Seredin, Pavel V., Dmitry L. Goloshchapov, Kirill A. Nikitkov, Vladimir M. Kashkarov, Yury A. Ippolitov e Vongsvivut Jitraporn (Pimm). "Применение синхротронной ИК-микроспектроскопии для анализа интеграции биомиметических композитов с нативной твердой тканью зуба человека". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, n. 2 (14 giugno 2019): 262–77. http://dx.doi.org/10.17308/kcmf.2019.21/764.
Abstract (sommario):
В данной работе продемонстрирована возможность применения ИК-микроспектроскопии для многомерной визуализации и анализа интеграции с нативными твердыми тканями зуба человека нового поколения биомиметических материалов, воспроизводящих минералорганический комплекс эмали и дентина.На основе ИК-картирования интенсивности конкретной функциональной молекулярной группы с использованием синхротронного излучения найдены и визуализированы характеристические особенности биомиметического переходного слоя в межфазной области эмаль/стоматологический материал и определено расположение функциональных групп, отвечающих процессам интеграции биомиметического композита
REFERENCES
Rohr N., Fischer J. Tooth surface treatment strategies for adhesive cementation // The Journal of Advanced Prosthodontics, 2017, v. 9(2), pp. 85–92. https://doi.org/10.4047/jap.2017.9.2.85
Pereira C. N. de B., Daleprane B., Miranda G. L. P. de, Magalhães C. S. de, Moreira A. N. Ultramorphology of pre-treated adhesive interfaces between self-adhesive resin cement and tooth structures // Revista de Odontologia da UNESP, 2017, v. 46(5), pp. 249–254. https://doi.org/10.1590/1807-2577.04917
Temel U. B., Van Ende A., Van Meerbeek B., Ermis R. B. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements //American Journal of Dentistry, 2017, v. 30(4), pp. 205–211.
Watson T. F., Atmeh A. R., Sajini S., Cook R. J., Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease // Dental Materials, 2014, v. 30(1), pp. 50–61. https://doi.org/10.1016/j.dental.2013.08.202
Pontes D. G., Araujo C. T. P., Prieto L. T., de Oliveira D. C. R. S., Coppini E. K., Dias C. T. S., Paulillo L. A. M. S. Nanoleakage of fi ber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements // General Dentistry, 2015, v. 63(3), pp. 31–37. PMID: 25945761
Teaford M. F., Smith M. M., Ferguson W. J. Development, Function and Evolution of Teeth. Cambridge University Press, 2007, 328 p.
Dorozhkin S. V. Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Hardcover]. Nova Science Publishers, Inc New York, 2017, 462 p. URL: https://istina.msu.ru/publications/book/58538935/
Uskoković V. Biomineralization and biomimicry of tooth enamel. Non-Metallic Biomaterials for Tooth Repair and Replacement. Elsevier, 2013, pp. 20–44. URL:http://linkinghub.elsevier.com/retrieve/pii/B9780857092441500021
Niu L., Zhang W., Pashley D. H., Breschi L., Mao J., Chen J., Tay F. R. Biomimetic remineralization of dentin // Dental Materials, 2014, v. 30(1), pp. 77–96. https://doi.org/10.1016/j.dental.2013.07.013
Cao C., Mei, Li Q., Lo E., Chu C. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review // Materials, 2015, v. 8(6), pp. 2873–2886. https://doi.org/10.3390/ma8062873
Chen L., Yuan H., Tang B., Liang K., Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro // Caries Research, 2015, v. 49(3), pp. 282–290. https://doi.org/10.1159/000375376
Seredin P. V., Goloshchapov D. L., Gushchin M. S., Ippolitov Y. A., Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. // Journal of Physics: Conference Series, 2017, v. 917(4), pp. 042019. https://doi.org/10.1088/1742-6596/917/4/042019
Xia Z. Biomimetic Principles and Design of Advanced Engineering Materials. John Wiley & Sons, 2016, 321 p.
Dorozhkin S. V. Self-Setting Calcium Orthophosphate Formulations: Cements, Concretes, Pastes and Putties // International Journal of Materials and Chemistry, 2012, v. 1(1), pp. 1–48. https://doi.org/10.5923/j.ijmc.20110101.01
Li H., Gong M., Yang A., Ma J., Li X., Yan Y. Degradable biocomposite of nano calcium-defi cient hydroxyapatite-multi(amino acid) copolymer // International Journal of Nanomedicine, 2012, v. 7, pp. 1287–1295. https://doi.org/10.2147/IJN.S28978
Ruan Q., Zhang Y., Yang X., Nutt S., Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface// Acta Biomaterialia, 2013, v. 9(7), pp. 7289–7297. https://doi.org/10.1016/j.actbio.2013.04.004
Yao, Shao H., Zhang Q. Development and Characterization of a Novel Amorphous Calcium Phosphate/Multi (Amino Acid) Copolymer Composite for Bone Repair // Journal of Biomaterials and Tissue Engineering, 2015, v. 5(5), pp. 387–390. https://doi.org/10.1166/jbt.2015.1321
Melo M. A. S., Weir M. D., Rodrigues L. K. A., Xu H. H. K. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model // Dental Materials, 2013, v. 29(2), pp. 231–240. https://doi.org/10.1016/j.dental.2012.10.010
Wu X.-T., Mei M., Li Q.-L., Cao C., Chen-L., Xia R., Zhang Z.-H., Chu C. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix // Materials, 2015, v. 8(12), pp. 7889–7899. https://doi.org/10.3390/ ma8115433
Barghamadi H., Atai M., Imani M., Esfandeh M. Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling // Iranian Polymer Journal, 2015, v. 24. (10), pp. 837–848. https://doi.org/10.1007/s13726-015-0369-5
Wang H., Xiao Z., Yang J., Lu D., Kishen A., Li Y., Chen Z., Que K., Zhang Q., Deng X., Yang X., Cai Q., Chen N., Cong C., Guan B., Li T., Zhang X. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ ACP Nanoparticles Guided by Glycine // Scientifi c Reports, 2017, v. 7(1), рр. 1-13. https://doi.org/10.1038/srep40701
Wu X., Zhao X., Li Y., Yang T., Yan X., Wang K. In situ synthesis carbonated hydroxyapatite layers on enamel slices with acidic amino acids by a novel twostep method // Materials Science & Engineering. C, Materials for Biological Applications, 2015, v. 54, pp. 150–157. httsp://doi.org/10.1016/j.msec.2015.05.006
Aljabo A., Abou Neel E. A., Knowles J. C., Young A. M. Development of dental composites with reactive fi llers that promote precipitation of antibacterial-hydroxyapatite layers // Materials Science and Engineering: C, 2016, v. 60, pp. 285–292. https://doi.org/10.1016/j.msec.2015.11.047
Wang P., Liu P., Peng H., Luo X., Yuan H., Zhang J., Yan Y. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo // Journal of Biomaterials Science. Polymer Edition, 2016, v. 27(11), pp. 1170–1186. https://doi.org/10.1080/09205063.2016.1184123
Lübke A., Enax J., Wey K., Fabritius H.-O., Raabe D., Epple M. Composites of fl uoroapatite and methylmethacrylate-based polymers (PMMA) for biomimetic tooth replacement // Bioinspiration & Biomimetics, 2016, v. 11(3), pp. 035001. https://doi.org/10.1088/1748-3190/11/3/035001
Sa Y., Gao Y., Wang M., Wang T., Feng X., Wang Z., Wang Y., Jiang T. Bioactive calcium phosphate cement with excellent injectability, mineralization capacity and drug-delivery properties for dental bio- mimetic reconstruction and minimum intervention therapy. RSC Advances, 2016, v. 6(33), pp. 27349–27359. https://doi.org/10.1039/C6RA02488B
Adachi T., Pezzotti G., Yamamoto T., Ichioka H., Boffelli M., Zhu W., Kanamura N. Vibrational algorithms for quantitative crystallographic analyses of hydroxyapatite-based biomaterials: II, application to decayed human teeth // Analytical and Bioanalytical Chemistry, 2015, v. 407(12), pp. 3343–3356. https://doi.org/10.1007/s00216-015-8539-z
Mitić Ž., Stolić A., Stojanović S., Najman S., Ignjatović N., Nikolić G., Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review // Materials Science and Engineering: C, 2017, v. 79, pp. 930–949. https://doi.org/10.1016/j.msec.2017.05.127
Optical spectroscopy and computational methods in biology and medicine / Ed. by Barańska M., Dordrecht: Springer, 2014, 540 p. URL: http://link.springer.com/10.1007/978-94-007-7832-0
Hędzelek W., Marcinkowska A., Domka L., Wachowiak R. Infrared Spectroscopic Identifi cation of Chosen Dental Materials and Natural Teeth // Acta Physica Polonica A, 2008, v. 114(2), pp. 471–484. https://doi.org/10.12693/APhysPolA.114.471
Vongsvivut J., Perez-Guaita D., Wood B. R., Heraud P., Khambatta K., Hartnell D., Hackett M. J., Tobin M. J. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells // The Analyst, 2019, v. 144(10), pp. 3226–3238. https://doi.org/10.1039/c8an01543k
Seredin P., Goloshchapov D., Ippolitov Y., Vongsvivut P. Pathology-specifi c molecular profi les of saliva in patients with multiple dental caries—potential application for predictive, preventive and personalised medical services // EPMA Journal, 2018, v. 9(2), pp. 195–203. https://doi.org/10.1007/s13167-018-0135-9
Dusevich V., Xu C., Wang Y., Walker M. P., Gorski J. P. Identifi cation of a protein-containing enamel matrix layer which bridges with the dentine–enamel junction of adult human teeth // Archives of Oral Biology, 2012, v. 57(12), pp. 1585–1594. https://doi.org/10.1016/j.archoralbio.2012.04.014
Seredin P. V., Kashkarov V. M., Lukin A. N., Goloshchapov D. L., Ippolitov Y. A. Research Hydroxyapatite Crystals and Organic Components of Hard Tooth Tissues Affected by Dental Caries Using Ftir-Microspectroscopy and Xrd-Microdiffraction // Condensed Matter and Interphases, 2013, v. 15(3), с. 224–231. URL: http://www.kcmf.vsu.ru/resources/t_15_3_2013_002.pdf
Fattibene P., Carosi A., Coste V. D., Sacchetti A., Nucara A., Postorino P., Dore P. A comparative EPR, infrared and Raman study of natural and deproteinated tooth enamel and dentin // Physics in Medicine and Biology, 2005, v. 50(6), pp. 1095. https://doi.org/10.1088/0031-9155/50/6/004
Seredin P., Goloshchapov D., Kashkarov V., Ippolitov Y., Bambery K. The investigations of changes in mineral–organic and carbon–phosphate ratios in the mixed saliva by synchrotron infrared spectroscopy // Results in Physics, 2016, v. 6, pp. 315–321. https://doi.org/10.1016/j.rinp.2016.06.005
Goloshchapov D. L., Kashkarov V. M., Rumyantseva N. A., Seredin P. V., Lenshin A. S., Agapov B. L., Domashevskaya E. P. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen’s eggshell // Ceramics International, 2013, v. 39(4), pp. 4539–4549. https://doi.org/10.1016/j.ceramint.2012.11.050
Goloshchapov D. L., Lenshin A. S., Savchenko D. V., Seredin P.V. Importance of defect nanocrystalline calcium hydroxyapatite characteristics for developing the dental biomimetic composites // Results in Physics, 2019, v. 13, pp. 102158. https://doi.org/10.1016/j.rinp.2019.102158
Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function. 8th ed., Elsevier Health Sciences, 2013, 400 p.
Ippolitov Ju. A. Vozmozhnost’ povyshenija biologicheskoj tropnosti svetootverzhdaemoj bondingovoj sistemy dlja adgezii tverdyh tkanej zuba k plombirovochnomu material [The possibility of increasing the biological tropism of the lightcuring bonding system for adhesion of hard tooth tissues to the filling material]. Volgogradskij nauchno-medicinskij zhurnal, 2010, v. 4 (28), pp. 31–34. URL: https://www.volgmed.ru/uploads/journals/articles/1293119124-bulletin-2010-4-815.pdf
Seredin P., Goloshchapov D., Prutskij T., Ippolitov Y. Phase Transformations in a Human Tooth Tissue at the Initial Stage of Caries. PLoS ONE, 2015, v. 10(4), pp. 1–11. https://doi.org/10.1371/journal.pone.0124008
Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser- Induced Fluorescence and Raman Spectromicroscopy. Optics and Spectroscopy, 2018, v. 125(5), pp. 803–809. https://doi.org/10.1134/S0030400X18110267
Seredin P. V., Goloshchapov D. L., Prutskij T., Ippolitov Yu. A. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics, 2017, v. 7, pp. 1086–1094. https://doi.org/10.1016/j.rinp.2017.02.025