Letteratura scientifica selezionata sul tema "Viterbo conjecture"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Viterbo conjecture".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Viterbo conjecture"
Abbondandolo, Alberto, Barney Bramham, Umberto L. Hryniewicz e Pedro A. S. Salomão. "Systolic ratio, index of closed orbits and convexity for tight contact forms on the three-sphere". Compositio Mathematica 154, n. 12 (6 novembre 2018): 2643–80. http://dx.doi.org/10.1112/s0010437x18007558.
Testo completoBalitskiy, Alexey. "Equality Cases in Viterbo’s Conjecture and Isoperimetric Billiard Inequalities". International Mathematics Research Notices 2020, n. 7 (19 aprile 2018): 1957–78. http://dx.doi.org/10.1093/imrn/rny076.
Testo completoKarasev, Roman, e Anastasia Sharipova. "Viterbo’s Conjecture for Certain Hamiltonians in Classical Mechanics". Arnold Mathematical Journal 5, n. 4 (dicembre 2019): 483–500. http://dx.doi.org/10.1007/s40598-019-00129-4.
Testo completoValverde-Albacete, Francisco J., e Carmen Peláez-Moreno. "The Rényi Entropies Operate in Positive Semifields". Entropy 21, n. 8 (8 agosto 2019): 780. http://dx.doi.org/10.3390/e21080780.
Testo completoGutt, Jean, Michael Hutchings e Vinicius G. B. Ramos. "Examples around the strong Viterbo conjecture". Journal of Fixed Point Theory and Applications 24, n. 2 (20 aprile 2022). http://dx.doi.org/10.1007/s11784-022-00949-6.
Testo completoShelukhin, Egor. "Viterbo conjecture for Zoll symmetric spaces". Inventiones mathematicae, 7 luglio 2022. http://dx.doi.org/10.1007/s00222-022-01124-x.
Testo completoShelukhin, Egor. "Symplectic cohomology and a conjecture of Viterbo". Geometric and Functional Analysis, 31 ottobre 2022. http://dx.doi.org/10.1007/s00039-022-00619-2.
Testo completoEdtmair, O. "Disk-Like Surfaces of Section and Symplectic Capacities". Geometric and Functional Analysis, 16 luglio 2024. http://dx.doi.org/10.1007/s00039-024-00689-4.
Testo completoAbbondandolo, Alberto, e Gabriele Benedetti. "On the local systolic optimality of Zoll contact forms". Geometric and Functional Analysis, 3 febbraio 2023. http://dx.doi.org/10.1007/s00039-023-00624-z.
Testo completoRudolf, Daniel. "Viterbo’s conjecture as a worm problem". Monatshefte für Mathematik, 18 dicembre 2022. http://dx.doi.org/10.1007/s00605-022-01806-x.
Testo completoTesi sul tema "Viterbo conjecture"
Dardennes, Julien. "Non-convexité symplectique des domaines toriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES102.
Testo completoConvexity plays a special role in symplectic geometry, but it is not a notion that is invariant by symplectomorphism. In a seminal work, Hofer, Wysocki and Zehnder showed that any strongly convex domain is dynamically convex, a notion that is invariant by symplectomorphism. For more than twenty years, the existence or not of dynamically convex domains that are not symplectomorphic to a convex domain has remained an open question. Recently, Chaidez and Edtmair answered this question in dimension 4. They established a "quantitative" criterion of symplectic convexity and constructed dynamically convex domains that do not satisfy this criterion. In this thesis, we use this criterion to construct new examples of such domains in dimension 4, which have the additional property of being toric. Moreover, we estimate the constants involved in this criterion. This work in collaboration with Jean Gutt and Jun Zhang was later used by Chaidez and Edtmair to solve the initial question in all dimensions. Furthermore, in collaboration with Jean Gutt, Vinicius G.B.Ramos and Jun Zhang, we study the distance from dynamically convex domains to symplectically convex domains. We show that in dimension 4, this distance is arbitrarily large with respect to a symplectic analogue of the Banach-Mazur distance. Additionally, we independently reprove the existence of dynamically convex domains that are not symplectically convex in dimension 4
Capitoli di libri sul tema "Viterbo conjecture"
Hofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder e Felix Schlenk. "Examples around the strong Viterbo conjecture". In Symplectic Geometry, 677–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_22.
Testo completoEkeland, Ivar. "Viterbo’s Proof of Weinstein’s Conjecture in R 2n". In Periodic Solutions of Hamiltonian Systems and Related Topics, 131–37. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3933-2_11.
Testo completo