Artykuły w czasopismach na temat „19p13.3”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: 19p13.3.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „19p13.3”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Swan, L., i D. Coman. "Ocular Manifestations of a Novel Proximal 19p13.3 Microdeletion". Case Reports in Genetics 2018 (2018): 1–5. http://dx.doi.org/10.1155/2018/2492437.

Pełny tekst źródła
Streszczenie:
Microdeletions at 19p13.3 are rarely reported in the medical literature with significant phenotypic variability. Among the reported cases, common clinical manifestations have included developmental delay, facial dysmorphism, and hypotonia. Herein we described a child with a de novo 19p13.3 microdeletion, proximal to the reported cases of 19p13.3 microdeletion/duplication, with ocular manifestations of bilateral ocular colobomata complicated with microphthalmos and cataract, associated with short stature. This case highlights the phenotypic heterogeneity of deletions in the 19p13.3 region.
Style APA, Harvard, Vancouver, ISO itp.
2

Ishikawa, Aki, Keisuke Enomoto, Makiko Tominaga, Toshiyuki Saito, Jun-ichi Nagai, Noritaka Furuya, Kentaro Ueno, Hideaki Ueda, Mitsuo Masuno i Kenji Kurosawa. "Pure duplication of 19p13.3". American Journal of Medical Genetics Part A 161, nr 9 (29.07.2013): 2300–2304. http://dx.doi.org/10.1002/ajmg.a.36041.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Sgardioli, Ilária C., Elaine Lustosa-Mendes, Ana P. dos Santos, Társis P. Vieira i Vera L. Gil-da-Silva-Lopes. "A Rare Case of Concomitant Deletions in 15q11.2 and 19p13.3". Cytogenetic and Genome Research 156, nr 2 (2018): 80–86. http://dx.doi.org/10.1159/000493283.

Pełny tekst źródła
Streszczenie:
A female individual with concomitant deletions in 15q11.2 and 19p13.3 is reported. She presents facial dysmorphisms, motor delay, learning difficulties, and mild behavioral impairment. After chromosomal microarray analysis, the final karyotype was established as 46,XX.arr[GRCh37] 15q11.2 (22770421_23282798)×1,19p13.3(3793904_4816330)×1. The deletion in 15q11.2 is 507 kb in size involving 7 non-imprinted genes, 4 of which are registered in the OMIM database and are implicated in neuropsychiatric or neurodevelopmental disorders. The deletion in 19p13.3 is 1,022 kb in size and encompasses 47 genes, most of which do not have a well-known function. The genotype-phenotype correlation is discussed, and most of the features could be related to the 19p13.3 deletion, except for velopharyngeal insufficiency. Other genes encompassed in the deleted region, as well as unrecognized epistatic factors could also be involved. Nevertheless, the two-hit model related to the 15q11.2 deletion would be an important hypothesis to be considered.
Style APA, Harvard, Vancouver, ISO itp.
4

Risheg, Hiba, Romela Pasion, Stephanie Sacharow, Virginia Proud, LaDonna Immken, Stuart Schwartz, Jim H. Tepperberg i in. "Clinical Comparison of Overlapping Deletions of 19p13.3". American Journal of Medical Genetics Part A 161, nr 5 (22.04.2013): 1110–16. http://dx.doi.org/10.1002/ajmg.a.35923.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Singh, Vertika, Renu Bala, Arijit Chakraborty, Singh Rajender, Sameer Trivedi i Kiran Singh. "Duplications in 19p13.3 are associated with male infertility". Journal of Assisted Reproduction and Genetics 36, nr 10 (16.08.2019): 2171–79. http://dx.doi.org/10.1007/s10815-019-01547-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Aso, Teijiro, Peter Tsai, Tatsuo Kawaguchi, Joan C. Menninger, Shigetaka Kitajima, Yukio Yasukochi, David C. Ward i Sherman M. Weissman. "Assignment of the Human GTF2F1 Gene to Chromosome 19p13.3". Genomics 16, nr 1 (kwiecień 1993): 252–53. http://dx.doi.org/10.1006/geno.1993.1168.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Al-Othman, Abdallah Ahmad, Mir Sadat-Ali, Ahmed Sh Amer i Dakheel A. Al-Dakheel. "Genetic Markers for Adolescent Idiopathic Scoliosis on Chromosome 19p13.3 among Saudi Arabian Girls". Asian Spine Journal 11, nr 2 (30.04.2017): 167–73. http://dx.doi.org/10.4184/asj.2017.11.2.167.

Pełny tekst źródła
Streszczenie:
<sec><title>Study Design</title><p>Prospective case-controlled study.</p></sec><sec><title>Purpose</title><p>This study aimed to assess genetic influence in Saudi Arabian children with adolescent idiopathic scoliosis (AIS).</p></sec><sec><title>Overview of Literature</title><p>The genetic locus linked to chromosome 19p for idiopathic scoliosis has been described. A pilot study conducted at King Fahd Hospital of the University, Al-Khobar showed that three microsatellite markers (D19S216, D19S894, and DS1034) of chromosome 19p13.3 were significant in Saudi Arabian females compared with healthy subjects.</p></sec><sec><title>Methods</title><p>A total of 100 unrelated Saudi Arabian girls treated for AIS, their parents, healthy siblings, and healthy subjects were recruited for genetic analysis of markers on chromosome 19p13.3. After informed consent was obtained from their parents, blood samples were collected and parametric and nonparametric linkage analyses were performed using GENEHUNTER ver. 2.1. Multipoint linkage analysis was used to specify an autosomal dominant trait with a gene frequency of 0.01 and an estimated penetrance of 80% at the genotypic and allelic levels.</p></sec><sec><title>Results</title><p>Five hundred blood samples were collected and analyzed for microsatellite markers (D19S216, D19S894, and DS1034) of chromosome 19p13.3. Comparison among patients, family members, and healthy subjects revealed no significant association between markers and scoliosis at the genotypic level: D19S216 (<italic>p</italic>=0.21), D19S894 (<italic>p</italic>=0.37), and DS1034 (<italic>p</italic>=0.25). However, at the allelic level, a statistically significant association was observed for marker DS1034 (<italic>p</italic>=0.008), and marker D19S216 showed significance between fathers and patients (<italic>p</italic>&lt;0.001) compared with patients and mothers. The other two markers, D19S216 (<italic>p</italic>=0.25) and D19S894 (<italic>p</italic>=0.17), showed no significant association between patients and mothers.</p></sec><sec><title>Conclusions</title><p>At the allelic level, marker DS1034 was significantly associated with AIS patients and their fathers. This allelic marker on chromosome 19p13.3 appears to be important in AIS etiology.</p></sec>
Style APA, Harvard, Vancouver, ISO itp.
8

Liaquat, S., R. Riley, G. Massey i W. T. Gunning. "Unique case of 19p13 syndrome with storage pool disease". American Journal of Clinical Pathology 156, Supplement_1 (1.10.2021): S104. http://dx.doi.org/10.1093/ajcp/aqab191.221.

Pełny tekst źródła
Streszczenie:
Abstract Introduction/Objective Microdeletion of a region of the short arm of chromosome 19 results in a very rare syndrome called 19p13.3 deletion syndrome, which manifest itself in developmental delay as well as structural abnormalities such as facial dysmorphism and macrocephaly. Methods/Case Report We present a case of 14-month-old patient, born at term and was large for her gestational age. She had dysmorphic facial features including posterior cleft palate for which, she required placement of G-tube. Post-delivery, she experienced respiratory distress as well as hypoglycemic episodes. Over the period of time, her mother also noticed occasional bleeding through her gums with teething. Genetic workup was performed, which revealed 2.4 Mb of microdeletion at chromosome 19 region p13.3, including deletion of PIAS4, MAP2K2, GNA11, TBXA2R, RAX2 genes. TBXA2R mutation is associated with bleeding disorder due to a defect in platelet aggregation. The mutation in TBXA2R can lead to platelet type 13 bleeding disorder. For this purpose, a platelet aggregation study was performed to evaluate platelet function disorders. However, the result of the platelet aggregation study was inconclusive as it showed decrease responses to all agonists including arachidonic acid, epinephrine, ADP, collagen and ristocetin. Further work-up by electron microscopy (EM) of platelets (PL) revealed a significant decrease of delta granules (DG) (0.89 DG/PL, normal 4-6 DG/PL), consistent with delta granule storage pool deficiency (δ-SPD). Other abnormalities observed by EM included occasional gray platelets, platelets with immature and/or decreased numbers of α-granules, and rare giant α-granules. Results (if a Case Study enter NA) NA Conclusion To the best of our knowledge, no other case of 19p13.3 microdeletion syndrome with δ-SPD and associated abnormalities in α-granules has previously been described in the literature. Although it is unclear if there is any relationship between δ-SPD and 19p13.3 deletion syndrome, further investigation is warranted.
Style APA, Harvard, Vancouver, ISO itp.
9

Di Blasi, Claudia, Behzad Moghadaszadeh, Claudia Ciano, Tiziana Negri, Alessio Giavazzi, Ferdinando Cornelio, Lucia Morandi i Marina Mora. "Abnormal lysosomal and ubiquitin-proteasome pathways in 19p13.3 distal myopathy". Annals of Neurology 56, nr 1 (2004): 133–38. http://dx.doi.org/10.1002/ana.20158.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Capela de Matos, Roberto R., Daniela R. Ney Garcia, Moneeb A. K. Othman, Gerson Moura Ferreira, Joana B. Melo, Isabel M. Carreira, Claus Meyer i in. "A New Complex Karyotype Involving a KMT2A-r Variant Three-Way Translocation in a Rare Clinical Presentation of a Pediatric Patient with Acute Myeloid Leukemia". Cytogenetic and Genome Research 157, nr 4 (2019): 213–19. http://dx.doi.org/10.1159/000499640.

Pełny tekst źródła
Streszczenie:
Patients with childhood acute myeloid leukemia (AML) with complex karyotypes (CKs) have a dismal outcome. However, for patients with a KMT2A rearrangement (KMT2A-r), the prognosis appears to depend on the fusion partner gene rather than the karyotype structure. Thus, a precise characterization of KMT2A-r and the fusion partner genes, especially in CKs, is of interest for managing AML. We describe the clinical and molecular features of a child who presented with a large abdominal mass, AML, and a new CK, involving chromosomes 11, 16, and 19 leading to a KMT2A-MLLT1 fusion and 2 extra copies of the ELL gene, thus resulting in the concurrent overexpression of MLLT1 and ELL. Molecular cytogenetic studies defined the karyotype as 47,XY,der(11)t(11;16)(q23.3;p11.2),der(16)t(16;19)(p11.2;p13.3),der(19)t(11;19)(q23.3;p13.3),+der(19)t(16;19)(16pter→p11.2::19p13.3→19q11::19p11→19p13.3::16p11.2→16pter). Array CGH revealed a gain of 30.5 Mb in the 16p13.3p11.2 region and a gain of 18.1 Mb in the 19p13.3p12 region. LDI-PCR demonstrated the KMT2A-MLLT1 fusion. Reverse sequence analysis showed that the MLLT1 gene was fused to the 16p11.2 region. RT-qPCR quantification revealed that ELL and MLLT1 were overexpressed (4- and 10-fold, respectively). In summary, this is a pediatric case of AML presenting a novel complex t(11;16;19) variant with overexpression of ELL and MLLT1.
Style APA, Harvard, Vancouver, ISO itp.
11

Siggberg, L., P. Olsén, K. Näntö-Salonen i S. Knuutila. "19p13.3 Aberrations Are Associated with Dysmorphic Features and Deviant Psychomotor Development". Cytogenetic and Genome Research 132, nr 1-2 (2011): 8–15. http://dx.doi.org/10.1159/000320920.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Acierno Jr., James S., Jenna K. Shagoury, Yøusef Bo-Abbas, William F. Crowley Jr. i Stephanie B. Seminara. "A Locus for Autosomal Recessive Idiopathic Hypogonadotropic Hypogonadism on Chromosome 19p13.3". Journal of Clinical Endocrinology & Metabolism 88, nr 6 (czerwiec 2003): 2947–50. http://dx.doi.org/10.1210/jc.2003-030423.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Kaname, T., T. Miyauchi, A. Kuwano, Y. Matsuda, T. Muramatsu i T. Kajii. "Mapping basigin (BSG), a member of the immunoglobulin superfamily, to 19p13.3". Cytogenetic and Genome Research 64, nr 3-4 (1993): 195–97. http://dx.doi.org/10.1159/000133573.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Jedlicka, A. E., E. W. Taylor, D. A. Meyers, Z. Liu i R. C. Levitt. "Localization of the highly polymorphic locus D19S120 to 19p13.3 by linkage". Cytogenetic and Genome Research 65, nr 1-2 (1994): 140. http://dx.doi.org/10.1159/000133621.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Descartes, Maria, Fady M. Mikhail, Judith C. Franklin, Tony M. McGrath i Martina Bebin. "Monosomy1p36.3 and Trisomy 19p13.3 in a Child With Periventricular Nodular Heterotopia". Pediatric Neurology 45, nr 4 (październik 2011): 274–78. http://dx.doi.org/10.1016/j.pediatrneurol.2011.06.002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

Chan, Vivian, Gardian C. Y. Fong, Keith D. K. Luk, Ben Yip, Miu-Kuen Lee, Man-Sim Wong, David D. S. Lu i Tai-Kwong Chan. "A Genetic Locus for Adolescent Idiopathic Scoliosis Linked to Chromosome 19p13.3". American Journal of Human Genetics 71, nr 2 (sierpień 2002): 401–6. http://dx.doi.org/10.1086/341607.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Yu, Guo-Yun, Michael J. Howell, Matthew J. Roller, Ting-Dong Xie i Christopher M. Gomez. "Spinocerebellar ataxia type 26 maps to chromosome 19p13.3 adjacent to SCA6". Annals of Neurology 57, nr 3 (2005): 349–54. http://dx.doi.org/10.1002/ana.20371.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Archer, H. L., S. Gupta, S. Enoch, P. Thompson, A. Rowbottom, I. Chua, S. Warren i in. "Distinct phenotype associated with a cryptic subtelomeric deletion of 19p13.3-pter". American Journal of Medical Genetics Part A 136A, nr 1 (2005): 38–44. http://dx.doi.org/10.1002/ajmg.a.30774.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Faivre, Laurence, André Mégarbané, Abdulrahman Alswaid, Louise Zylberberg, Noura Aldohayan, Ana Campos-Xavier, Delphine Bacq i in. "Homozygosity mapping of a Weill-Marchesani syndrome locus to chromosome 19p13.3-p13.2". Human Genetics 110, nr 4 (13.03.2002): 366–70. http://dx.doi.org/10.1007/s00439-002-0689-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Ain, Quratul, Sabiha Nazli, Saima Riazuddin, Ateeq-ul Jaleel, S. Amer Riazuddin, Ahmad U. Zafar, Shaheen N. Khan i in. "The autosomal recessive nonsyndromic deafness locus DFNB72 is located on chromosome 19p13.3". Human Genetics 122, nr 5 (10.08.2007): 445–50. http://dx.doi.org/10.1007/s00439-007-0418-z.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Matsufuji, Senya, Johji Inazawa, Takaaki Hayashi, Youichi Miyazaki, Tamotsu Ichiba, Akihiro Furusaka, Tamiko Matsufuji i in. "Assignment of the Human Antizyme Gene (OAZ) to Chromosome 19p13.3 by Fluorescencein SituHybridization". Genomics 38, nr 1 (listopad 1996): 102–4. http://dx.doi.org/10.1006/geno.1996.0601.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Puvabanditsin, Surasak, Eugene Garrow, Erik Brandsma, Jayshree Savla, Bgee Kunjumon i Inder Gadi. "Partial trisomy 19p13.3 and partial monosomy 1p36.3: Clinical report and a literature review". American Journal of Medical Genetics Part A 149A, nr 8 (16.07.2009): 1782–85. http://dx.doi.org/10.1002/ajmg.a.32972.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Olschwang, S., D. Markie, S. Seal, K. Neale, R. Phillips, S. Cottrell, I. Ellis i in. "Peutz-Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3." Journal of Medical Genetics 35, nr 1 (1.01.1998): 42–44. http://dx.doi.org/10.1136/jmg.35.1.42.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Nevado, Julián, Jill A. Rosenfeld, Rocío Mena, María Palomares-Bralo, Elena Vallespín, María Ángeles Mori, Jair A. Tenorio i in. "PIAS4 is associated with macro/microcephaly in the novel interstitial 19p13.3 microdeletion/microduplication syndrome". European Journal of Human Genetics 23, nr 12 (8.04.2015): 1615–26. http://dx.doi.org/10.1038/ejhg.2015.51.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Cozen, Wendy, Dalin Li, Maria Timofeeva, Arjan Diepstra, Dennis Hazelett, Manon Delahaye-Sourdeix, Christopher K. Edlund i in. "A Meta-Analysis Of Hodgkin Lymphoma Reveals 19p13.3 (TCF3) As a Novel Susceptibility Loc". Blood 122, nr 21 (15.11.2013): 626. http://dx.doi.org/10.1182/blood.v122.21.626.626.

Pełny tekst źródła
Streszczenie:
Abstract Background Recent genome wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified several associations at both HLA and non-HLA loci. However, much of HL heritability remains unexplained. Methods To identify novel risk loci, we performed a meta-analysis of 3 HL GWAS including a total of 1,810 cases and 7,879 controls. Results were replicated in an independent set of 1,163 cases and 2,580 controls, for a total of 3,097 and 11,097 cases and controls combined, respectively. participants in discovery and replication stages were of European descent. quality control and imputation we conducted a meta-analysis addressing 1,004,829 variants (λ= 1.10, λ1000= 1.03). Associations between SNP genotypes and HL risk were evaluated under a log-additive model of inheritance adjusting for sex, study center and significant principal components to control for population stratification. We performed an analysis with all HL cases and then conducted stratified analyses by histological subtype (classical, nodular sclerosis and mixed cellularity), age at diagnosis (nodular sclerosis among those diagnosed at 15- 35 years in all studies, and those diagnosed at 35 and older years in the European Study only) and EBV tumor status (negative and positive). We then used a bioinformatic approach (FunciSNP) to identify potential functional variants associated with HD risk correlated with risk loci of interest. We extracted publically available ENCODE data on biofeatures to identify potential functional motifs associated with the index SNP or correlated SNPs. Finally, we measured expression levels of the two alternative mRNA transcripts in lymphoblastoid cell lines (LCLs) from 49 post-therapy HL patients and 25 unaffected controls. RT-PCR was carried out in triplicate. Relative expression levels were calculated relative to TBP as housekeeping gene. Linear models were used to assess correlation between genotype and TCF3expression levels. Results The meta-analysis identified a novel susceptibility variant at chromosome 19p13.3 (rs1860661) associated with HL risk (Odds Ratio [OR]= 0.78, P=2.0*10-8, I2=0%). variant is located in intron 2 of TCF3 (also known as E2A), a regulator of B- and T-cell lineage commitment. was also significantly associated with HL (OR= 0.85, P=0.002) in the replication series of 1,281 cases and 3,218 controls. the combined analysis consisting of the discovery and replication sets, rs1860661was strongly associated with HL (OR=0.81,=3.5*10-10), with no evidence of heterogeneity between contributing studies (Phom=0.41, I2=0%). The number of G alleles defined by rs1860661 was significantly associated with a reduced risk of each HL subtype except EBV positive HL. rs1860661 and two correlated SNPs, rs10413888 (r2=0.90) and rs8103453 (r2=0.89) identified by FunciSNP analysis map in or near marks of open chromatin and in DNAse hypersensitivity sites in TCF3 in CD20+ B cell lines., the protective minor alleles of these SNPs as defined by the G-G-G haplotype map to the binding sites for ZBTB7a (rs10413888 and rs1860661) and (rs8103453) transcription factors, likely improving the binding efficiency to the sites which may result in increased transcription rates of TCF3. TCF3 is encoded by two alternative transcripts (E12 and E47). Higher expression levels of TCF3-E47, whose transcription start site is located close to rs1860661, was associated with the rs1860661-G allele in controls (P=0.02), but not in HL patients (P=0.22). Conclusion/Discussion TCF3 is essential for the commitment of lymphoid progenitors to both B-cell and T-cell lineage development. A molecular and phenotypic hallmark of classical HL is the loss of the B-cell phenotype in HRS cells, including lack of demonstrable B-cell receptor and most B-cell specific markers such as CD19 or CD20. HRS cells have a low level of TCF3, particularly homodimers of the isoform E47, due to expression of the ABF-1 and ID2 inhibitors that bind to TCF3. Thus, higher TCF3 levels in HRS precursor cells may lead to enhanced retention of the B cell phenotype, thereby conferring a protective effect. These data suggest a link between the 19p13.3 locus including TCF3 and HL risk, indicating that TCF3 could be relevant to HL etiology and pathogenesis. Disclosures: Link: Genentech: Consultancy; Millenium: Consultancy; Pharmacyclics: Consultancy; Spectrum: Consultancy.
Style APA, Harvard, Vancouver, ISO itp.
26

Barber, Kerry E., Christine J. Harrison, Zoe J. Broadfield, Adam R. M. Stewart, Sarah L. Wright, Mary Martineau, Jon C. Strefford i Anthony V. Moorman. "Molecular cytogenetic characterization ofTCF3 (E2A)/19p13.3 rearrangements in B-cell precursor acute lymphoblastic leukemia". Genes, Chromosomes and Cancer 46, nr 5 (2007): 478–86. http://dx.doi.org/10.1002/gcc.20431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

Wagner, John, Laurie A. Gordon, Henry H. Q. Heng, Michel L. Tremblay i Anne S. Olsen. "Physical Mapping of Receptor Type Protein Tyrosine Phosphatase Sigma (PTPRS) to Human Chromosome 19p13.3". Genomics 38, nr 1 (listopad 1996): 76–78. http://dx.doi.org/10.1006/geno.1996.0594.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

de Smith, Adam J., Mieke M. van Haelst, Richard J. Ellis, Susan E. Holder, Stewart J. Payne, Sugera K. Hashim, Philippe Froguel i Alexandra I. F. Blakemore. "Chromosome 19p13.3 deletion in a patient with macrocephaly, obesity, mental retardation, and behavior problems". American Journal of Medical Genetics Part A 155, nr 5 (4.04.2011): 1192–95. http://dx.doi.org/10.1002/ajmg.a.33986.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Anwar, Sayeeda, Nusrat Kamal, Rokeya Khanom, Subrota Kumar Roy, Farzana Kabir i Ramkrishna Saha. "Recurrent Abdominal Pain in Peutz-Jeghers Syndrome: A Case Report". Journal of Bangladesh College of Physicians and Surgeons 37, nr 3 (12.06.2019): 160–64. http://dx.doi.org/10.3329/jbcps.v37i3.41739.

Pełny tekst źródła
Streszczenie:
Peutz-Jeghars Syndrome (PJS), also known as peri-orificial lentiginosis, is a condition of autosomal dominant inheritance. Here, mutation localized at (19p13.3) LKB1/ STK11. It is characterized by presence of mucocutaneous pigmentation and gastrointestinal (GI) hamartomatous polyps. This case of PJS, is a 7 year old girl who came with recurrent vomiting and abdominal pain for 1 year and weight loss for 8 months. She had multiple black pigmentation over lips and buccal mucosa. Endoscopy revealed multiple polyps in stomach and duodenum. Besides supportive management, polyps were removed by surgical intervention. Biopsy of these polyps showed hamartomatous type. Post operative period was uneventful. She recovered well. So far there was no recurrence of pain. She is on regular follow up. J Bangladesh Coll Phys Surg 2019; 37(3): 160-164
Style APA, Harvard, Vancouver, ISO itp.
30

Iida, Aritoshi, Atsushi Takahashi, Min Deng, Yun Zhang, Jing Wang, Naoki Atsuta, Fumiaki Tanaka i in. "Replication analysis of SNPs on 9p21.2 and 19p13.3 with amyotrophic lateral sclerosis in East Asians". Neurobiology of Aging 32, nr 4 (kwiecień 2011): 757.e13–757.e14. http://dx.doi.org/10.1016/j.neurobiolaging.2010.12.011.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

McCurley, R. Skyler, Adrian Recinos, Anne S. Olsen, Jeffrey C. Gingrich, Dorota Szczepaniak, H. Scott Cameron, Ronald Krauss i Brent W. Weston. "Physical maps of human α(1,3)fucosyltransferase genes FUT3–FUT6 on chromosomes 19p13.3 and 11q21". Genomics 26, nr 1 (marzec 1995): 142–46. http://dx.doi.org/10.1016/0888-7543(95)80094-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Heuckeroth, Robert O., Paul Kotzbauer, Neal G. Copeland, Debra J. Gilbert, Nancy A. Jenkins, D. B. Zimonjic, N. C. Popescu, Eugene M. Johnson i Jeffrey Milbrandt. "Neurturin, a Novel Neurotrophic Factor, Is Localized to Mouse Chromosome 17 and Human Chromosome 19p13.3". Genomics 44, nr 1 (sierpień 1997): 137–40. http://dx.doi.org/10.1006/geno.1997.4846.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Acierno, James S., John C. Kennedy, John L. Falardeau, Maire Leyne, Matthew C. Bromley, Matthew W. Colman, Mei Sun i in. "A Physical and Transcript Map of the MCOLN1 Gene Region on Human Chromosome 19p13.3–p13.2". Genomics 73, nr 2 (kwiecień 2001): 203–10. http://dx.doi.org/10.1006/geno.2001.6526.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Dutta, Usha R., Vijaya Kumar Pidugu i Ashwin Dalal. "Molecular Cytogenetic Characterization of a Non-Robertsonian Dicentric Chromosome 14;19 Identified in a Girl with Short Stature and Amenorrhea". Case Reports in Genetics 2012 (2012): 1–5. http://dx.doi.org/10.1155/2012/212065.

Pełny tekst źródła
Streszczenie:
We report a 16-year-old girl who presented with short stature and amenorrhea. Initially the cytogenetic analysis showed the presence of a mosaic non-Robertsonian dicentric chromosome involving chromosomes 14 and 19. Subsequent molecular cytogenetic analysis by fluorescencein situhybridization (FISH) using whole chromosome paints, centromeric probes, as well as gene specific probes confirmed the dicentric nature of the derivative chromosome and indicated that the rearrangement involved the short arms of both of these chromosomes. Furthermore, we also determined that the chromosome 19p13.3 breakpoint occurred within the terminal 1 Mb region. This is the first report of a mosaic non-Robertsonian dicentric chromosome involving chromosomes 14 and 19 with the karyotype determined as 45,XX,dic(14;19)(p11.2;p13.3)[35]/46,XX[15], and we suggest that the chromosome rearrangement could be the cause of clinical phenotype.
Style APA, Harvard, Vancouver, ISO itp.
35

Puttagunta, R. "Comparative Maps of Human 19p13.3 and Mouse Chromosome 10 Allow Identification of Sequences at Evolutionary Breakpoints". Genome Research 10, nr 9 (1.09.2000): 1369–80. http://dx.doi.org/10.1101/gr.145200.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Koppers, Max, Ewout J. N. Groen, Paul W. J. van Vught, Wouter van Rheenen, Esther Witteveen, Michael A. van Es, R. Jeroen Pasterkamp, Leonard H. van den Berg i Jan H. Veldink. "Screening for rare variants in the coding region of ALS-associated genes at 9p21.2 and 19p13.3". Neurobiology of Aging 34, nr 5 (maj 2013): 1518.e5–1518.e7. http://dx.doi.org/10.1016/j.neurobiolaging.2012.09.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Valle, Véronique Della, Maryvonne le Coniat, Michel Soulard, Van Cong Nguyen, Roland Berger i Christian-Jacques Larsen. "Dual localization of the human gene encoding hnRNP I/PTB protein to chromosomes 19p13.3 and 14q23". Human Genetics 98, nr 2 (2.07.1996): 210–13. http://dx.doi.org/10.1007/s004390050193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Wang, Z.-J., M. Churchman, I. G. Campbell, W.-H. Xu, Z.-Y. Yan, W. G. McCluggage, W. D. Foulkes i I. P. M. Tomlinson. "Allele loss and mutation screen at the Peutz-Jeghers (LKB1) locus (19p13.3) in sporadic ovarian tumours". British Journal of Cancer 80, nr 1-2 (26.03.1999): 70–72. http://dx.doi.org/10.1038/sj.bjc.6690323.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Hou, Wei, Jiaoyang Yin, Ulla Vogel, Zhenxiang Sun i Duohong Liang. "19p13.3 -GADD45B common variants and 19q13.3- PPP1R13L and 19q13.3- CD3EAP in lung cancer risk among Chinese". Chemico-Biological Interactions 277 (listopad 2017): 74–78. http://dx.doi.org/10.1016/j.cbi.2017.08.018.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Peddibhotla, Sirisha, Mohamed Khalifa, Frank J. Probst, Jennifer Stein, Leslie L. Harris, Debra L. Kearney, Gail H. Vance i in. "Expanding the genotype-phenotype correlation in subtelomeric 19p13.3 microdeletions using high resolution clinical chromosomal microarray analysis". American Journal of Medical Genetics Part A 161, nr 12 (2.10.2013): 2953–63. http://dx.doi.org/10.1002/ajmg.a.35886.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Kuroda, Yukiko, Toshiyuki Saito, Jun-Ichi Nagai, Kazumi Ida, Takuya Naruto, Mitsuo Masuno i Kenji Kurosawa. "Microdeletion of 19p13.3 in a girl with Peutz-Jeghers syndrome, intellectual disability, hypotonia, and distinctive features". American Journal of Medical Genetics Part A 167, nr 2 (8.12.2014): 389–93. http://dx.doi.org/10.1002/ajmg.a.36813.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Lyon, Sarah M., Darrel Waggoner, Sara Halbach, Erik C. Thorland, Leila Khorasani i Russell R. Reid. "Syndromic craniosynostosis associated with microdeletion of chromosome 19p13.12–19p13.2". Genes & Diseases 2, nr 4 (grudzień 2015): 347–52. http://dx.doi.org/10.1016/j.gendis.2015.09.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Klimkowski, Sergio, Mohamed Ibrahim, Juan J. Ibarra Rovira, Mohamed Elshikh, Sanaz Javadi, Albert R. Klekers, Abdelraham A. Abusaif, Ahmed W. Moawad, Kamran Ali i Khaled M. Elsayes. "Peutz–Jeghers Syndrome and the Role of Imaging: Pathophysiology, Diagnosis, and Associated Cancers". Cancers 13, nr 20 (13.10.2021): 5121. http://dx.doi.org/10.3390/cancers13205121.

Pełny tekst źródła
Streszczenie:
The Peutz-Jeghers Syndrome (PJS) is an autosomal dominant neoplastic syndrome defined by hamartomatous polyps through the gastrointestinal tract, development of characteristic mucocutaneous pigmentations, and an elevated lifetime cancer risk. The majority of cases are due to a mutation in the STK11 gene located at 19p13.3. The estimated incidence of PJS ranges from 1:50,000 to 1:200,000. PJS carries an elevated risk of malignancies including gastrointestinal, breast, lung, and genitourinary (GU) neoplasms. Patients with PJS are at a 15- to 18-fold increased malignancy risk relative to the general population. Radiologists have an integral role in the diagnosis of these patients. Various imaging modalities are used to screen for malignancies and complications associated with PJS. Awareness of various PJS imaging patterns, associated malignancies, and their complications is crucial for accurate imaging interpretation and patient management. In this manuscript, we provide a comprehensive overview of PJS, associated malignancies, and surveillance protocols.
Style APA, Harvard, Vancouver, ISO itp.
44

Novikova, Irina, Paushpala Sen, Ann Manzardo i Merlin Butler. "Duplication of 19p13.3 in 11-Year-Old Male Patient with Dysmorphic Features and Intellectual Disability: A Review". Journal of Pediatric Genetics 06, nr 04 (2.06.2017): 227–33. http://dx.doi.org/10.1055/s-0037-1603650.

Pełny tekst źródła
Streszczenie:
AbstractWe present a clinical report of an 11-year-old male patient with an interstitial duplication of 19p13.3 (829 kb in size) at genomic coordinates 3,804,495–4,033,722 bp (hg19) identified by chromosomal microarray analysis and review the literature from nine published reports adding knowledge regarding this chromosomal anomaly and clinical outcomes. The size of the duplication ranged from 0.83 to 8.9 Mb in the nine individuals. The young boy in our report was dysmorphic with microcephaly, abnormal craniofacial features, intellectual disability, aggression, and a heart murmur. All patients were found to have a psychomotor developmental delay and/or intellectual disability with the majority having microcephaly, intrauterine growth retardation, and hypotonia. Common craniofacial findings included a tall, prominent forehead, an elongated face, epicanthal folds, hypertelorism, prominent low-set ears, philtrum anomaly, and a small mouth. Other less common features included abnormal digits, sparse hair, and cardiac defects. Clinical features, chromosome duplication sizes, locations, and the number of genes will be summarized in a tabular form.
Style APA, Harvard, Vancouver, ISO itp.
45

Chan, Kelvin Y. K., Johannes C. Y. Ching, M. S. Xu, Annie N. Y. Cheung, Shea-Ping Yip, Loretta Y. C. Yam, Sik-To Lai i in. "Association of ICAM3 Genetic Variant with Severe Acute Respiratory Syndrome". Journal of Infectious Diseases 196, nr 2 (15.07.2007): 271–80. http://dx.doi.org/10.1086/518892.

Pełny tekst źródła
Streszczenie:
Abstract Genetic polymorphisms have been demonstrated to be associated with vulnerability to human infection. ICAM3, an intercellular adhesion molecule important for T cell activation, and FCER2 (CD23), an immune response gene, both located on chromosome 19p13.3 were investigated for host genetic susceptibility and association with clinical outcome. A case-control study based on 817 patients with confirmed severe acute respiratory syndrome (SARS), 307 health care worker control subjects, 290 outpatient control subjects, and 309 household control subjects unaffected by SARS from Hong Kong was conducted to test for genetic association. No significant association to susceptibility to SARS-CoV infection was found for the FCER2 and the ICAM3 single nucleotide polymorphisms. However, patients with SARS homozygous for ICAM3 Gly143 showed significant association with higher lactate dehydrogenase levels (P=.0067; odds ratio [OR], 4.31 [95% confidence interval [CI], 1.37–13.56]) and lower total white blood cell counts (P=.022; OR, 0.30 [95% CI, 0.10–0.89]) on admission. These findings support the role of ICAM3 in the immunopathogenesis of SARS.
Style APA, Harvard, Vancouver, ISO itp.
46

Nakagawa, Hidewaki, Kumiko Koyama, Toshihiro Tanaka, Yasuo Miyoshi, Hiroshi Ando, Shozo Baba, Masahiro Watatani, Masayuki Yasutomi, Morito Monden i Yusuke Nakamura. "Localization of the gene responsible for Peutz-Jeghers syndrome within a 6-cM region of chromosome 19p13.3". Human Genetics 102, nr 2 (23.02.1998): 203–6. http://dx.doi.org/10.1007/s004390050678.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Tenorio, Jair, Julián Nevado, Antonio González‐Meneses, Pedro Arias, Irene Dapía, Carlos A. Venegas‐Vega, María Calvente i in. "Further definition of the proximal 19p13.3 microdeletion/microduplication syndrome and implication of PIAS4 as the major contributor". Clinical Genetics 97, nr 3 (23.01.2020): 467–76. http://dx.doi.org/10.1111/cge.13689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

van Es, Michael A., Jan H. Veldink, Christiaan G. J. Saris, Hylke M. Blauw, Paul W. J. van Vught, Anna Birve, Robin Lemmens i in. "Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis". Nature Genetics 41, nr 10 (6.09.2009): 1083–87. http://dx.doi.org/10.1038/ng.442.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Kelner, Michael J., i Mark A. Montoya. "Structural Organization of the Human Selenium-Dependent Phospholipid Hydroperoxide Glutathione Peroxidase Gene (GPX4): Chromosomal Localization to 19p13.3". Biochemical and Biophysical Research Communications 249, nr 1 (sierpień 1998): 53–55. http://dx.doi.org/10.1006/bbrc.1998.9086.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ring, Huijun Z., Vida Vameghi-Meyers, Julia M. Nikolic, Hosung Min, Douglas L. Black i Uta Francke. "Mapping of theKHSRPGene to a Region of Conserved Synteny on Human Chromosome 19p13.3 and Mouse Chromosome 17". Genomics 56, nr 3 (marzec 1999): 350–52. http://dx.doi.org/10.1006/geno.1998.5725.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii