Letteratura scientifica selezionata sul tema "Velocity"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Velocity".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Velocity"
García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas e G. Gregory Haff. "Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity". Journal of Strength and Conditioning Research 32, n. 5 (maggio 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.
Testo completoLee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng e In Seong Park. "표면유속과 평균유속의 관계 고찰". Crisis and Emergency Management: Theory and Praxis 19, n. 1 (30 gennaio 2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.
Testo completoCojanovic, Milos. "Stellar Distance and Velocity (II)". International Journal of Science and Research (IJSR) 8, n. 9 (5 settembre 2019): 275–82. http://dx.doi.org/10.21275/art2020906.
Testo completoByun, Joongmoo. "Automatic Velocity Analysis Considering Anisotropy". Journal of the Korean Society of Mineral and Energy Resources Engineers 50, n. 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.
Testo completoTurner, Marie. "Velocity". Fourth Genre 25, n. 2 (1 agosto 2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.
Testo completoWang, Hongsong, Liang Wang, Jiashi Feng e Daquan Zhou. "Velocity-to-velocity human motion forecasting". Pattern Recognition 124 (aprile 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.
Testo completoRowell, A. L., C. S. Williams e D. W. Hill. "CRITICAL VELOCITY IS MINIMAL VELOCITY 101". Medicine & Science in Sports & Exercise 28, Supplement (maggio 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.
Testo completoLazarus, Max J. "Group Velocity Is Not Signal Velocity". Physics Today 56, n. 8 (agosto 2003): 14. http://dx.doi.org/10.1063/1.1611340.
Testo completoSAWADA, SHIRO. "OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY". International Journal of Modern Physics C 17, n. 01 (gennaio 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.
Testo completoHaitjema, Henk M., e Mary P. Anderson. "Darcy Velocity Is Not a Velocity". Groundwater 54, n. 1 (30 novembre 2015): 1. http://dx.doi.org/10.1111/gwat.12386.
Testo completoTesi sul tema "Velocity"
Makin, Alexis David James. "Velocity memory". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html.
Testo completoSeligman, Joshua R. "Power development through low velocity isotonic, or combined low velocity isotonic-high velocity isokinetic training /". Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7046.
Testo completoZhu, Weijia. "A new instrumentation for particle velocity and velocity related measurements under water /". View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239913.
Testo completoBeg, Sarena. "The determinants of velocity". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20781.pdf.
Testo completoSaeed, Khizer. "Laminar burning velocity measurements". Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.
Testo completoKopp, Robert William. "Determination of the velocity". Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25837.
Testo completoTeng, Xiaoqing. "High velocity impact fracture". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32118.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 315-330).
An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations.
(cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement.
(cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis.
by Xiaoqing Teng.
Ph.D.
Johansson, Torneus Daniel, e Alexander Kotoglou. "Velocity of plasma flow". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199363.
Testo completoStober, Gunter, e Christoph Jacobi. "Meteor head velocity determination". Universität Leipzig, 2007. https://ul.qucosa.de/id/qucosa%3A15571.
Testo completoMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
Stober, Gunter, e Christoph Jacobi. "Meteor head velocity determination". Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223206.
Testo completoMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments
Libri sul tema "Velocity"
Koontz, Dean R. Velocity. New York: Bantam Books, 2005.
Cerca il testo completoKrygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.
Cerca il testo completoMcCloy, Kristin. Velocity. New York: Random House, 1988.
Cerca il testo completoKrygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.
Cerca il testo completoKoontz, Dean R. Velocity. London: Harper, 2011.
Cerca il testo completoEnvironmental Technology Laboratory (Environmental Research Laboratories), a cura di. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Cerca il testo completoHill, Reginald J. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Cerca il testo completoEnvironmental Technology Laboratory (Environmental Research Laboratories), a cura di. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Cerca il testo completoBoyd, Blanche M. Terminal velocity. New York: Alfred A. Knopf, 1997.
Cerca il testo completoYeh, Cindy. Urban Velocity. New York, NY: the artist, 2015.
Cerca il testo completoCapitoli di libri sul tema "Velocity"
Roberson, Robert E., e Richard Schwertassek. "Velocity". In Dynamics of Multibody Systems, 79–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-86464-3_4.
Testo completoGooch, Jan W. "Velocity". In Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12467.
Testo completoWeik, Martin H. "velocity". In Computer Science and Communications Dictionary, 1885. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20712.
Testo completoDalton, Jeff. "Velocity". In Great Big Agile, 271–72. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4206-3_71.
Testo completoWatkins, William H. "Velocity". In Loudspeaker Physics and Forced Vibration, 67–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91634-3_11.
Testo completoKuttner, Thomas, e Armin Rohnen. "Velocity Transducer (Vibration Velocity Transducer)". In Practice of Vibration Measurement, 101–9. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38463-0_7.
Testo completoElise Albert, C., e Laura Danly. "Interemdiate-velocity Clouds". In High-Velocity Clouds, 73–100. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_4.
Testo completoWakker, Bart P., Klaas S. de Boer e Hugo van Woerden. "History of HVC research — an Overview". In High-Velocity Clouds, 1–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_1.
Testo completoVan Woerden, Hugo, e Bart P. Wakker. "Distances and Metallicities of HVCS". In High-Velocity Clouds, 195–226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_10.
Testo completoDe Boer, Klaas S. "The Hot Halo". In High-Velocity Clouds, 227–50. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_11.
Testo completoAtti di convegni sul tema "Velocity"
Butler, John L., Stephen C. Butler, Donald P. Massa e George H. Cavanagh. "Metallic glass velocity sensor". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50333.
Testo completoFomel, Sergey. "Migration velocity analysis by velocity continuation". In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816277.
Testo completoGentilman, Richard L., Leslie J. Bowen, Daniel F. Fiore, Hong T. Pham e William J. Serwatka. "Injection molded 1–3 piezocomposite velocity sensors". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50346.
Testo completo-G. Ferber, R. "Velocity independent time migration and velocity analysis". In 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410614.
Testo completoNemeth, Tamas. "Velocity estimation using tomographic migration velocity analysis". In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887304.
Testo completoFerreira, Rogelma M. S., e Fernando A. Oliveira. "Velocity-velocity correlation function for anomalous diffusion". In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569535.
Testo completoKo, Sung H. "Performance of velocity sensor for flexural wave reduction". In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50352.
Testo completoBulik, Tomasz, e Donald Q. Lamb. "Gamma-ray bursts from high velocity neutron stars". In High velocity neutron stars and gamma−ray bursts. AIP, 1996. http://dx.doi.org/10.1063/1.50276.
Testo completoSherwood, John W. C. "Velocity estimation". In SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892367.
Testo completoSky, Hellen, John McCormick e Garth Paine. "Escape velocity". In ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.281496.
Testo completoRapporti di organizzazioni sul tema "Velocity"
Kramer, Mitchell. divine’s Velocity Marketing. Boston, MA: Patricia Seybold Group, febbraio 2003. http://dx.doi.org/10.1571/pr2-21-03cc.
Testo completoPeterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), giugno 1997. http://dx.doi.org/10.2172/631265.
Testo completoLiu, Zhenyue, e Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, maggio 1993. http://dx.doi.org/10.21236/ada272537.
Testo completoLiu, Zhenyue, e Norman Bleistein. Velocity Analysis by Inversion. Fort Belvoir, VA: Defense Technical Information Center, maggio 1991. http://dx.doi.org/10.21236/ada241003.
Testo completoToor, A., T. Donich e P. Carter. High velocity impact experiment (HVIE). Office of Scientific and Technical Information (OSTI), febbraio 1998. http://dx.doi.org/10.2172/303456.
Testo completoMeidinger, Brian. BENCAP, LLC: CAPSULE VELOCITY TEST. Office of Scientific and Technical Information (OSTI), settembre 2005. http://dx.doi.org/10.2172/925758.
Testo completoSymes, William W. Velocity Inversion by Coherency Optimization. Fort Belvoir, VA: Defense Technical Information Center, maggio 1988. http://dx.doi.org/10.21236/ada455248.
Testo completoWeyburne, David. Similarity of the Velocity Profile. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2014. http://dx.doi.org/10.21236/ada609962.
Testo completoJohns, William E. Acoustic Velocity Profiling in SYNOP. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1996. http://dx.doi.org/10.21236/ada306621.
Testo completoLundberg, Patrik. Transition Velocity Experiments on Ceramics. Fort Belvoir, VA: Defense Technical Information Center, novembre 2003. http://dx.doi.org/10.21236/ada420132.
Testo completo