Gotowa bibliografia na temat „1D quantum gas”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „1D quantum gas”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "1D quantum gas"
Guan, Xiwen. "Critical phenomena in one dimension from a Bethe ansatz perspective". International Journal of Modern Physics B 28, nr 24 (5.08.2014): 1430015. http://dx.doi.org/10.1142/s0217979214300151.
Pełny tekst źródłaLaburthe Tolra, B., K. M. O'Hara, J. H. Huckans, M. Anderlini, J. V. Porto, S. L. Rolston i W. D. Phillips. "Study of a 1D interacting quantum Bose gas". Journal de Physique IV (Proceedings) 116 (październik 2004): 227–32. http://dx.doi.org/10.1051/jp4:2004116010.
Pełny tekst źródłaSato, Jun, Rina Kanamoto, Eriko Kaminishi i Tetsuo Deguchi. "Quantum states of dark solitons in the 1D Bose gas". New Journal of Physics 18, nr 7 (11.07.2016): 075008. http://dx.doi.org/10.1088/1367-2630/18/7/075008.
Pełny tekst źródłaGuan, Xi-Wen, i Feng He. "Professor Chen Ping Yang’s early significant contributions to mathematical physics". International Journal of Modern Physics B 33, nr 06 (10.03.2019): 1930002. http://dx.doi.org/10.1142/s0217979219300020.
Pełny tekst źródłaKaminishi, Eriko, Jun Sato i Tetsuo Deguchi. "Recurrence Time in the Quantum Dynamics of the 1D Bose Gas". Journal of the Physical Society of Japan 84, nr 6 (15.06.2015): 064002. http://dx.doi.org/10.7566/jpsj.84.064002.
Pełny tekst źródłaKinjo, Kayo, Eriko Kaminishi, Takashi Mori, Jun Sato, Rina Kanamoto i Tetsuo Deguchi. "Quantum Dark Solitons in the 1D Bose Gas: From Single to Double Dark-Solitons". Universe 8, nr 1 (21.12.2021): 2. http://dx.doi.org/10.3390/universe8010002.
Pełny tekst źródłaMarino, E. C., i Flávio I. Takakura. "Massive Quantum Vortex Excitations in a Pure Gauge Abelian Theory in 2 + 1D". International Journal of Modern Physics A 12, nr 23 (20.09.1997): 4155–65. http://dx.doi.org/10.1142/s0217751x97002279.
Pełny tekst źródłaBouneb, I., i F. Kerrour. "Nanometric Modelization of Gas Structure, Multidimensional using COMSOL Software". International Journal of Electrical and Computer Engineering (IJECE) 8, nr 4 (1.08.2018): 2014. http://dx.doi.org/10.11591/ijece.v8i4.pp2014-2020.
Pełny tekst źródłaPan, Jun, Hao Shen i Sanjay Mathur. "One-Dimensional SnO2Nanostructures: Synthesis and Applications". Journal of Nanotechnology 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/917320.
Pełny tekst źródłaKaminishi, Eriko, Jun Sato i Tetsuo Deguchi. "Exact quantum dynamics of yrast states in the finite 1D Bose gas". Journal of Physics: Conference Series 497 (9.04.2014): 012030. http://dx.doi.org/10.1088/1742-6596/497/1/012030.
Pełny tekst źródłaRozprawy doktorskie na temat "1D quantum gas"
Lee, Robert. "Application of quantum Monte Carlo methods to excitonic and electronic systems". Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/239379.
Pełny tekst źródłaDubois, Léa. "Dynamique hors d'équilibre d'un gaz de Bosons unidimensionnel étudiée via la mesure spatialement résolue de la distribution des quasiparticules". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP066.
Pełny tekst źródłaThis manuscript describes theoretical and experimental studies on characterizing one dimensionnal (1D) bose gas. To produce such a system, a Rubidium gas est trapped in a very transversally confining magnetic potential produced by an atom chip. Contrary to thermodynamic systems reaching an equilibrium described by several macroscopic parameters (pressure, temperature), this system relaxes towards a more complex state described by a function called the rapidity distribution. This function can be accessed experimentally : the rapidity distribution corresponds to the asymptotic atomic velocity distribution after a 1D expansion of the atoms. This quantity can also be extracted by studying the 1D expansion with the Generalized Hydrodynamic, an emerging theory with a lot of interest recently, specially conceived for studying these systems.A first study detailed in this manuscript consisted in characterizing 1D expansion of the gas. The evolution of the density profile and the evolution of phase fluctuations were analyzed and found to be compatible with theoretical predictions. A second project involved adding a spatial selection tool to produce non-equilibrium situations and to locally probe the rapidity distribution of the system. These measurements were performed on initial equilibrium and out of equilibrium situations. They are well understood with the predictions of Generalized Hydrodynamics
Utz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-217959.
Pełny tekst źródłaJiménez, Martín Daniel. "Comportamiento bosónico de pares de fermiones con interacción de contacto 1D". Bachelor's thesis, 2019. http://hdl.handle.net/11086/15290.
Pełny tekst źródłaPara determinar cuán bosónico es el comportamiento de pares de fermiones distinguibles interactuantes con interacción de contacto en un sistema unidimensional continuo se propusieron dos modelos: partículas libres y partículas en una trampa armónica. Para cada uno de ellos se determinó de manera analítica el estado fundamental de un sólo par mediante la resolución de la ecuación de Schrödinguer independiente del tiempo. A partir de dicho estado, se extrajo información acerca del comportamiento bosónico del par interactuante en función de la intensidad de la interacción. Se estudió el régimen atractivo para ambos modelos y también el régimen repulsivo para partículas en una trampa armónica. En el régimen atractivo, se verificó para ambos modelos que en el límite de interacción muy fuerte los pares de fermiones se comportan como bosones ideales. Esta situación corresponde a una separación característica entre las partículas que componen el par muy pequeña comparada con las dimensiones del sistema. Por su parte, para partículas con interacción repulsiva en una trampa armónica se verificó que aún en el límite de interacción muy fuerte los pares de fermiones noanzan a tener un comportamiento bosónico.
To determine how bosonic is the behavior of pairs formed by distinguishable fermions with contact interaction in a continuos one-dimensional system we proposed two models: free particles and particles in a harmonic trap. For each one of them, we analytically determined the ground state of a single pair solving the independent time Schrödinguer equation. From this state, we extracted information about the bosonic behavior of the interacting pair in relation to the interaction strength. We studied the attractive regime for both models and also the repulsive regimen for particles in a harmonic trap. In the attractive regime, we verified for both models that in the strong interaction limit the pairs behave as ideal bosons. This situation corresponds to a characteristic separation between the particles of the pair very short compared with the dimensions of the system. For particles with repulsive interaction in a harmonic trap, we verify that even in the strong interaction regime the fermion pairs do not behave as bosons.
Fil: Jiménez, Martín Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
ROSI, SARA. "Interacting Bosons in optical lattices: optimal control ground state production, entanglement characterization and 1D systems". Doctoral thesis, 2015. http://hdl.handle.net/2158/1004929.
Pełny tekst źródłaTsai, Ming-Wei, i 蔡明巍. "Split gate fabrication by electron beam lithography on GaAs/AlGaAs system for 1D quantum wire conductance". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/20258404414329790730.
Pełny tekst źródłaUtz, Yannic. "The Effect of In-Chain Impurities on 1D Antiferromagnets: An NMR Study on Doped Cuprate Spin Chains". Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30141.
Pełny tekst źródłaCzęści książek na temat "1D quantum gas"
Matveev, K. A., i L. I. Glazman. "Scattering on an Impurity in a Weakly Interacting 1D Electron Gas". W Quantum Dynamics of Submicron Structures, 153–68. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0019-9_13.
Pełny tekst źródłaBruus, Henrik, i Karsten Flensberg. "1D Electron Gases and Luttinger Liquids". W Many–Body Quantum Theory in Condensed Matter Physics, 347–75. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198566335.003.0019.
Pełny tekst źródłaKelly, M. J. "The one-dimensional electron gas". W Low-Dimensional Semiconductors, 134–61. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198517818.003.0006.
Pełny tekst źródłaHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids: I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas". W Bosonization, 170–94. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812812650_0017.
Pełny tekst źródłaHaldane, F. D. M. "‘Luttinger liquid theory’ of one-dimensional quantum fluids I: Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas". W Exactly Solvable Models of Strongly Correlated Electrons, 416–40. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789812798268_0035.
Pełny tekst źródłaChakraborty, Kunal, i Samrat Paul. "Effect of Intra-Band Tunneling on the Performance of Lead-Free Sn-Based Perovskite Solar Cell Using SCAPS-1D Simulator". W Advances in IT Standards and Standardization Research, 68–74. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9795-8.ch006.
Pełny tekst źródłaShakeel, R. "Fundamental Concepts of Topological Insulators". W Materials Research Foundations, 1–20. Materials Research Forum LLC, 2024. http://dx.doi.org/10.21741/9781644902851-1.
Pełny tekst źródłaStreszczenia konferencji na temat "1D quantum gas"
Sykes, A. G., D. M. Gangardt, M. J. Davis i K. V. Kheruntsyan. "Non-Local Pair Correlations and Quasi-Crystalline Phases in a 1D Bose Gas". W Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qme17.
Pełny tekst źródłaKheruntsyan, K. V., T. Jacqmin, J. Armijo, T. Berrada i I. Bouchoule. "Sub-Poissonian fluctuations in a 1D Bose gas: from quantum quasi-condensate to the strongly interacting regime". W International Quantum Electronics Conference. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/iqec.2011.i291.
Pełny tekst źródłaBielejec, E. "1D-1D tunneling between vertically coupled GaAs/AlGaAs quantum wires". W PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994408.
Pełny tekst źródłaSchnell, J. Ph, J. P. Pocholle, E. Barbier, J. Raffy, A. Delboulbe, C. Fromont, J. P. Hirtz i J. P. Huignard. "Investigation of a 1D GaAs-GaAIAs Multiple Quantum Wells Spatial Light Modulator". W Spatial Light Modulators and Applications. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/slma.1988.tha4.
Pełny tekst źródłaKim, S., H. Choi, M. Scherrer, K. Moselund i C. W. Lee. "Robustness of the topological interface state in a 1D photonic crystal resonator with an air-gap". W 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542096.
Pełny tekst źródłaGreene, B. I., J. F. Mueller, J. Orenstein, D. Rapkine, S. Schmitt-Rink i M. Thakur. "Phonon-Mediated Optical Nonlinearities in Polydiacetylene". W Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.tuc1.
Pełny tekst źródłaChen, Yunfei, Deyu Li, Jennifer R. Lukes i Zhonghua Ni. "Monte Carlo Simulation of Thermal Conductivities of Silicon Nanowires". W ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72377.
Pełny tekst źródła