Articoli di riviste sul tema "Ultrathin oxides"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Ultrathin oxides.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Ultrathin oxides".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Bec, Romulad B., Andrzej Jakubowsk, Lidia Łukasiak e Michał Korwin-Pawłowski. "Challenges in ultrathin oxide layers formation". Journal of Telecommunications and Information Technology, n. 1 (30 marzo 2001): 27–34. http://dx.doi.org/10.26636/jtit.2001.1.46.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In near future silicon technology cannot do without ultrathin oxides, as it becomes clear from the Roadmap 2000. Formation, however, of such layers creates a lot of technical and technological problems. The aim of this paper is to present the technological methods that potentially can be used for formation of ultrathin oxide layers for next generations ICs. The methods are brie y described and their pros and cons are discussed.
2

Taylor, Seth T., John Mardinly e Michael A. O'Keefe. "HRTEM Image Simulations for the Study of Ultrathin Gate Oxides". Microscopy and Microanalysis 8, n. 5 (ottobre 2002): 412–21. http://dx.doi.org/10.1017/s1431927602020123.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
We have performed high resolution transmission electron microscope (HRTEM) image simulations to qualitatively assess the visibility of various structural defects in ultrathin gate oxides of MOSFET devices, and to quantitatively examine the accuracy of HRTEM in performing gate oxide metrology. Structural models contained crystalline defects embedded in an amorphous 16-Å-thick gate oxide. Simulated images were calculated for structures viewed in cross section. Defect visibility was assessed as a function of specimen thickness and defect morphology, composition, size, and orientation. Defect morphologies included asperities lying on the substrate surface, as well as “bridging” defects connecting the substrate to the gate electrode. Measurements of gate oxide thickness extracted from simulated images were compared to actual dimensions in the model structure to assess TEM accuracy for metrology. The effects of specimen tilt, specimen thickness, objective lens defocus, and coefficient of spherical aberration (Cs) on measurement accuracy were explored for nominal 10-Å gate oxide thickness. Results from this work suggest that accurate metrology of ultrathin gate oxides (i.e., limited to several percent error) is feasible on a consistent basis only by using a Cs-corrected microscope. However, fundamental limitations remain for characterizing defects in gate oxides using HRTEM, even with the new generation of Cs-corrected microscopes.
3

Morgen, P., A. Bahari, U. Robenhagen, J. F. Andersen, J. K. Hansen, K. Pedersen, M. G. Rao e Z. S. Li. "Roads to ultrathin silicon oxides". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 23, n. 1 (gennaio 2005): 201–7. http://dx.doi.org/10.1116/1.1842113.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Huang, Feng, W. J. Liu, J. F. Sullivan, J. A. Barnard e M. L. Weaver. "Room-temperature oxidation of ultrathin TiB2 films". Journal of Materials Research 17, n. 4 (aprile 2002): 805–13. http://dx.doi.org/10.1557/jmr.2002.0118.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Titanium diboride has been claimed as a very promising candidate material for protective applications in the magnetic recording. Its oxidation resistance at room temperature is a critical criterion in assessing this application potential. In this paper, the oxidation characteristics of ultrathin TiB2 thin films, such as overcoat erosion and oxide thickness, are investigated via a combination of x-ray reflectivity, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy. It was found that a <2-h exposure to air at room temperature led to the formation of approximately 15-Å-thick, well-defined oxides at the expense of an approximately 9-Å erosion of the TiB2 overcoats, coupled with the existence of a sharp oxide/TiB2 interface. XPS studies confirmed the existence of the oxides. Considering the decreasing allowable thickness for such protective overcoats, oxidation and the resultant thickness gain negate such a potential of ultrathin TiB2 films. The results in our current report provide a new perspective on its potential as protective overcoats in magnetic recording.
5

Zhu, Jianhui, Jian Jiang, Wei Ai, Zhanxi Fan, Xintang Huang, Hua Zhang e Ting Yu. "Encapsulation of nanoscale metal oxides into an ultra-thin Ni matrix for superior Li-ion batteries: a versatile strategy". Nanoscale 6, n. 21 (2014): 12990–3000. http://dx.doi.org/10.1039/c4nr03661a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A versatile strategy of encapsulating nanoscale metal oxides into ultrathin Ni “armors” is proposed for superior anodes of LIBs. The hybrids of metal oxide@Ni show drastic improvements in the capacity retention, long-term cyclic stability and rate performance.
6

Wang, Kai, Bolong Huang, Weiyu Zhang, Fan Lv, Yi Xing, Wenshu Zhang, Jinhui Zhou et al. "Ultrathin RuRh@(RuRh)O2 core@shell nanosheets as stable oxygen evolution electrocatalysts". Journal of Materials Chemistry A 8, n. 31 (2020): 15746–51. http://dx.doi.org/10.1039/d0ta03213a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
We report a novel architecture of ultrathin RuRh@(RuRh)O2 core/shell nanosheets with a core of ultrathin metallic RuRh nanosheets and a shell of (RuRh)O2 oxides as a superb electrocatalyst toward the oxgen evolution reaction (OER), better than most of the state-of-the-art Ru-based or Ir-based electrocatalysts. Moreover, the RuRh@(RuRh)O2 core/shell nanosheets exhibit good durability because the (RuRh)O2 oxide shell protects the normally labile RuRh NS core against dissolution during the OER process.
7

Ting, D. Z. Y. "Tunneling characteristics of nonuniform ultrathin oxides". Applied Physics Letters 73, n. 19 (9 novembre 1998): 2769–71. http://dx.doi.org/10.1063/1.122585.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Lobinsky, A. A., e V. I. Popkov. "Ultrathin 2D nanosheets of transition metal (hydro)oxides as prospective materials for energy storage devices: A short review". Electrochemical Materials and Technologies 1, n. 1 (2022): 20221008. http://dx.doi.org/10.15826/elmattech.2022.1.008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The ultrathin two-dimensional (2D) transition metal oxides and hydroxides (TMO and TMH) nanosheets are attractive for creating high-performance energy storage devices due to a set of unique physical and chemical properties. Flat 2D structure of such materials provides a sufficient number of active adsorption centers, and the ultra-small thickness, on the order of several nanometers, provides fast charge transfer, which significantly improves electronic conductivity. This brief review summarizes recent progress in the synthesis of materials based on ultrathin 2D nanosheets for energy storage applications, including pseudocapacitors, lithium-ion batteries, and other rechargeable devices. The review also presents examples of representative work on the synthesis of ultrathin 2D nanomaterials based on TMO and TMH for various power sources. In conclusion, the article discusses possible prospects and directions for further development of methods and routes for the synthesis of ultrathin two-dimensional transition metal oxides and hydroxides.
9

Rotondaro, A. L. Pacheco, R. T. Laaksonen e S. P. Singh. "Impact of the Nitrogen Concentration of Sub-1.3 nm Gate Oxides on 65 nm Technology Transistor Parameters". Journal of Integrated Circuits and Systems 2, n. 2 (17 novembre 2007): 63–66. http://dx.doi.org/10.29292/jics.v2i2.265.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The nitrogen concentration of ultrathin gate oxides (sub-1.3 nm) was varied in a wide range (from 13 % to 23 %). The threshold voltage and the channel carrier mobility of advanced 65 nm technology CMOSFET transistors fabricated with these oxides were analyzed. It was observed that increasing the nitrogen concentration in the gate oxide results in a negative shift of the threshold voltage for both NMOS and PMOS devices and a degradation of the hole mobility. It was also observed that pchannel transistors are more sensitive to the nitrogen concentration of the gate oxide than n-channel transistors.
10

Chari, K. S., e S. Kar. "Interface Characteristics of Metal‐Oxide‐Semiconductor Capacitors with Ultrathin Oxides". Journal of The Electrochemical Society 138, n. 7 (1 luglio 1991): 2046–49. http://dx.doi.org/10.1149/1.2085921.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Ting, D. Z. Y., Erik S. Daniel e T. C. Mcgill. "Interface Roughness Effects in Ultra-Thin Tunneling Oxides". VLSI Design 8, n. 1-4 (1 gennaio 1998): 47–51. http://dx.doi.org/10.1155/1998/23567.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Advanced MOSFET for ULSI and novel silicon-based devices require the use of ultrathin tunneling oxides where non-uniformity is often present. We report on our theoretical study of how tunneling properties of ultra-thin oxides are affected by roughness at the silicon/oxide interface. The effect of rough interfacial topography is accounted for by using the Planar Supercell Stack Method (PSSM) which can accurately and efficiently compute scattering properties of 3D supercell structures. Our results indicate that while interface roughness effects can be substantial in the direct tunneling regime, they are less important in the Fowler-Nordheim regime.
12

Choi, B. D., e D. K. Schroder. "Degradation of ultrathin oxides by iron contamination". Applied Physics Letters 79, n. 16 (15 ottobre 2001): 2645–47. http://dx.doi.org/10.1063/1.1410363.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Donggun Park e Chenming Hu. "Plasma charging damage on ultrathin gate oxides". IEEE Electron Device Letters 19, n. 1 (gennaio 1998): 1–3. http://dx.doi.org/10.1109/55.650333.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Wen, H. J., e R. Ludeke. "Localized degradation studies of ultrathin gate oxides". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, n. 3 (maggio 1998): 1735–40. http://dx.doi.org/10.1116/1.581293.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Eng, J., R. L. Opila, J. M. Rosamilia, B. J. Sapjeta, Y. J. Chabal, T. Boone, R. Masaitis, Thomas Sorsch e Martin L. Green. "The Evolution of Chemical Oxides Into Ultrathin Oxides: A Spectroscopic Characterization". Solid State Phenomena 76-77 (gennaio 2001): 145–48. http://dx.doi.org/10.4028/www.scientific.net/ssp.76-77.145.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Takeda, Mikako, Takeshi Ohwaki, Hideo Fujii, Eisuke Kusumoto, Yoshiyuki Kaihara, Yoshizo Takai e Ryuichi Shimizu. "Influence of Native Oxides on the Reliability of Ultrathin Gate Oxide". Japanese Journal of Applied Physics 37, Part 1, No. 2 (15 febbraio 1998): 397–401. http://dx.doi.org/10.1143/jjap.37.397.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Hamed, Mai Hussein, David N. Mueller e Martina Müller. "Thermal phase design of ultrathin magnetic iron oxide films: from Fe3O4 to γ-Fe2O3 and FeO". Journal of Materials Chemistry C 8, n. 4 (2020): 1335–43. http://dx.doi.org/10.1039/c9tc05921k.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thermodynamically “active” oxide interfaces alter the standard iron oxide phase diagram of complex heterostructures. By controlling the effective oxygen pressure, selected iron oxides phases can be designed through a thermal phase design.
18

Hardy, An, Sven Van Elshocht, Jan D’Haen, Olivier Douhéret, Stefan De Gendt, Christoph Adelmann, Matty Caymax et al. "Aqueous chemical solution deposition of ultrathin lanthanide oxide dielectric films". Journal of Materials Research 22, n. 12 (dicembre 2007): 3484–93. http://dx.doi.org/10.1557/jmr.2007.0433.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Ultrathin lanthanide (Nd, Pr, Eu, Sm) oxide films with functional dielectric properties down to 3.3 nm thickness were deposited by aqueous chemical solution deposition (CSD) onto hydrophilic SiO2/Si substrates. Precursor solutions were prepared from the oxides via an intermediate, solid Ln(III)citrate. A film heat treatment scheme was derived from thermogravimetric analysis of the precursor gels, showing complete decomposition by 600 °C. Crystalline phase formation in the films depended on the lanthanide, annealing temperature, and citric acid content in the precursor. Through variation of the precursor concentration and number of deposited layers, thickness series of uniform films were obtained down to ∼3 nm. The film uniformity was demonstrated both by atomic force microscopy and cross-section transmission electron microscopy. The lanthanide oxide films possessed good dielectric properties. It was concluded that aqueous CSD allows deposition of uniform ultrathin films and may be useful for the evaluation of new high-k candidate materials.
19

Liao, Zhaoliang, e Jiandi Zhang. "Metal-to-Insulator Transition in Ultrathin Manganite Heterostructures". Applied Sciences 9, n. 1 (3 gennaio 2019): 144. http://dx.doi.org/10.3390/app9010144.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Thickness-driven phase transitions have been widely observed in many correlated transition metal oxides materials. One of the important topics is the thickness-driven metal to insulator transition in half-metal La2/3Sr1/3MnO3 (LSMO) thin films, which has attracted great attention in the past few decades. In this article, we review research on the nature of the metal-to-insulator (MIT) transition in LSMO ultrathin films. We discuss in detail the proposed mechanisms, the progress made up to date, and the key issues existing in understanding the related MIT. We also discuss MIT in other correlated oxide materials as a comparison that also has some implications for understanding the origin of MIT.
20

Chen, Zongkun, Minghua Huang e Helmut Cölfen. "Synthesis of ultrathin metal oxide and hydroxide nanosheets using formamide in water at room temperature". CrystEngComm 23, n. 21 (2021): 3794–801. http://dx.doi.org/10.1039/d1ce00277e.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Fukuda, Masatoshi, Wataru Mizubayashi, Atsushi Kohno, Seiichi Miyazaki e Masataka Hirose. "Analysis of Tunnel Current through Ultrathin Gate Oxides". Japanese Journal of Applied Physics 37, Part 2, No. 12B (15 dicembre 1998): L1534—L1536. http://dx.doi.org/10.1143/jjap.37.l1534.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Chen, C. C., C. Y. Chang, C. H. Chien, T. Y. Huang, H. C. Lin e M. S. Liang. "Temperature-accelerated dielectric breakdown in ultrathin gate oxides". Applied Physics Letters 74, n. 24 (14 giugno 1999): 3708–10. http://dx.doi.org/10.1063/1.123228.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Hori, Takashi, Hiroshi Iwasaki, Takuichi Ohmura, Atsuko Samizo, Minoru Sato e Yoshiaki Yoshioka. "Compositional study of ultrathin rapidly reoxidized nitrided oxides". Journal of Applied Physics 65, n. 2 (15 gennaio 1989): 629–35. http://dx.doi.org/10.1063/1.343095.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Hattori, Takeo, Hiroshi Nohira e Kensuke Takahashi. "The initial growth steps of ultrathin gate oxides". Microelectronic Engineering 48, n. 1-4 (settembre 1999): 17–24. http://dx.doi.org/10.1016/s0167-9317(99)00329-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Contaret, T., G. Ghibaudo, A. Ferron e F. Bœuf. "Excess drain noise simulation in ultrathin oxides MOSFETs". Journal of Computational Electronics 5, n. 2-3 (luglio 2006): 187–92. http://dx.doi.org/10.1007/s10825-006-8842-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Zander, D., F. Saigne, C. Petit e A. Meinertzhagen. "Electrical stress effects on ultrathin (2.3 nm) oxides". Journal of Non-Crystalline Solids 280, n. 1-3 (febbraio 2001): 86–91. http://dx.doi.org/10.1016/s0022-3093(00)00393-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Chang, Chun-Yen, Chi-Chun Chen, Horng-Chih Lin, Mong-Song Liang, Chao-Hsin Chien e Tiao-Yuan Huang. "Reliability of ultrathin gate oxides for ULSI devices". Microelectronics Reliability 39, n. 5 (maggio 1999): 553–66. http://dx.doi.org/10.1016/s0026-2714(99)00037-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Giustino, Feliciano, e Alfredo Pasquarello. "Infrared properties of ultrathin oxides on Si(100)". Microelectronic Engineering 80 (giugno 2005): 420–23. http://dx.doi.org/10.1016/j.mee.2005.04.025.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Zhang, Xinyu, Yongwei Wang, Fenghua Cheng, Zhiping Zheng e Yaping Du. "Ultrathin lanthanide oxides nanomaterials: synthesis, properties and applications". Science Bulletin 61, n. 18 (settembre 2016): 1422–34. http://dx.doi.org/10.1007/s11434-016-1155-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Vereecke, G., E. Röhr, R. J. Carter, T. Conard, H. De Witte e M. M. Heyns. "Investigation of fluorine in dry ultrathin silicon oxides". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 19, n. 6 (2001): 2108. http://dx.doi.org/10.1116/1.1414050.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Cellere, G., L. Larcher, M. G. Valentini e A. Paccagnella. "Micro breakdown in small-area ultrathin gate oxides". IEEE Transactions on Electron Devices 49, n. 8 (agosto 2002): 1367–74. http://dx.doi.org/10.1109/ted.2002.801443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Lundgren, P., M. O. Andersson, K. R. Farmer e O. Engström. "Electrical instability of ultrathin thermal oxides on silicon". Microelectronic Engineering 28, n. 1-4 (giugno 1995): 67–70. http://dx.doi.org/10.1016/0167-9317(95)00017-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Wu, E. Y., D. L. Harmon e Liang-Kai Han. "Interrelationship of voltage and temperature dependence of oxide breakdown for ultrathin oxides". IEEE Electron Device Letters 21, n. 7 (luglio 2000): 362–64. http://dx.doi.org/10.1109/55.847381.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Chen, Ming-Jer, Ting-Kuo Kang, Chuan-Hsi Liu, Yih J. Chang e Kuan-Yu Fu. "Oxide thinning percolation statistical model for soft breakdown in ultrathin gate oxides". Applied Physics Letters 77, n. 4 (24 luglio 2000): 555–57. http://dx.doi.org/10.1063/1.127042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Bruyère, S., F. Guyader, W. De Coster, E. Vincent, M. Saadeddine, N. Revil e G. Ghibaudo. "Wet or dry ultrathin oxides: impact on gate oxide and device reliability". Microelectronics Reliability 40, n. 4-5 (aprile 2000): 691–95. http://dx.doi.org/10.1016/s0026-2714(99)00273-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Lin, M.-T., R. J. Jaccodine e T. J. Delph. "Planar oxidation of strained silicon substrates". Journal of Materials Research 16, n. 3 (marzo 2001): 728–33. http://dx.doi.org/10.1557/jmr.2001.0112.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
We report here on a series of experiments in which relatively low levels of in-plane bending strain were applied to oxidizing silicon substrates. These were found to result in significant decreases in oxide thickness in the ultrathin oxide regime. Both tensile and compressive bending resulted in roughly the same degree of thickness retardation, although compressive bending typically led to somewhat thinner oxides than did tensile bending. An examination of the experimental data indicate that the principal effect seems to occur in the very early stages of oxidation, with only minor effects on subsequent oxide growth. We hypothesize that the observed oxide thickness retardation is related to straining of the underlying silicon lattice at the oxidation front.
37

von Bardeleben, Hans Jürgen, J. L. Cantin, I. Vickridge, Yong Wei Song, S. Dhar, Leonard C. Feldman, John R. Williams et al. "Modification of the Oxide/Semiconductor Interface by High Temperature NO Treatments: A Combined EPR, NRA and XPS Study on Oxidized Porous and Bulk n-Type 4H-SiC". Materials Science Forum 483-485 (maggio 2005): 277–80. http://dx.doi.org/10.4028/www.scientific.net/msf.483-485.277.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The effect of thermal treatments in nitric oxide (NO) on the paramagnetic defects at the 4H-SiC/SiO2 interface are analyzed by EPR in oxidized porous samples. The results on ultrathin thermal oxides show that the NO treatment at 1000°C is insufficient for an efficient reduction of the two dominant paramagnetic interface defects: PbC centers and carbon clusters. From the NRA and XPS analysis of bulk samples treated under the same conditions we attribute the weak effect to the low nitrogen concentration of only 1% at the interface.
38

SUÑE, JORDI, DAVID JIMENEZ e ENRIQUE MIRANDA. "BREAKDOWN MODES AND BREAKDOWN STATISTICS OF ULTRATHIN SiO2 GATE OXIDES". International Journal of High Speed Electronics and Systems 11, n. 03 (settembre 2001): 789–848. http://dx.doi.org/10.1142/s0129156401001003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The dielectric breakdown of ultra-thin silicon dioxide films used as gate insulator in MOSFETs is one of the most important reliability issues in CMOS technology. In this paper, two main aspects of oxide breakdown are considered: the modeling of the breakdown statistics and the properties of the two main breakdown modes, namely Soft Breakdown and Hard Breakdown. The most invoked models for the breakdown statistics that relate defect generation and breakdown are reviewed. Particular attention is paid to the percolation models and to a recent cell-based analytic picture. The scaling of the breakdown distribution with oxide thickness is considered and it is shown that both pictures are equivalent for ultra-thin oxides. It is shown that soft and hard breakdown show coincident statistics and this is used to conclude that both breakdown models are triggered by the formation of the same kind of defect-related conduction paths. The big differences in the post-breakdown conduction properties are attributed to phenomena occurring during the very fast breakdown current runaway that determine the area of the final breakdown spot. The properties of soft and hard breakdown are explained within the common framework of a model based on quantum-point-contact conduction. This mesoscopic approach to the post-breakdown conduction is shown to explain the main experimental results including conductance quantization after hard breakdown, the area and thickness independence of the soft-breakdown I(V) characteristics and the statistical correlation between current level and normalized conductance. Finally, we deal with some open questions and relevant issues that are now subject of intensive investigations. The fact that some breakdown events can be tolerated for some digital applications is considered. In this regard, the distinction between breakdown and device failure distributions is made and some implications for device reliability are discussed. It is argued that energy dissipation during the breakdown runaway can determine the breakdown efficiency, the prevalence ratio of soft to hard breakdown, and their variations with stress conditions, experimental setup (series impedance) and sample characteristics.
39

Gao, Xinlong, Wenhui Shi, Pengchao Ruan, Jinxiu Feng, Dong Zheng, Linhai Yu, Min Xue et al. "Ultrathin carbon boosted sodium storage performance in aqueous electrolyte". Functional Materials Letters 13, n. 05 (luglio 2020): 2030002. http://dx.doi.org/10.1142/s1793604720300029.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The sodium-based aqueous energy storage devices possess the advantages of low cost, high safety and wide application. However, the low energy density of traditional carbon-based sodium storage materials limits their large-scale application. Besides, other sodium storage materials, such as transition metal oxides, polyanionic compounds and Prussian blue analogues (PBAs), cannot achieve high capacity and stable energy storage performance due to their poor conductivity and instability. Ultrathin carbon with unique characteristics, such as high electrical conductivity, excellent chemical stability, can compensate for the shortcomings of these sodium storage materials. Besides, the arising synergistic effect among ultrathin carbon and active materials is capable of further boosting the performance to achieve robust microstructure, stable electrode/electrolyte interface, high reaction kinetics for obtained composite electrode. This paper summarizes the recently developed strategies to incorporate ultrathin carbon with electrode materials, followed by a discussion of the important role of ultrathin carbon in enhancing sodium storage properties, as well as the future research direction.
40

Istomin, A. V., e S. G. Kolyshev. "ELECTROSTATIC METHOD OF FORMING ULTRATHIN FIBERS OF REFRACTORY OXIDES". «Aviation Materials and Technologies», n. 2 (2019): 40–46. http://dx.doi.org/10.18577/2071-9140-2019-0-2-40-46.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Vereecke, Guy, Erika Röhr, R. J. Carter, Thierry Conard, H. De Witte e Marc M. Heyns. "The Origins of Fluorine in Dry Ultrathin Silicon Oxides". Solid State Phenomena 76-77 (gennaio 2001): 153–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.76-77.153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Arienzo, Maurizio, Leonello Dori e Thomas N. Szabo. "Effect of post‐oxidation anneal on ultrathin SiO2gate oxides". Applied Physics Letters 49, n. 16 (20 ottobre 1986): 1040–42. http://dx.doi.org/10.1063/1.97465.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Oellig, Eva M., E. G. Michel, M. C. Asensio e R. Miranda. "Ultrathin gate oxides formed by catalytic oxidation of silicon". Applied Physics Letters 50, n. 23 (8 giugno 1987): 1660–62. http://dx.doi.org/10.1063/1.97760.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Liao, Wei-Jian, Yi-Lin Yang, Shun-Cheng Chuang e Jenn-Gwo Hwu. "Growth-Then-Anodization Technique for Reliable Ultrathin Gate Oxides". Journal of The Electrochemical Society 151, n. 9 (2004): G549. http://dx.doi.org/10.1149/1.1783907.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Fair, Richard B. "Physical Models of Boron Diffusion in Ultrathin Gate Oxides". Journal of The Electrochemical Society 144, n. 2 (1 febbraio 1997): 708–17. http://dx.doi.org/10.1149/1.1837473.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Thompson, W. Howard, Zain Yamani, Laila AbuHassan, Osman Gurdal e Munir Nayfeh. "The effect of ultrathin oxides on luminescent silicon nanocrystallites". Applied Physics Letters 73, n. 6 (10 agosto 1998): 841–43. http://dx.doi.org/10.1063/1.122019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Madsen, Jon M., Zhenjiang Cui e Christos G. Takoudis. "Low temperature oxidation of SiGe in ozone: Ultrathin oxides". Journal of Applied Physics 87, n. 4 (15 febbraio 2000): 2046–51. http://dx.doi.org/10.1063/1.372134.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Mukhopadhyay, M., S. K. Ray, D. K. Nayak e C. K. Maiti. "Ultrathin oxides using N2O on strained Si1−xGex layers". Applied Physics Letters 68, n. 9 (26 febbraio 1996): 1262–64. http://dx.doi.org/10.1063/1.115946.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Pennetta, C., L. Reggiani e Gy Trefán. "A percolative model of soft breakdown in ultrathin oxides". Physica B: Condensed Matter 314, n. 1-4 (marzo 2002): 400–403. http://dx.doi.org/10.1016/s0921-4526(01)01408-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Beck, Romuald B. "Formation of ultrathin silicon oxides—modeling and technological constraints". Materials Science in Semiconductor Processing 6, n. 1-3 (febbraio 2003): 49–57. http://dx.doi.org/10.1016/s1369-8001(03)00071-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia