Letteratura scientifica selezionata sul tema "Wastewater"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Wastewater".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Wastewater"
Gulyas, H., R. von Bismarck e L. Hemmerling. "Treatment of industrial wastewaters with ozone/hydrogen peroxide". Water Science and Technology 32, n. 7 (1 ottobre 1995): 127–34. http://dx.doi.org/10.2166/wst.1995.0217.
Testo completoToczyłowska-Mamińska, Renata, e Mariusz Ł. Mamiński. "Wastewater as a Renewable Energy Source—Utilisation of Microbial Fuel Cell Technology". Energies 15, n. 19 (21 settembre 2022): 6928. http://dx.doi.org/10.3390/en15196928.
Testo completoAasim, Muhammad Tayyab, Muhammad Shaheer Tariq, Muhammad Danish, Iqra Abbasi, Ali Raza e Hammad Haider. "Durability Assessment of Recycled Aggregate Geopolymer Concrete Mixed with Wastewater". MATEC Web of Conferences 398 (2024): 01032. http://dx.doi.org/10.1051/matecconf/202439801032.
Testo completoUtomo, Joseph Christian, Young Mo Kim, Hyun Uk Cho e Jong Moon Park. "Evaluation of Scenedesmus rubescens for Lipid Production from Swine Wastewater Blended with Municipal Wastewater". Energies 13, n. 18 (18 settembre 2020): 4895. http://dx.doi.org/10.3390/en13184895.
Testo completoVerburg, Ilse, H. Pieter J. van Veelen, Karola Waar, John W. A. Rossen, Alex W. Friedrich, Lucia Hernández Leal, Silvia García-Cobos e Heike Schmitt. "Effects of Clinical Wastewater on the Bacterial Community Structure from Sewage to the Environment". Microorganisms 9, n. 4 (31 marzo 2021): 718. http://dx.doi.org/10.3390/microorganisms9040718.
Testo completoCséfalvay, Edit, Péter Imre e Péter Mizsey. "Applicability of nanofiltration and reverse osmosis for the treatment of wastewater of different origin". Open Chemistry 6, n. 2 (1 giugno 2008): 277–83. http://dx.doi.org/10.2478/s11532-008-0026-3.
Testo completoShi, X. L., X. B. Hu, Z. Wang, L. L. Ding e H. Q. Ren. "Effect of reflux ratio on COD and nitrogen removals from coke plant wastewaters". Water Science and Technology 61, n. 12 (1 giugno 2010): 3017–25. http://dx.doi.org/10.2166/wst.2010.266.
Testo completoAlalam, Sabine, Farah Ben-Souilah, Marie-Hélène Lessard, Julien Chamberland, Véronique Perreault, Yves Pouliot, Steve Labrie e Alain Doyen. "Characterization of Chemical and Bacterial Compositions of Dairy Wastewaters". Dairy 2, n. 2 (1 aprile 2021): 179–90. http://dx.doi.org/10.3390/dairy2020016.
Testo completoMahendraker, V., e T. Viraraghavan. "Respirometric Evaluation of Comparative Biodegradability of Municipal and Petroleum Refinery Wastewaters". Water Quality Research Journal 31, n. 2 (1 maggio 1996): 283–304. http://dx.doi.org/10.2166/wqrj.1996.017.
Testo completoMatsui, S., Y. Okawa e R. Ota. "Experience of 16 Years' Operation and Maintenance of the Fukashiba Industrial Wastewater Treatment Plant of the Kashima Petrochemical Complex – II. Biodegradability of 37 Organic Substances and 28 Process Wastewaters". Water Science and Technology 20, n. 10 (1 ottobre 1988): 201–10. http://dx.doi.org/10.2166/wst.1988.0138.
Testo completoTesi sul tema "Wastewater"
Atayol, Ahmet Avni Sofuoğlu Aysun. "Anaerobic co-treatability of olive mill wastewaters and domestic wastewater/". [s.l.]: [s.n.], 2003. http://library.iyte.edu.tr/tezler/master/cevremuh/T000239.pdf.
Testo completoWang, Y. "Wastewater minimisation and the design of wastewater treatment systems". Thesis, University of Manchester, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488391.
Testo completoPan, Xiaodi. "Radioisotopes in Domestic Wastewater and Their Fate in Wastewater Treatment". Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/1247.
Testo completoFain, Norm. "Wastewater - A Resource". Arizona-Nevada Academy of Science, 1991. http://hdl.handle.net/10150/296459.
Testo completoAs the Southwest United States grows and develops, one basic resource becomes a primary necessity for survival: Water. Currently, accepted sources are being consumed at a higher rate than nature replenishes them. This is necessitating the need to find and develop new water resources. In conjunction with the proper treatment and management, wastewater is a water resource, known as reuse. Properly managed, reused water can augment the available water supply. Primary applications include irrigation of agricultural and landscaped areas, surface water recreational areas, and groundwater recharge. These uses relieve the demands on the generally accepted water resources, thus increasing the net water supply. The required level of treatment varies with the intended reuse application. Treatment levels for reuse range from secondary to tertiary treatment systems. Some reuse applications provide additional treatment to the water. The reuser must assure that the treatment system and reuse application provide an equal or improved water quality to that of the receiving body of water. Regardless of the application, stringent operation and maintenance of the reuse system is essential. A well planned management program will minimize hazards associated with reuse of wastewater. This program is required to keep the liabilities of both the treatment plant and reuse site owners to a minimum. Without this, reuse is not a viable option. The underlying questions remain to determine the feasibility of reuse for a community: Does the water supply require augmentation to meet the demands of the future? Is the Owner willing to address and implement a diligent system management program?
Palmquist, Helena. "Hazardous substances in wastewater systems : a delicate issue for wastewater management". Licentiate thesis, Luleå tekniska universitet, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-17510.
Testo completoGodkänd; 2001; 20070225 (ysko)
Heimel, Daniel Eric. "Anaerobic Co-digestion of Wastewater Treatment Pond Algae with Wastewater Sludge". DigitalCommons@CalPoly, 2010. https://digitalcommons.calpoly.edu/theses/440.
Testo completoBurgess, Joanna E. "Micronutrients for wastewater treatment". Thesis, Cranfield University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323932.
Testo completoMalandra, Lida 1975. "Biodegradation of winery wastewater". Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16385.
Testo completoENGLISH ABSTRACT: Large volumes of wastewater are generated annually during the grape harvest season from various processing and cleaning operations at wineries, distilleries and other wine-related industries. South African regulatory bodies dictate that wastewater should have a pH of 5.5 to 7.5 and a chemical oxygen demand (COD) lower than 75 mg/L. However, winery wastewater has a typical pH of 4 to 5 and a COD varying between 2 000 and 12 000 mg/L. Urban wineries channel the wastewater to local sewage treatment facilities and are often heavily fined for exceeding governmental requirements. Rural wineries usually have little or no treatment operations for their wastewater and it is often irrigated onto crops, which may result in environmental pollution and contamination of underground water resources. Various criteria are important in choosing a wastewater treatment system, such as an ecofriendly process that is flexible to withstand various concentration loads and characteristics, requiring low capital and operating costs, minimal personal attention and do not require too much land. In this study, a large variation in COD, pH and chemical composition of the winery wastewater was observed that could be related to varying factors such as the harvest load, operational procedures and grape variety. Wastewater from destemming and pressing operations contained higher concentrations of glucose, fructose and malic acid, which originated from the grape berries. The fermentable sugars (glucose and fructose) contributed to almost half of the COD with a smaller contribution from ethanol and acetic acid. The low pH can be ascribed to relative high concentrations of organic acids in the wastewater. The efficacy of biological treatment systems depends strongly on the ability of microorganisms to form biofilm communities that are able to degrade the organic compounds in the wastewater. Preliminary identification of microorganisms that naturally occur in winery wastewater indicated the presence of various bacterial and yeast species that could be effective in the biological treatment of the wastewater. When evaluated as pure cultures under aerobic conditions, some of the yeast isolates effectively reduced the COD of a synthetic wastewater, whereas the bacterial isolates were ineffective. The most effective yeast isolates were identified as Pichia rhodanensis, Kloeckera apiculata, Candida krusei and Saccharomyces cerevisiae. Our search for cost-effective biological treatment systems led to the evaluation of a Rotating Biological Contactor (RBC) for the treatment of winery wastewater. The RBC was evaluated on a laboratory scale with 10% (v/v) diluted grape juice and inoculated with a mixed microbial community isolated from winery wastewater. The results showed a reduction in the COD that improved with an extended retention time. Evaluation of the RBC on-site at a local winery during the harvest season resulted on average in a 41% decrease in COD and an increase of 0,75 pH units. RFLP analysis of the biofilm communities within the RBC confirmed a population shift in both the bacterial and fungal species during the evaluation period. The most dominant yeast isolates were identified with 18S rDNA sequencing as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum and Pichia membranifaciens. All these species are naturally associated with grapes and/or water and with the exception of Hanseniaspora uvarum, they are able to form either simple or elaborate pseudohyphae.
AFRIKAANSE OPSOMMING: Groot hoeveelhede afloopwater word jaarliks gedurende die druiwe-oestyd deur verskeie prosessering- en skoonmaakoperasies deur wynkelders, distilleer- en ander wynverwante industrieë gegenereer. Suid-Afrikaanse beheerliggame vereis dat afloopwater ‘n pH van 5.5 tot 7.5 en ‘n chemiese suurstofbehoefte (COD) van minder as 75 mg/l moet hê. Kelderafloopwater het egter gewoonlik ‘n pH van 4 tot 5 en ‘n COD van 2 000 tot 12 000 mg/L. Stedelike wynkelders voer die afloopwater na ń plaaslike rioolsuiweringsaanleg wat dikwels tot swaar boetes vir oortreding van die wetlike vereistes lei. Plattelandse wynkelders het gewoonlik min of geen behandelingsprosesse vir hul afloopwater nie en gebruik die water dikwels vir gewasbesproeiing, wat tot omgewingsbesoedeling en kontaminasie van ondergrondse waterbronne kan lei. Verskeie kriteria is belangrik in die keuse van ‘n waterbehandelingstelsel, byvoorbeeld ‘n omgewingsvriendelike proses wat verskillende konsentrasieladings en samestellings kan hanteer, ‘n lae kapitaal- en bedryfskoste en minimale persoonlike aandag vereis en min ruimte benodig. Hierdie studie het getoon dat kelderafloopwater ‘n groot variasie in COD, pH en chemiese samestelling het wat met wisselende faktore soos die oeslading, operasionele prosesse en selfs die druifkultivar verband kan hou. Afloopwater van ontstingeling- en parsoperasies het hoër konsentrasies glukose, fruktose en appelsuur wat van die druiwekorrels afkomstig is. Die fermenteerbare suikers (glukose en fruktose) dra tot amper 50% van die COD by, met ‘n kleiner bydrae deur etanol en asynsuur. Die lae pH kan grootliks aan organiese sure in die afloopwater toegeskryf word. Die effektiwiteit van biologiese behandelingstelsels steun sterk op die vermoë van mikroorganismes om biofilmgemeenskappe te vorm wat die organiese verbindings in die afloopwater kan afbreek. Voorlopige identifikasie van mikro-organismes wat natuurlik in wynafloopwater voorkom, het die teenwoordigheid van verskeie bakteriese en gisspesies aangedui. Evaluering van hierdie isolate onder aërobiese toestande het getoon dat sommige van die gis-isolate die COD van ‘n sintetiese afloopwater effektief kon verlaag, terwyl die bakteriese isolate oneffektief was. Die mees effektiewe gis-isolate is as Pichia rhodanensis, Kloeckera apiculata, Candida krusei en Saccharomyces cerevisiae geïdentifiseer. Ons soektog na ‘n koste-effektiewe biologiese behandelingsisteem het tot die evaluering van ‘n ‘Rotating Biological Contactor’ (RBC) vir die behandeling van afloopwater gelei. Die RBC is op laboratoriumskaal met 10% (v/v) verdunde druiwesap geëvalueer en met ‘n gemengde mikrobiese gemeenskap wat uit afloopwater geïsoleer is, innokuleer. Die resultate het ‘n verlaging in die COD getoon wat met ‘n langer retensietyd verbeter het. Evaluering van die RBC by ‘n plaaslike wynkelder gedurende die oesseisoen het gemiddeld ‘n verlaging van 41% in die COD en ‘n verhoging van 0,75 pH eenhede getoon. RPLP analise van die biofilmgemeenskappe in die RBC het ‘n bevolkingsverskuiwing in beide die bakteriese en swamspesies aangetoon. Die mees dominante gisspesies is met 18S rDNA volgordebepaling as Saccharomyces cerevisiae, Candida intermedia, Hanseniaspora uvarum en Pichia membranifaciens geïdentifiseer. Al hierdie spesies word gewoonlik met druiwe en/of water geassosieer en is, met die uitsondering van Hanseniaspora uvarum, in staat om òf eenvoudige òf komplekse pseudohife te vorm.
Veijola, T. (Tommi). "Domestic wastewater heat recovery". Bachelor's thesis, University of Oulu, 2017. http://urn.fi/URN:NBN:fi:oulu-201704271600.
Testo completoAbdel-Halim, Walid Sayed. "Anaerobic municipal wastewater treatment /". Hannover : Inst. für Siedlungswasserwirtschaft und Abfalltechnik, 2005. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014189251&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Testo completoLibri sul tema "Wastewater"
Agency, Ireland Environmental Protection. Wastewater treatment manuals: Characterisation of industrial wastewaters. Wexford: Environmental Protection Agency, 1998.
Cerca il testo completoDrechsel, Pay, Manzoor Qadir e Dennis Wichelns, a cura di. Wastewater. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6.
Testo completoSally, Morgan. Wastewater. Norh Mankato, MN: Smart Apple Media, 2008.
Cerca il testo completoWastewater bacteria. Hoboken, NJ: Wiley, 2006.
Cerca il testo completoBitton, Gabriel. Wastewater microbiology. 4a ed. Hoboken, N.J: Wiley-Blackwell, 2011.
Cerca il testo completoShah, Maulin P. Wastewater Treatment. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057.
Testo completoBitton, Gabriel. Wastewater microbiology. New York: Wiley-Liss, 1994.
Cerca il testo completoGerardi, Michael H. Wastewater Bacteria. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/0471979910.
Testo completoGerardi, Michael H., e Mel C. Zimmerman. Wastewater Pathogens. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471710431.
Testo completoBitton, Gabriel. Wastewater Microbiology. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471717967.
Testo completoCapitoli di libri sul tema "Wastewater"
Kim, In S., Byung Soo Oh, Seokmin Yoon, Hokyong Shon, Sangho Lee e Seungkwan Hong. "Wastewater Wastewater Reclamation wastewater reclamation". In Encyclopedia of Sustainability Science and Technology, 11873–91. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_263.
Testo completoVesley, Donald. "Wastewater". In Human Health and the Environment, 33–39. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4757-5434-6_4.
Testo completoHossain, Md Faruque. "Wastewater". In Global Sustainability in Energy, Building, Infrastructure, Transportation, and Water Technology, 237–324. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62376-0_13.
Testo completoBurroughs, Richard. "Wastewater". In Coastal Governance, 30–42. Washington, DC: Island Press/Center for Resource Economics, 2011. http://dx.doi.org/10.5822/978-1-61091-016-3_3.
Testo completoKumar Gupta, Ashok, Venkatesh Uddameri, Abhradeep Majumder e Shripad K. Nimbhorkar. "Wastewater". In Wastewater Engineering, 21–49. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003364450-2.
Testo completoIslam, Md Didarul, Meem Muhtasim Mahdi, Md Arafat Hossain e Md Minhazul Abedin. "Biological Wastewater Treatment Plants (BWWTPs) for Industrial Wastewaters". In Wastewater Treatment, 139–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003165057-12.
Testo completoWichelns, Dennis, Pay Drechsel e Manzoor Qadir. "Wastewater: Economic Asset in an Urbanizing World". In Wastewater, 3–14. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_1.
Testo completoOtoo, Miriam, Javier Mateo-Sagasta e Ganesha Madurangi. "Economics of Water Reuse for Industrial, Environmental, Recreational and Potable Purposes". In Wastewater, 169–92. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_10.
Testo completoRao, Krishna, Munir A. Hanjra, Pay Drechsel e George Danso. "Business Models and Economic Approaches Supporting Water Reuse". In Wastewater, 195–216. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_11.
Testo completoGebrezgabher, Solomie, Krishna Rao, Munir A. Hanjra e Francesc Hernández-Sancho. "Business Models and Economic Approaches for Recovering Energy from Wastewater and Fecal Sludge". In Wastewater, 217–45. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9545-6_12.
Testo completoAtti di convegni sul tema "Wastewater"
Ziganshina, E. E., S. S. Bulynina e A. M. Ziganshin. "PRODUCTIVITY OF CHLORELLA DURING GROWTH IN DOMESTIC WASTEWATER". In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-80.
Testo completoWu, Yongming, Mi Deng, Lizhen Liu, Jianyong Wang, Jie Zhang e Jinbao Wan. "Wastewater treatment processes for industrial organosilicon wastewater". In 2016 International Conference on Innovative Material Science and Technology (IMST 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/imst-16.2016.9.
Testo completoOnaizi, Sagheer A. "Enzymatic Treatment of Phenolic Wastewater: Effects of Salinity and Biosurfactant Addition". In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21349-ms.
Testo completoVasiliu, Cornelia Cretiu, Dale Pierce e Kelly Bertrand. "Challenging Wastewater Treatment". In International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production. Society of Petroleum Engineers, 2012. http://dx.doi.org/10.2118/157615-ms.
Testo completoSchutze, M. "XML in wastewater". In Developments in Control in the Water Industry. IEE, 2003. http://dx.doi.org/10.1049/ic:20030258.
Testo completoAlmeida, Antonio V. "Wastewater Rehabilitation in a NIMBY Environment: The Lake Arlington Wastewater Interceptor". In Pipeline Division Specialty Conference 2006. Reston, VA: American Society of Civil Engineers, 2006. http://dx.doi.org/10.1061/40854(211)93.
Testo completoDauknys, Regimantas, e Aušra Mažeikienė. "Research of Wastewater Tertiary Treatment". In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.075.
Testo completoBilstad, T., E. Espedal, A. H. Haaland e M. Madland. "Ultrafiltration of Oily Wastewater". In SPE Health, Safety and Environment in Oil and Gas Exploration and Production Conference. Society of Petroleum Engineers, 1994. http://dx.doi.org/10.2118/27136-ms.
Testo completoMustata, Dragos. "ADIPUR WASTEWATER TREATMENT OPTIMIZATION". In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/51/s20.006.
Testo completoRoper, Alexander M., e Shannon L. Isovitsch Parks. "Phosphorus Removal from Wastewater". In World Environmental and Water Resources Congress 2019. Reston, VA: American Society of Civil Engineers, 2019. http://dx.doi.org/10.1061/9780784482360.024.
Testo completoRapporti di organizzazioni sul tema "Wastewater"
Torrey, David A. Hydropower from Wastewater. Office of Scientific and Technical Information (OSTI), dicembre 2011. http://dx.doi.org/10.2172/1032379.
Testo completoPedersen, Joel A., Moshe Shenker, Krishnapuram G. Karthikeyan, Benny Chefetz, Jorge Tarchitzky e Curtis Hedman. Uptake of wastewater-derived micropollutants by plants irrigated with reclaimed wastewater. United States Department of Agriculture, gennaio 2014. http://dx.doi.org/10.32747/2014.7600011.bard.
Testo completoHirzel, D. R. PFP Wastewater Sampling Facility. Office of Scientific and Technical Information (OSTI), maggio 1995. http://dx.doi.org/10.2172/80949.
Testo completoOgden, K. L. Bioremediation of wastewater containing RDX. Office of Scientific and Technical Information (OSTI), ottobre 1994. http://dx.doi.org/10.2172/369676.
Testo completovon Sperling, Marcos. Urban Wastewater Treatment in Brazil. A cura di Alejandra Perroni. Inter-American Development Bank, agosto 2016. http://dx.doi.org/10.18235/0000397.
Testo completoCoppola, Edward N., e Jeffery Rine. Deployable Wastewater Treatment Technology Evaluation. Fort Belvoir, VA: Defense Technical Information Center, settembre 2002. http://dx.doi.org/10.21236/ada416250.
Testo completoHolland, Robert C. Site Sustainability Plan- wastewater input. Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1574247.
Testo completoGrow, Ann E., Michael S. Deal, Johanna L. Claycomb e Laurie L. Wood. Navy Wastewater MOP-UP (trademark). Fort Belvoir, VA: Defense Technical Information Center, dicembre 2003. http://dx.doi.org/10.21236/ada419363.
Testo completoLopez-Ruiz, Juan, Nickolas Riedel, Bhanupriya Boruah, Swanand Sadashiv Bhatwadekar, Lyndi Strange e Shuyun Li. Low-temperature electrochemical wastewater oxidation. Office of Scientific and Technical Information (OSTI), ottobre 2023. http://dx.doi.org/10.2172/2332860.
Testo completoTang, CheeYee. Water and Wastewater Project Architecture:. Gaithersburg, MD: National Institute of Standards and Technology, 2024. http://dx.doi.org/10.6028/nist.tn.2283.ipd.
Testo completo