zhang, Wenhui Wu, et al. "A high-speed quadruple-node-upset-tolerant latch in 22 nm CMOS technology." Microelectronics Reliability 147 (August 2023): 115032. http://dx.doi.org/10.1016/j.microrel.2023.115032.
Pełny tekst źródłaLi, Zongru, Christopher Elash, Chen Jin, et al. "SEU performance of Schmitt-trigger-based flip-flops at the 22-nm FD SOI technology node." Microelectronics Reliability 146 (July 2023): 115033. http://dx.doi.org/10.1016/j.microrel.2023.115033.
Pełny tekst źródłaLu, Peng, Can Yang, Yifei Li, Bo Li, and Zhengsheng Han. "Three-Dimensional TID Hardening Design for 14 nm Node SOI FinFETs." Eng 2, no. 4 (2021): 620–31. http://dx.doi.org/10.3390/eng2040039.
Pełny tekst źródłaChanghwan Shin, Min Hee Cho, Yasumasa Tsukamoto, et al. "Performance and Area Scaling Benefits of FD-SOI Technology for 6-T SRAM Cells at the 22-nm Node." IEEE Transactions on Electron Devices 57, no. 6 (2010): 1301–9. http://dx.doi.org/10.1109/ted.2010.2046070.
Pełny tekst źródłaShin, Changhwan, Nattapol Damrongplasit, Xin Sun, Yasumasa Tsukamoto, Borivoje Nikolic, and Tsu-Jae King Liu. "Performance and Yield Benefits of Quasi-Planar Bulk CMOS Technology for 6-T SRAM at the 22-nm Node." IEEE Transactions on Electron Devices 58, no. 7 (2011): 1846–54. http://dx.doi.org/10.1109/ted.2011.2139213.
Pełny tekst źródłaMah, Siew Kien, Pin Jern Ker, Ibrahim Ahmad, Noor Faizah Zainul Abidin, and Mansur Mohammed Ali Gamel. "A Feasible Alternative to FDSOI and FinFET: Optimization of W/La2O3/Si Planar PMOS with 14 nm Gate-Length." Materials 14, no. 19 (2021): 5721. http://dx.doi.org/10.3390/ma14195721.
Pełny tekst źródłaDuari, Chusen, Shilpi Birla, and Amit Kumar Singh. "A Dual Port 8T SRAM Cell Using FinFET & CMOS Logic for Leakage Reduction and Enhanced Read & Write Stability." Journal of Integrated Circuits and Systems 15, no. 2 (2020): 1–7. http://dx.doi.org/10.29292/jics.v15i2.140.
Pełny tekst źródłaMazurier, J., O. Weber, F. Andrieu, et al. "Ultra-Thin Body and Buried Oxide (UTBB) FDSOI Technology with Low Variability and Power Management Capability for 22 nm Node and Below." Journal of Low Power Electronics 8, no. 1 (2012): 125–32. http://dx.doi.org/10.1166/jolpe.2012.1173.
Pełny tekst źródłaKarthikeyan, A., and P. S. Mallick. "Optimization Techniques for CNT Based VLSI Interconnects — A Review." Journal of Circuits, Systems and Computers 26, no. 03 (2016): 1730002. http://dx.doi.org/10.1142/s0218126617300021.
Pełny tekst źródłaValasa, Sresta, Shubham Tayal, and Laxman Raju Thoutam. "Design Insights into Thermal Performance of Vertically Stacked JL-NSFET with High-k Gate Dielectric for Sub 5-nm Technology Node." ECS Journal of Solid State Science and Technology 11, no. 4 (2022): 041008. http://dx.doi.org/10.1149/2162-8777/ac6627.
Pełny tekst źródłaVerbitskiy, V. G., S. V. Voevodin, V. V. Fedulov, G. V. Kalistyi, and D. O. Verbitskiy. "Manifestation of the channeling effect when manufacturing JFET transistors." Semiconductor Physics, Quantum Electronics and Optoelectronics 23, no. 04 (2020): 379–84. http://dx.doi.org/10.15407/spqeo23.04.379.
Pełny tekst źródłaKwon, Ah-Young, Ju-Yeon Jeong, Hyun Park, et al. "miR-22-3p and miR-30e-5p Are Associated with Prognosis in Cervical Squamous Cell Carcinoma." International Journal of Molecular Sciences 23, no. 10 (2022): 5623. http://dx.doi.org/10.3390/ijms23105623.
Pełny tekst źródłaKumar Rai, Mayank, Rajesh Khanna, and Sankar Sarkar. "Control of tube parameters on SWCNT bundle interconnect delay and power dissipation." Microelectronics International 31, no. 1 (2013): 24–31. http://dx.doi.org/10.1108/mi-03-2013-0016.
Pełny tekst źródłaBoureau, Victor, Aurèle Durand, Patrice Gergaud, et al. "Dark-field electron holography as a recording of crystal diffraction in real space: a comparative study with high-resolution X-ray diffraction for strain analysis of MOSFETs." Journal of Applied Crystallography 53, no. 4 (2020): 885–95. http://dx.doi.org/10.1107/s1600576720006020.
Pełny tekst źródłaMerad, Faiza, and Ahlam Guen-Bouazza. "DC performance analysis of a 20nm gate lenght n-type silicon GAA junctionless (Si JL-GAA) transistor." International Journal of Electrical and Computer Engineering (IJECE) 10, no. 4 (2020): 4043. http://dx.doi.org/10.11591/ijece.v10i4.pp4043-4052.
Pełny tekst źródłaWu, Banqiu. "Next-generation lithography for 22 and 16 nm technology nodes and beyond." Science China Information Sciences 54, no. 5 (2011): 959–79. http://dx.doi.org/10.1007/s11432-011-4227-6.
Pełny tekst źródłaGanesh, Chokkakula, and Fazal Noorbasha. "Performance and Stability Analysis of Built-In Self-Read and Write Assist 10T SRAM Cell." Active and Passive Electronic Components 2023 (June 30, 2023): 1–17. http://dx.doi.org/10.1155/2023/3371599.
Pełny tekst źródłaMcCants, Carl E. "The IARPA Circuit Analysis Tools Program." EDFA Technical Articles 15, no. 4 (2013): 52–54. http://dx.doi.org/10.31399/asm.edfa.2013-4.p052.
Pełny tekst źródłaSharma, Himanshu, and Karmjit Singh Sandha. "Impact of Intercalation Doping on the Conductivity of Multi-Layer Graphene Nanoribbon (MLGNR) in On-Chip Interconnects." Journal of Circuits, Systems and Computers 29, no. 12 (2020): 2050185. http://dx.doi.org/10.1142/s0218126620501856.
Pełny tekst źródłaWang, Guilei, Qiang Xu, Tao Yang, et al. "Application of Atomic Layer Deposition Tungsten (ALD W) as Gate Filling Metal for 22 nm and Beyond Nodes CMOS Technology." ECS Journal of Solid State Science and Technology 3, no. 4 (2014): P82—P85. http://dx.doi.org/10.1149/2.015404jss.
Pełny tekst źródłaVeloso, Anabela, An De Keersgieter, Stephan Brus, Naoto Horiguchi, Philippe P. Absil, and Thomas Hoffmann. "Multi-Gate Fin Field-Effect Transistors Junctions Optimization by Conventional Ion Implantation for (Sub-)22 nm Technology Nodes Circuit Applications." Japanese Journal of Applied Physics 50, no. 4S (2011): 04DC16. http://dx.doi.org/10.7567/jjap.50.04dc16.
Pełny tekst źródłaWang, G., Q. Xu, T. Yang, et al. "Application of Atomic Layer Deposition Tungsten (ALD W) as Gate Filling Metal for 22 nm and Beyond Nodes CMOS Technology." ECS Transactions 58, no. 10 (2013): 317–24. http://dx.doi.org/10.1149/05810.0317ecst.
Pełny tekst źródłaVeloso, Anabela, An De Keersgieter, Stephan Brus, Naoto Horiguchi, Philippe P. Absil, and Thomas Hoffmann. "Multi-Gate Fin Field-Effect Transistors Junctions Optimization by Conventional Ion Implantation for (Sub-)22 nm Technology Nodes Circuit Applications." Japanese Journal of Applied Physics 50, no. 4 (2011): 04DC16. http://dx.doi.org/10.1143/jjap.50.04dc16.
Pełny tekst źródłaZhao, Chun, C. Z. Zhao, M. Werner, S. Taylor, and P. R. Chalker. "Advanced CMOS Gate Stack: Present Research Progress." ISRN Nanotechnology 2012 (February 9, 2012): 1–35. http://dx.doi.org/10.5402/2012/689023.
Pełny tekst źródłaCui, Hushan, Jun Luo, Jing Xu, et al. "Investigation of TaN as the wet etch stop layer for HKMG-last integration in the 22 nm and beyond nodes CMOS technology." Vacuum 119 (September 2015): 185–88. http://dx.doi.org/10.1016/j.vacuum.2015.05.021.
Pełny tekst źródłaVeloso, Anabela, Soon Aik Chew, Tom Schram, et al. "W versus Co–Al as Gate Fill-Metal for Aggressively Scaled Replacement High-k/Metal Gate Devices for (Sub-)22 nm Technology Nodes." Japanese Journal of Applied Physics 52, no. 4S (2013): 04CA03. http://dx.doi.org/10.7567/jjap.52.04ca03.
Pełny tekst źródłaDAOUD, HOUDA, SAMIR BENSELEM, SONIA ZOUARI, and MOURAD LOULOU. "USE OF ROBUST PREDICTIVE METHOD FOR NANO-CMOS PROCESS: APPLICATION TO BASIC BLOCK ANALOG CIRCUIT DESIGN." Journal of Circuits, Systems and Computers 21, no. 07 (2012): 1250061. http://dx.doi.org/10.1142/s0218126612500612.
Pełny tekst źródłaChiu, H. Y., Y. K. Fang, T. H. Chou, Y. T. Chiang, and C. I. Lin. "A novel STI etching technology to mitigate an inverse narrow width effect, and improve device performances for 90 nm node and beyond CMOS technology." Semiconductor Science and Technology 22, no. 10 (2007): 1157–60. http://dx.doi.org/10.1088/0268-1242/22/10/013.
Pełny tekst źródła"Ultra Low Dielectric Constant Materials for 22 nm Technology Node and beyond." ECS Meeting Abstracts, 2011. http://dx.doi.org/10.1149/ma2011-01/22/1407.
Pełny tekst źródłaLi, Zongru, Christopher Elash, Jiesi Xing, et al. "SEU Performance of RHBD Flip-Flops Using Guard-Gates at 22-nm FDSOI Technology Node." IEEE Transactions on Nuclear Science, 2023, 1. http://dx.doi.org/10.1109/tns.2023.3284758.
Pełny tekst źródłaWang, Hanbin, Jinshun Bi, Jianhui Bu, et al. "Characteristics of 22 nm UTBB-FDSOI technology with an ultra-wide temperature range." Semiconductor Science and Technology, August 4, 2022. http://dx.doi.org/10.1088/1361-6641/ac86ec.
Pełny tekst źródłaWang, Guilei, Jun Luo, Jinbiao Liu, et al. "pMOSFETs Featuring ALD W Filling Metal Using SiH4 and B2H6 Precursors in 22 nm Node CMOS Technology." Nanoscale Research Letters 12, no. 1 (2017). http://dx.doi.org/10.1186/s11671-017-2080-2.
Pełny tekst źródłaSharma, Vijay Kumar. "A Survey on Low Power Design Approaches in nanoscale regime." Micro and Nanosystems 12 (June 23, 2020). http://dx.doi.org/10.2174/1876402912999200623120558.
Pełny tekst źródłaBarik, Rasmita, Rudra Sankar Dhar, Falah Awwad, and Mousa I. Hussein. "Evolution of type-II hetero-strain cylindrical-gate-all-around nanowire FET for exploration and analysis of enriched performances." Scientific Reports 13, no. 1 (2023). http://dx.doi.org/10.1038/s41598-023-38239-x.
Pełny tekst źródłaYin, Zihan, Md Abdullah-Al Kaiser, Lamine Ousmane Camara, et al. "IRIS: Integrated Retinal Functionality in Image Sensors." Frontiers in Neuroscience 17 (September 1, 2023). http://dx.doi.org/10.3389/fnins.2023.1241691.
Pełny tekst źródłaDobbie, Andy, Maksym Myronov, Xue-Chao Liu, Van Huy Nguyen, Evan Parker, and David Leadley. "Investigation of the Thermal Stability of Strained Ge Layers Grown at Low Temperature by Reduced-pressure Chemical Vapour Deposition on Si0.2Ge0.8 Relaxed Buffers." MRS Proceedings 1252 (2010). http://dx.doi.org/10.1557/proc-1252-i04-06.
Pełny tekst źródłaTang, Guangzhi, Kanishkan Vadivel, Yingfu Xu, et al. "SENECA: building a fully digital neuromorphic processor, design trade-offs and challenges." Frontiers in Neuroscience 17 (June 23, 2023). http://dx.doi.org/10.3389/fnins.2023.1187252.
Pełny tekst źródłaAyush, Poornima Mittal, and Rajesh Rohilla. "Modified Decoupled Sense Amplifier with Improved Sensing Speed for Low-Voltage Differential SRAM." ACM Transactions on Design Automation of Electronic Systems, August 2, 2023. http://dx.doi.org/10.1145/3611672.
Pełny tekst źródłaLetertre, Fabrice Jerome. "Formation of III-V Semiconductor Engineered Substrates Using Smart CutTM Layer Transfer Technology." MRS Proceedings 1068 (2008). http://dx.doi.org/10.1557/proc-1068-c01-01.
Pełny tekst źródłaMoreau, Stephane, Fré;déric Gaillard, Jean-Charles Barbé, Raphaël Gras, Gérard Passemard, and Joaquin Torres. "Mechanical Integrity Study of Air Gap Structures Assisted by FE Simulations." MRS Proceedings 1079 (2008). http://dx.doi.org/10.1557/proc-1079-n02-02.
Pełny tekst źródła"Application of Atomic Layer Deposition Tungsten (ALD W) as gate filling metal for 22 nm and beyond nodes CMOS technology." ECS Meeting Abstracts, 2013. http://dx.doi.org/10.1149/ma2013-02/24/1890.
Pełny tekst źródłaDhillon, Gurleen, and Karmjit Singh Sandha. "Stability- and Crosstalk-Based Performance of Multi- and Double-walled Mixed CNT Bundles as Interconnect for Next-Generation Technology Nodes." Journal of Circuits, Systems and Computers 31, no. 05 (2021). http://dx.doi.org/10.1142/s0218126622500980.
Pełny tekst źródła"Two-Dimensional Chemical Delineation of Junction Profile with High Spatial Resolution and Application in Failure Analysis in 65 nm Technology Node." ECS Meeting Abstracts, 2009. http://dx.doi.org/10.1149/ma2009-02/22/1988.
Pełny tekst źródłaSmaani, Billel, Neha Paras, Shiromani Balmukund Rahi, Young Suh Song, Ramakant Yadav, and Shubham Tayal. "Impact of the Self-Heating Effect on Nanosheet Field Effect Transistor Performance." ECS Journal of Solid State Science and Technology, February 6, 2023. http://dx.doi.org/10.1149/2162-8777/acb96b.
Pełny tekst źródła