Letteratura scientifica selezionata sul tema "Unknown classes detection (Open-Set Recognition)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Unknown classes detection (Open-Set Recognition)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Unknown classes detection (Open-Set Recognition)"
Xu, Baile, Furao Shen e Jian Zhao. "Contrastive Open Set Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 9 (26 giugno 2023): 10546–56. http://dx.doi.org/10.1609/aaai.v37i9.26253.
Testo completoXia, Ziheng, Penghui Wang e Hongwei Liu. "Radar HRRP Open Set Target Recognition Based on Closed Classification Boundary". Remote Sensing 15, n. 2 (12 gennaio 2023): 468. http://dx.doi.org/10.3390/rs15020468.
Testo completoHalász, András Pál, Nawar Al Hemeary, Lóránt Szabolcs Daubner, Tamás Zsedrovits e Kálmán Tornai. "Improving the Performance of Open-Set Recognition with Generated Fake Data". Electronics 12, n. 6 (9 marzo 2023): 1311. http://dx.doi.org/10.3390/electronics12061311.
Testo completoZhang, Yuhang, Yue Yao, Xuannan Liu, Lixiong Qin, Wenjing Wang e Weihong Deng. "Open-Set Facial Expression Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 1 (24 marzo 2024): 646–54. http://dx.doi.org/10.1609/aaai.v38i1.27821.
Testo completoZhou, Yu, Song Shang, Xing Song, Shiyu Zhang, Tianqi You e Linrang Zhang. "Intelligent Radar Jamming Recognition in Open Set Environment Based on Deep Learning Networks". Remote Sensing 14, n. 24 (8 dicembre 2022): 6220. http://dx.doi.org/10.3390/rs14246220.
Testo completoVázquez-Santiago, Diana-Itzel, Héctor-Gabriel Acosta-Mesa e Efrén Mezura-Montes. "Vehicle Make and Model Recognition as an Open-Set Recognition Problem and New Class Discovery". Mathematical and Computational Applications 28, n. 4 (3 luglio 2023): 80. http://dx.doi.org/10.3390/mca28040080.
Testo completoCai, Jiarui, Yizhou Wang, Hung-Min Hsu, Jenq-Neng Hwang, Kelsey Magrane e Craig S. Rose. "LUNA: Localizing Unfamiliarity Near Acquaintance for Open-Set Long-Tailed Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 1 (28 giugno 2022): 131–39. http://dx.doi.org/10.1609/aaai.v36i1.19887.
Testo completoYou, Jie, e Joonwhoan Lee. "Open-Set Recognition of Pansori Rhythm Patterns Based on Audio Segmentation". Applied Sciences 14, n. 16 (6 agosto 2024): 6893. http://dx.doi.org/10.3390/app14166893.
Testo completoCi, Wenyan, Tianxiang Xu, Runze Lin e Shan Lu. "A Novel Method for Unexpected Obstacle Detection in the Traffic Environment Based on Computer Vision". Applied Sciences 12, n. 18 (6 settembre 2022): 8937. http://dx.doi.org/10.3390/app12188937.
Testo completoDale, John M., e Leon N. Klatt. "Principal Component Analysis of Diffuse Near-Infrared Reflectance Data from Paper Currency". Applied Spectroscopy 43, n. 8 (novembre 1989): 1399–405. http://dx.doi.org/10.1366/0003702894204470.
Testo completoTesi sul tema "Unknown classes detection (Open-Set Recognition)"
Christoffel, Quentin. "Apprentissage de représentation différenciées dans des modèles d’apprentissage profond : détection de classes inconnues et interprétabilité". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD027.
Testo completoDeep learning, and particularly convolutional neural networks, has revolutionized numerous fields such as computer vision. However, these models remain limited when encountering data from unknown classes (never seen during training) and often suffer from a lack of interpretability. We proposed a method aimed at directly optimizing the representation space learned by the model. Each dimension of the representation is associated with a known class. A dimension is activated with a specific value when the model faces the associated class, meaning that certain features have been detected in the image. This allows the model to detect unknown data by their distinct representation from known data, as they should not share the same features. Our approach also promotes semantic relationships within the representation space by allocating a subspace to each known class. Moreover, a degree of interpretability is achieved by analysing the activated dimensions for a given image, enabling an understanding of which features of which class are detected. This thesis details the development and evaluation of our method across multiple iterations, each aimed at improving performance and addressing identified limitations through interpretability, such as the correlation of extracted features. The results obtained on an unknown class detection benchmark show a notable improvement in performance between our versions, although they remain below the state-of-the-art
Capitoli di libri sul tema "Unknown classes detection (Open-Set Recognition)"
Kao, Hao, Thanh-Tuan Nguyen, Chin-Shiuh Shieh, Mong-Fong Horng, Lee Yu Xian e Denis Miu. "Unknown DDoS Attack Detection Using Open-Set Recognition Technology and Fuzzy C-Means Clustering". In Lecture Notes in Electrical Engineering, 366–80. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9412-0_38.
Testo completoAtti di convegni sul tema "Unknown classes detection (Open-Set Recognition)"
Brignac, Daniel, e Abhijit Mahalanobis. "Cascading Unknown Detection With Known Classification For Open Set Recognition". In 2024 IEEE International Conference on Image Processing (ICIP), 652–58. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10648239.
Testo completoChe, Yongjuan, Yuexuan An e Hui Xue. "Boosting Few-Shot Open-Set Recognition with Multi-Relation Margin Loss". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/390.
Testo completoHaoyang, Liu, Yaojin Lin, Peipei Li, Jun Hu e Xuegang Hu. "Class-Specific Semantic Generation and Reconstruction Learning for Open Set Recognition". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/226.
Testo completoXu, Shuyuan, Linsen Li, Hangjun Yang e Junhua Tang. "KCC Method: Unknown Intrusion Detection Based on Open Set Recognition". In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2021. http://dx.doi.org/10.1109/ictai52525.2021.00213.
Testo completoYang, Haifeng, Chuanxing Geng, Pong C. Yuen e Songcan Chen. "Dynamic against Dynamic: An Open-Set Self-Learning Framework". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/587.
Testo completoZhang, Qin, Zelin Shi, Xiaolin Zhang, Xiaojun Chen, Philippe Fournier-Viger e Shirui Pan. "G2Pxy: Generative Open-Set Node Classification on Graphs with Proxy Unknowns". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/509.
Testo completoLoboda, Igor, Juan Luis Pérez-Ruiz, Sergiy Yepifanov e Roman Zelenskyi. "Comparative Analysis of Two Gas Turbine Diagnosis Approaches". In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91644.
Testo completoNunes, Ian, Hugo Oliveira e Marcus Poggi. "Open-set semantic segmentation for remote sensing images". In Anais Estendidos da Conference on Graphics, Patterns and Images, 22–28. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/sibgrapi.est.2024.31640.
Testo completoLiu, Jiaming, Yangqiming Wang, Tongze Zhang, Yulu Fan, Qinli Yang e Junming Shao. "Open-world Semi-supervised Novel Class Discovery". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/445.
Testo completo